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Abstract 

Facial palsy (FP) is a clinical condition caused by damage to the facial nerve, resulting in paralysis 

of facial muscles that may affect patients’ speech, eyesight and social interactions. We hypothesize 

that activity can be restored in the injured hemiface, by electrical stimulation of its muscles, using 

the activity of muscles on the healthy hemiface as a control input. To explore this hypothesis, our 

group uses a rat model of FP, which treats blinking and whisking as the features of interest in facial 

movement. This thesis describes the development of an experimental system and a methodology 

for the automatic measurement of eyelid displacement and detection of blinks in video recordings 

of the rat. Specifically, we used an active-contour approach to localize and track rodent eyes in a 

head-fixed video. The algorithm is initialized by manually marking the eye contour in the first 

frame of the video; subsequent frames are analyzed automatically based on an energy function that 

depends on image features in the region of interest. Our results demonstrate that this technique 

detects blinks in video recordings with 100% success rate, and that there is a high correlation 

between algorithm output and manual outlining.  
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Abrégé 

La paralysie faciale (PF) est un état clinique résultant de dommages au nerf facial, entraînant la 

paralysie des muscles faciaux qui peuvent affecter la parole, la vision et les interactions sociales 

des patients. Nous émettons l’hypothèse que l’activité peut être restaurée dans la moitié du visage 

atteinte au moyen de la stimulation électrique de ses muscles, en utilisant l'activité des muscles de 

la moitié saine du visage comme une entrée de contrôle. Pour explorer cette hypothèse, nous 

utilisons un modèle de rat de PF, qui traite le clignotement des yeux et le mouvement des 

moustaches comme étant les caractéristiques de l’intérêt dans le mouvement facial. Cette thèse 

décrit le développement d'un système expérimental et d’une méthodologie de mesure automatique 

du déplacement des paupières et de la détection des clignotements dans les enregistrements vidéo 

du rat. Plus précisément, nous avons utilisé une approche de mesure aux contours actifs pour 

localiser et suivre les yeux du rat dans une vidéo à tête fixe. L'algorithme est initialisé en marquant 

manuellement le contour des yeux dans la première image du vidéo; les images suivantes sont 

analysées automatiquement sur la base d'une fonction d'énergie qui dépend des caractéristiques de 

l'image dans la région d'intérêt. Nos résultats démontrent que cette technique détecte des 

clignotements dans des enregistrements vidéo avec un taux de réussite de 100% et une forte 

corrélation entre le résultat de l'algorithme et la décrivant manuelle. 
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Chapter 1: Introduction 

Facial palsy (FP) is a serious condition where facial nerves fail to innervate patient’s facial 

musculature resulting in varying degrees of paralysis. The condition may be temporary or last a 

lifetime. Bell’s palsy is the most prominent cause of facial palsy, but there is a variety of other 

causes including trauma, tumours, infections and post-surgical insults to nerves. 

Facial palsy symptoms differ from one patient to another and depend on the degree of injury of 

each patient. Loss of facial muscle control causes problems with basic voluntary and involuntary 

activities such as blinking, smiling and talking, as the facial nerve innervates orbicularis oculi 

muscles and orbicularis oris muscles. This also leads to loss of facial symmetry at rest, which in 

itself is a problem since it affects social aspects in patients’ lives, as it is visible to the naked eye 

and will often attract unwanted attention. 

Our group hypothesizes that facial symmetry and spontaneous symmetrical movements of the eyes 

and the mouth can be restored by a functional electrical stimulation (FES) system that activates 

muscles on the injured hemi-face, based on electromyogram (EMG) input from the healthy hemi-

face. A first step to establish such system is to understand which EMG patterns represent different 

facial movements. To map the relationship between EMG and facial movements, we must first 

quantify facial movements, more specifically blinking and smiling, into measurable signals. 

As a first stage, we developed a rat model for FP. In rats, blinking and whisking (the act of repeated 

retraction and protraction of facial whiskers) are equivalent to human blinking and smiling, the 

facial movements of interest. Therefore, we need to create a system to track blinking and whisking 

behavior through time and provide a quantitative measure of both movements. In addition, these 

measures could be used to assess nerve regeneration, by comparing measures of blinks or smiles 
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at different points over a long period (several months, for example). Improved measurements will 

indicate a recovering nerve, as nerve health can be reflected in muscle functionality.   

