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Abstract— Extracting single-cell information from mi-
croscopy data requires accurate instance-wise segmentations.
Obtaining pixel-wise segmentations from microscopy imagery
remains a challenging task, especially with the added complexity
of microstructured environments. This paper presents a novel
dataset for segmenting yeast cells in microstructures. We offer
pixel-wise instance segmentation labels for both cells and trap
microstructures. In total, we release 493 densely annotated
microscopy images. To facilitate a unified comparison between
novel segmentation algorithms, we propose a standardized
evaluation strategy for our dataset. The aim of the dataset
and evaluation strategy is to facilitate the development of new
cell segmentation approaches. The dataset is publicly available
at https://christophreich1996.github.io/yeast_
in_microstructures_dataset/.

I. INTRODUCTION

Many biomedical applications require the detection and
segmentation of individual cells in microscopy imagery [1].
For example, analyzing the cellular processes of living cells
in time-lapse fluorescence microscopy (TFLM) experiments,
requires accurate pixel-level segmentations of individual
cells [2]–[5]. Most applications require each cell to be
segmented and identified as an unique entity or instance [6].
Instance segmentation is the task of detecting, segmenting,
and classifying each object instance in an image [7]. While
powerful cell segmentation algorithms have been proposed
recently (e.g. [8], [9]), segmenting cells in microstructured
environments remains challenging, due to the perceptual sim-
ilarity of microstructurs and cells (cf. Fig. 1) [3], [10], [11].

The vast majority of current state-of-the-art segmentation
algorithms utilize deep neural networks [9], [12]–[14]. A
key factor driving the development of deep learning-based
segmentation algorithms is the widespread availability of
pixel-wise annotated datasets. Examples include Microsoft
COCO [15], Cityscapes [7], ADE20K [16], and the 2018
Data Science Bowl dataset [17]. While general cell seg-
mentation datasets are available (e.g. [17], [18]), we are
not aware of any instance segmentation dataset of cells in
microstructures with dense annotations.

In this paper, we present and publicly release a
dataset of yeast (Saccharomyces cerevisiae) cells in
microstructures with instance segmentation annotations. The
dataset is comprised of 493 densely annotated brightfield
microscopy images of different TLFM experiments (cf.
Fig. 1). To facilitate a fair comparison between novel
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segmentation approaches we also propose a standardized
performance evaluation strategy. The PyTorch [19]
code for performance evaluation is publicly available at
https://github.com/ChristophReich1996/
Yeast-in-Microstructures-Dataset.

Fig. 1. Samples of our yest cells in microstructures dataset. The top row
show unlabelled brightfield imagery to demonstrate the visual similarity
between the cells and similarly sized microsctuctures. In the following
rows, the instance segmentation labels are overlayed onto the the brightfield
microscopy imagery (grayscale). A bounding box and object class label
denotes each object for clarity. Shades of pink (■■) indicate individual cell
instances and shades of (dark) gray (■■) indicate microstructures (traps).

II. DATASET

When developing a segmentation dataset, numerous design
choices have to be made. This section will give a detailed
overview of these design decisions. First, we describe the
data acquisition and annotation process. Second, we will
introduce the core features and statistics of our dataset.
Finally, we describe how our dataset is split for training,
validation, and testing.

A. Data Acquisition

We chose two common yeast trap microstructure ge-
ometries and drew data from a wide range of experiments
performed in our lab to generate our dataset (cf. Fig. 1) [20],
[21]. An overview of the experimental setup atop the micro-
scope table is given in Fig. 2. We designed and fabricated trap
microchips for long-term cultures of yeast cells (cf. Fig. 2).
We recorded brightfield microscopy images of the living
yeast cells confined to the microfluidic chip over many hours.
A constant flow of yeast growth media hydrodynamically
traps the cells in the microstructure pairs [4], [22].
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We extracted 493 specimen images, each centered on a
single trap microstructure pair with a resolution of 128×128,
from the higher resolution raw data, as is common practice
(cf. Fig. 2) [3], [21]. We differentiate between two subsets,
one for each of the trap geometries employed (roughly oval
shaped regular traps, and the L traps). In order to increase
the robustness and range of applicability of the models
trained on this data, we include variations in trap type, debris,
focal shift illumination levels, and yeast morphology. Our
dataset captures the most common yeast-trap configurations:
(i) empty traps (ii) single cells (with daughter) and (iii) mul-
tiple cells [6]. Our dataset also includes edge cases such as
broken traps (cf. Fig. 1 bottom left).