To meet these needs, we decided to use a single high-definition video camera to capture both 

whisker and eyelid movements. Each video recording leads to four output signals, one for each 

eye and one for the whisker-pad on each side. This thesis focuses on the acquisition and analysis 

of blinking signals from the proposed system. 

Methods of measuring blinking behavior in animals as well as humans have been developed 

previously.  However, these methods had limitations that made them inappropriate for our study. 

Some of the main obstacles in existing methods were the system complexity, as they often required 

infrared light emitters and sensors, and in some cases required mechanical connections to the 

eyelid that were invasive and complicated to record. In addition, no previously described method 

allowed recording of both eyelid and whisker movement using the same experimental system in a 

single recording.  

This study aimed to accurately quantify eyelid movement from video recordings of an animal 

model of facial palsy. We wanted to quantify any eyelid movement, from complete blinks to partial 

closure. In addition, we aimed to create a new experimental system that is capable of 

simultaneously recording both eyelid movement and whisker movement.  

This thesis is divided into six chapters. Chapter 2 provides background information about facial 

palsy including its physiology, pathology and common treatment methods.  

Chapter 3 reviews relevant methods of quantifying and tracking blinks in animals and in humans 

and will discuss their advantages and disadvantages.  



9 
 

Chapter 4 presents the experimental setup we developed as well as the methodology we used to 

record videos of rodents. It will then describe two analysis methods we used to explore properties 

of the blinking videos.  The final method we developed to quantify and track eyelid movement in 

the videos will then be described, as well as the challenges encountered during development and 

their solutions. Finally, the technique developed to validate the algorithm is presented. 

Chapter 5 presents the results of the automated algorithm we developed with comparison to the 

manual validation results, with analysis examples of several video files, and an overview of all 

videos analyzed. In addition, it will present results from the initial methods we used to learn the 

system’s characteristics. In this chapter, we will also explain the choice of metrics we used as the 

algorithm output. 

Finally, chapter 6 discusses the different advantages of the method we developed and the reasons 

it stands out. In addition, problems that persisted are presented and as are possible directions for 

future work. Finally, the chapter will finally presents the main conclusions regarding our work and 

the goals we tried to achieve.  
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Chapter 2: Background of Facial Palsy and Neural Regeneration 

2.1  Background 

Facial palsy (FP) is a devastating clinical condition resulting from insult to the facial nerve (FN) 

and is the most common type of nerve paralysis in humans [1]. The causes of FP can be idiopathic 

(Bell palsy, responsible for approximately 50% of all FP cases with an incidence rate of 23 per 

100,000 people per year), tumours, Lyme disease, trauma, and post-surgical insults [2, 3]. FP is 

characterized by poor or absent control of facial muscles, which causes patients to experience 

communication, functional, and aesthetic difficulties. Oral problems include speech articulation 

hardships and the inability to smile, while eye problems revolve around the inability to blink and 

protect the cornea [4]. This inability to blink is an important problem for FP patients since 

incomplete blinks impair the distribution of tear film across the eye, and increase the chances of 

corneal infections, irritations and inflammation. If left untreated, some of the difficulties can 

translate in the long term to psychological consequences, such as increased levels of anxiety and 

depression, avoidance of social contacts, and communicative disorders. Other difficulties may 

cause permanent physiological damage, including nasal valve dysfunction, vision loss and rupture 

of the eye globe [5-9].  

2.2  Current treatments 

Treatment for FP ranges from physical therapy to surgical procedures, depending on its severity. 

FP due to Bell’s palsy is commonly treated with high-dose corticosteroids to shorten recovery time 

after symptoms begin. A combination of antivirals and corticosteroids may benefit patients whose 

FP is due to varicella-zoster virus [10]. When the cause for FP is physical trauma, such as post-

surgical insult or blunt trauma to the facial nerve, direct nerve repair is usually required.  
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When FP is long-standing, injections may help manage the condition – injected fillers add volume 

to improve symmetry while injected botulinum toxin can reduce muscle hyperactivity and 

synkinesis (involuntary muscle twitches) in targeted areas. However, when traditional methods 

fail, surgical intervention may be required to attempt either static or dynamic reanimation [5, 10, 

11].  

Static reanimation, or static reconstruction, is a surgical procedure aimed at achieving a cosmetic 

correction by restoring facial symmetry and a fixed neutral expression. Examples include [5]:  

• Brow position correction which fixes the brow in a position aligned with that of the healthy 

side; 

• Implanting an eyelid weight in an upper eyelid, to ensure full eye closure; 

• Use of a static sling, suspended from the zygomatic arch to lift the oral commissure and 

create a neutral looking smile.  

Static reconstruction methods can improve the psychological effects on patients by making their 

smile and eyes look more natural in a neutral, everyday situation [5]. Static reconstruction is most 

common in patients with multiple comorbidities or those who are not candidates for complex 

surgical procedures due to health issues. 

In contrast, dynamic reanimation aims to restore some movement to the injured side. The focus is 

usually on reanimating oral movements rather than blinking, since static reanimation is usually 

enough to preserve eye health. Transfer of the temporalis muscle is a popular reanimation 

technique since it is relatively simple to harvest the temporalis muscle. By doing so, the temporalis 

muscle replaces the functionality of the zygomaticus muscle and enables smiling. An alternative 

procedure that may be used is nerve grafting, where a donor nerve is used to replace the injured 
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one. Cross-facial-nerve grafting (CNFG) is a common grafting technique in which the donor nerve 

branch is harvested from the non-paralyzed side, and implanted in the injured side, to replace the 

damaged nerve. CNFG allows spontaneous smile (as a result of emotion, for example), while 

avoiding formation of facial twitches. It may, however, impair the healthy side or cause synkinesis 

due to nerve harvesting [10].  

Dynamic reanimation of the eye using a surgical method was suggested by Frey et al., by 

transplanting the gracilis muscle to replace the eye sphincter as well as to reanimate the oral region 

[12]. Alternatively, Frey suggested a procedure to transposition the temporalis muscle using a 

technique developed by Gillies and Millard to achieve outcomes similar to transplantation [13]. 

These dynamic reanimation methods are highly invasive, require muscle or nerve transplants or 

manipulation, and achieve only limited facial movement. An alternative, less invasive solution lies 

in functional electrical stimulation (FES). FES is a technique that utilizes low energy electrical 

pulses to artificially activate the sensory motor system to overcome paralysis or disability. Using 

FES, a specific motor nerve can be stimulated to affect a desired muscle. Utilizing muscle activity 

signals (EMG) from the healthy hemi-face as control signals, stimulus can be applied to the injured 

hemi-face with minimal lag, to replicate a movement and create an overall symmetric facial 

behavior, including both blink and smile. Attiah et al. developed and tested a rodent model of 

closed-loop FES facial reanimation, and showed that whisker protraction could be controlled by 

varying the number of stimulus pulses and stimulus frequency [14, 15]. 

2.3 Assessment of Neural Regeneration in Animal Models of Facial Palsy 

Animal models are useful to study the pathology and treatment of FP and properties of neural 

regeneration. Early studies used large animals, such as cats and rabbits, but since these were 
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expensive and required intensive care, and their anesthesia was not reliable, smaller animals like 

rats were later introduced [16]. FN innervation in rats is similar to that of humans, and therefore 

they are a useful model for the study of FP [17, 18].  

Assessing neural regeneration is essential in studies of nervous damage and in tracking patient 

recovery. Both microscopic and behavioral measures are commonly used in facial nerve studies 

[19]. The most common microscopic outcome measure is axon counting; a cross-section of a nerve 

is cut and extracted, axons are counted, and their myelin is inspected for growth under a 

microscope to determine whether the nerve is recovering. The advantage of microscopy-based 

measure is that it provides detailed information, as axons may be counted individually. However, 

it has several key disadvantages. First, it is highly invasive - to obtain a nerve cross-section, a 

nerve must be dissected and removed which is not possible in humans. Second, time course studies 

become expensive and more complex to perform, as they require the dissection and removal of 

axons at each point in time. Third, this is an anatomical measure that does not necessarily have 

direct correlation with function [19, 20].  