Fig. 2. TLFM experiment setup for single-cell fluorescence measurement.
A microfluidic chip sits atop the microscope table (top left). The trap
chamber (pink ■■ on the top right) contains approximately one thousand
traps. We extract cropped specimen images from the fluorescence and
brightfield channels (bottom left), that include a pair of trap microstructures
and cells. The brightfield channel is used for segmentation (and in this
dataset). The black scale bar is 1mm, the white scale bar is 10µm.

B. Data Annotation

We present 493 pixel-level annotated images, with pixel-
wise instance-level annotations of both cells and microstruc-
tures (traps). Each pixel, not labeled as a cell or tap,
is considered as background. Note, since our labels only
include a single background class, our instance segmentation
labels can also be seen as panoptic labels [23]. This property
is later used for performance evaluation (cf. Section III).

All annotations were acquired manually. For every object
instance (cells and traps), we annotate the object class and
the pixels belonging to the object. Note that we assume no
overlapping cell and trap instances (seeing as the chips are
designed to prevent any overlap). This annotation process
results in a binary segmentation map and classification
for each object instance. Fig. 3 showcases both brightfield
images and our manual instance-wise annotations.

In most cases, cell instances can easily be distinguished
during labeling. In the case of budding, in which a daughter
cell pinches off a mother cell, labeling the growing daughter
cell is non-trivial [24]. We decided to annotate the daughter
cell as a separate instance if it is clearly separated from the
mother cell. An example of this is given in Fig. 3 (bottom

right). The detection of daughter cells, can, for example, aid
in determining the cell fitness.

Fig. 3. Brightfield microscopy imagery of yeast cells and microstructures
with the corresponding labels. Brightfield images on the left, instance
segmentation label in the middle, and an overlay of the brightfield images
and labels on the right. Shades of gray (■■) indicate different instances of
microstructures (trap). Cell instances are visualized in shades of pink (■■).
The background is white.

While most applications, such as analyzing the cellular
process of living cells, mainly require the segmentation
of cells, we decided to also include annotations of mi-
crostructures in our dataset. The reason for this decision is
twofold. First, when knowing both the position cells and
traps it can be determined which cells are hydrodynamically
trapped and which cells are outside of the trap, likely to be
hydrodynamically washed out of the chip. Second, learning
the difference between cells and traps might be enforced by
explicitly learning to also segment each trap instance.

C. Dataset Statistics

Our full dataset is comprised of two distinct subsets,
one for each of the trap geometries (regular and L traps).
Details on the core features of both subsets are depicted
in Table I. The first subset includes regular trap types, and
slight variations of this geometry, also referred to as type 1,
whereas the second subset includes L-shaped traps (type 2).
In general, the first subset includes approximately four times
the number of images and object instances (cells and traps)
as the second subset.

TABLE I
CORE PROPERTIES OF OUR CELLS IN MICROSTRUCTURES DATASET.

Trap type # images # cells # traps

Subset 1 Type 1 (regular) 398 702 781
Subset 2 Type 2 (L) 95 212 190

Full dataset Type 1 & 2 493 914 971

We analyze the number of instances per class in each
specimen image. Fig. 4 shows the histogram of instances
per image for both subsets and both semantic classes. The
majority of images include two traps and at least a single cell.
However, our dataset also includes specific edge cases, such
as the case where only a single intact trap microstructure
instance is present due to fabrication errors. In the most
common setting, two cells and two trap instances are present.
This corresponds to the setting of a trapped mother cell with
a budding daughter cell that pinches off from the mother
cell [24]. Images without any cells are also included. The
maximum number of cells in a single image is six.
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Fig. 4. Histogram showing the frequency of number of object instances
in an image of our dataset. Left column visualizes the cell class (pink ■■)
and right column the trap class (grey ■■).

Our dataset includes yeast cells of vastly different sizes.
This is showcased in Fig. 5, where the cell size distribution
approximately follows a normal distribution. The first subset,
however, includes some outliers in the form of very large
cells. The trap size histogram (cf. Fig. 5) exhibits less vari-
ance than that of the cells (as is expected for microfabricated
structures). The variation in trap appearance is included for
increased model robustness and is due to a range of factors,
ranging from fabrication tolerances, the position of the focal
plane, to mechanical chip deformations (bending, warping,
inclined mounting), amongst others.
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Fig. 5. Histogram of object instance sizes in number of pixels. Left column
visualizes the class cell (pink ■■) and right column the class trap (grey ■■).

The distribution of cell positions is depicted as a density
map in Fig. 6. Yeast cells are mainly located inside a trap pair
(cf. Fig. 6). Additional cells are typically located above the
trap pair. When budding, the daughter cell typically grows
near the top of the microstructures. In some cases, daughter
cells grow out of the bottom of the trap.