Non-invasive behavioral measures evaluate functional activities (such as movements) that 

depend on the nerve’s health. These are easier to measure noninvasively and may give a higher-

level understanding of the nerve's status. These measures differ with the nerve studied and the 

muscle it innervates [21, 22]. 
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Whisking is a commonly used non-invasive assessment metric. A rat’s whiskers are located on 

both sides of the rodent’s snout, in areas called the mystacial pads (marked in Fig. 1). Each pad 

contains about 35 large whiskers, used mainly for sensing via whisking movements [23]. The 

buccal branch of the FN is responsible for whisking in rats, and is equivalent to the buccal nerve 

in humans, which innervates the oral muscles. Thus, damage to the FN will affect smiling in 

humans and whisking in rats, highlighting the importance of whisker tracking, as it can help 

understanding how damage to the buccal nerve affects the human smile. Whisking may be assessed 

by measuring the frequency of whisker protraction and retraction pre- and post-injury, or by 

measuring angular velocity and acceleration of  forward whisker movement [19].  

Blinking is a second means to assess neural regeneration of the FN. To understand why, consider 

the structure and mechanism of blinking. The orbicularis oculi (OO) muscle, innervated by the 

FN, is responsible for closing the eyelid, while the levator palpebrae (LP), innervated by the third 

 

Fig. 1 – Illustration of a rat’s face. The area within the orange circle represents the mystacial pad of the 

rat. The FN and its branches are shown in blue [16]. 
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cranial nerve, is responsible for opening the eyelid (see Fig. 2). A blink occurs when the LP is 

turned off and the OO is switched on, resulting in a rapid lowering of the upper eyelid. [24, 25]. 

 

In patients with FP, the zygomatic branch of the FN may be injured so that the innervation of the 

OO is not adequate to fully close the eyelid during a blink and so the cornea is not fully covered 

(a condition known as lagophthalmos). In rats, as in humans, the zygomatic branch is affected 

when FP is induced, thus blinking behavior is important to assess as it provides a functional 

measure of nerve damage. Measuring blinking, or more specifically eye closure, provides valuable 

information on the facial nerve by quantifying lagophthalmos [26]. Full eye closure indicates full 

 

Fig. 2 - Illustration of a human’s eye and eyelid musculature. The orbicularis oculi is innervated by 

the FN and responsible for eye closure, while the levator palpebrae is innervated by the third cranial 

nerve [25]. 
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neural function, while the degree to which the eye does not fully close provides a measure of the 

extent of neural damage. 
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Chapter 3: Review of Blink Tracking Methods 

To fully understand FP in human patients, it will be important to measure both smiling and 

blinking. Thus, in the rat model of FP, it will be important to measure the analogues - both 

whisking and blinking. This thesis deals with the development of a noninvasive, quantitative 

method to measure blinking and eye closure. The following section will review existing methods 

of blink tracking.  

3.1. Blink tracking methods 

Blinks are fast movements of the eyelids over the ocular surface, whose frequency and duration 

vary from one blink to another and from one person to another. Blinks may be completed in less 

than 100 ms, so a high temporal resolution is required to measure them. Blinks were first tracked 

in 1928 by Kennedy and Ponder [27], who counted blinks manually to understand their frequency 

characteristics and their relation to mental tension. Since then, numerous techniques have been 

developed to detect and track blinks. These include approaches requiring physical attachments to 

the eyelids; methods based on physiological signals; methods using light emitters and sensors; and 

camera-based methods. 

3.1.1. Physical methods 

The first methods developed to measure blink were physical in nature. Pennypacker et al. 

described an eyelid recording apparatus in which the arm of a micro-torque potentiometer was 

connected to a primate’s eyelid using surgical wire. Tension on the potentiometer’s spring was 

adjusted to permit the animal to blink with minimal impairment of movement. Eyelid motion 

moved the potentiometer arm, resulting in a signal proportional to eyelid movements [28].  
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Another approach used a search coil in a magnetic field. The subject was placed inside an 

oscillating magnetic field. A small, light circular coil (5mm diameter weighing 0.1g) was attached 

to the eyelashes of the upper eyelid. Movement of the eyelid, as it opened or closed, induced a 

current in the coil, proportional to the eyelid velocity, due to electromagnetic induction [29, 30].  