D. Dataset Splits

Our densely annotated microscopy images are split into
three separate sets for training, validation, and testing. We
initially split the dataset randomly. However, we subse-
quently manually curated the sets to ensure that all splits
include a similar amount of variability in cell and trap
configurations. Following the split fraction of the Cityscapes

L

H

Fig. 6. Density map of cell locations in our dataset. Pink (■■) areas indicate
regions where many cells are located (H). White areas showcase regions
where only a few or even no cells are located (L).

dataset (∼ 60% training, ∼ 10% validation, and ∼ 30% test),
we arrive at a split consisting of 296 training, 49 validation,
148 test images with dense annotations. Table II presents
details of the dataset split.

TABLE II
TRAINING, VALIDATION, AND TEST SPLIT OF OUR DATASET.

Split # images # cells # traps Trap type images 1 vs. 2

Training 296 536 582 244/52
Validation 49 108 98 33/16
Test 148 270 291 121/27

III. PERFORMANCE EVALUATION

We propose to utilize both the cell class intersection-over-
union (IoU) and the panoptic quality (PQ) metrics [23] to
evaluate instance segmentation algorithms on our dataset.
The cell class IoU (Jaccard index) is defined as:

IoU (pc, gc) =
|pc ∩ gc|
|pc ∪ gc|

, (1)

where pc is the segment for the cell class and gc indicates
the cell class ground truth. This metric evaluates the semantic
performance of the cell segmentation. While we are present-
ing an instance segmentation dataset, we propose to validate
the performance of instance segmentation approaches on
our dataset with the cell class IoU to ensure a comparison
between previous work which utilizes this metric [3], [6],
[11], [25]. The cell class IoU is biased towards large objects
and does not capture the recognition and segmentation of
individual object instances. However, when an application
does not require single-cell segmentations but the semantic
segmentation of all cells, this metric is an insightful measure
of the semantic segmentation performance.

To measure the instance segmentation performance on
our yeast cells in microstructures dataset, we propose to
utilize the PQ metric. In panoptic segmentation, object
classes are categorized into two different class types. First,
“stuff classes” include uncountable objects/regions such as
sidewalks or grass. Second, “things classes” include count-
able objects classes, such as cars, people, or bicycles. For
stuff classes, semantic segmentation is performed, whereas
instance segmentation is performed for things classes. Our



instance segmentation dataset can be seen as an edge-case of
panoptic segmentation. Cell and trap classes can be viewed
as things classes, whereas the background builds the only
stuff class. Thus, we can evaluate an instance segmentation
prediction for our dataset with the PQ.

The PQ is computed individually for each semantic class
(background, cell, & trap) and averaged over all classes.
Before computing the PQ for a class, the predicted and
labeled instances are matched. This matching results in
three sets: true positive (TP), false positive (FP), and false
negative (FN) matches. Please refer to Kirillov et al. [23]
for details on the matching approach. Based on these sets
the PQ is computed for each semantic class as:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
SQ

|TP|
|TP|+ 1

2 |FP|+
1
2 |FN|︸ ︷︷ ︸

RQ

, (2)

here 1
|TP|

∑
(p,g)∈TP IoU(p, g) computes the mean IoU of

all matched predicted p and ground truth g segments. The
PQ is a measure of both the (instance-wise) segmentation
quality (SQ) and the recognition quality (RQ) of a panoptic
segmentation prediction. Additionally, the PQ weights each
object instance importance independent of their size.

By measuring both the cell class IoU and the PQ, we
can evaluate the performance of segmentation algorithms
on our instance segmentation dataset. For applications re-
quiring single-cell segmentations and the positioning and
segmentation of microstructures, the PQ is the superior
metric. The cell class IoU is to be preferred for applications
requiring only semantic information of cells. We offer code
for computing both the cell class IoU and the panoptic
quality for a standardized comparison of new approaches.

IV. CONCLUSION AND OUTLOOK

In this paper, we presented a new dataset for segmenting
yeast cells in microstructures, a widespread scenario for a key
model organism in biological research and development. We
provide both pixel-wise instance segmentation labels and a
standardized performance evaluation strategy. The aim of this
joint approach is to facilitate progress in the field of trapped
yeast analysis and to provide a basis for a fair comparison
between instance segmentation methods.

Beyond the scenario presented here, some biomedical
applications require temporal cell segmentations. To aid
the development of unified cell segmentation and tracking
algorithms, future work may consider extending our dataset
with video instance segmentation labels [26].
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