Marcelli et al. used a miniature gyroscope attached to the upper eyelid to measure its angular 

velocity, as it opened and closed. Angular displacement was calculated by integration [31].  

There are several issues associated with these methods. First, any method requiring a physical 

attachment to the eyelid increases stress on the subjects. This is particularly important in behavioral 

studies where it is essential to minimize external stress and keep the subject’s conditions as close 

as possible to natural [32]. Secondly, setting up each experiment is cumbersome and requires 

delicate manual labor (e.g. connecting the eyelids to different mechanisms), making recordings 

time-consuming and resource-expensive. Furthermore, such methods cannot be used for chronic 

measurements over prolonged periods due to their complexity and invasiveness.  

3.1.2. Physiological signals 

Different physiological signals have been used to detect blinks. In 1984, Stern et al. found that 

blinks are associated with changes in the vertical electrooculogram (EOG), which measures the 

potential between the front and back of the eye [33]. EOG is most commonly used to record 

movements of the eye globe. However, if one EOG electrode is placed above the eye, and another 

under, such that they form a virtual vertical line together with the pupil, their potential changes 

will be  related to movement of the eyelid [34].  

Electromyography (EMG) of the orbicularis oculi muscle has also been used to study blinks by 

using filtering methods to exclude irrelevant information (for example, peaks as a result of smiling) 
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[35-37].  However, this approach does not measure blink magnitude, but rather provides a binary 

output each time a blink occurred. Methods that combine EOG with EMG to study differences 

between spontaneous, voluntary and reflex blinks have also been proposed. Using both signals 

allowed different types of blinks (e.g. reflex blinks as a result of an outside stimulation, and 

spontaneous blinks that occur naturally) to be distinguished [38, 39]. 

Blinks produce a transient intraocular pressure (IOP) rise of more than 10mmHG, thus an IOP 

sensor has been suggested as a mean to measure blinks [40, 41]. IOP can be accurately measured 

using a contact lens sensor (CLS); for example, Leonardi et al. developed a CLS based on a soft 

contact lens with a strain gauge embedded in it. In the IOP signal extracted from the CLS, spikes 

were classified as blinks provided they had a specific structure: a local minimum followed by a 

local maximum followed by a final local minimum [42].  

Methods based on physiological signals, like IOP, EMG and EOG, require less physical 

manipulation and are easier to set up than mechanical methods, since they require only a few, 

easily placed electrodes or sensors. This makes long-term tracking possible. However, although 

less invasive than physical methods, the electrodes might alter the behavior of the test subject, as 

it is not in its natural mode anymore, and might be limited in movement, or respond to the 

attachment of electrodes in an unwanted manner, possibly complicating the recordings. Another 

limitation is that physiological signals do not provide a direct measure of eyelid movement. 

Instead, it must be extracted from specific patterns in the signals and does not provide a 

quantitative measure of eye closure, but rather a binary output indicating whether the eye is open 

or not.  
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3.1.2. Light-based methods 

Light-based methods were developed to sense and track blinks with no physical contact. 

Thompson used a light-emitting diode (LED) to shine a beam of low-intensity infrared (IR) light 

onto the corneal surface and captured the reflection with a phototransistor. The eyelid’s status 

(open vs. closed) was estimated from the amount of light received, since the surface of the cornea 

reflects less light than the eyelid [43]. Thompson’s method was accurate, and others have improved 

upon it. Thus, Ryan et al. introduced a longer-distance system, that handles IR noise better; and 

Caffier and Frigerio mounted the IR apparatus on an eyeglass frame to continuously track and 

analyze eye blink behavior [44-46].  

Heaton suggested a system combining two devices to allow tracking of eyelid and whisker 

movement simultaneously [17]. Like previous methods, the system used a device similar to that 

described by [43] and added a whisker tracking apparatus capable of tracking whisker movement 

using laser micrometers [47]. This enabled the recording of two facial movements, but the device 

had to be placed in close proximity to the animals and blocked their field of vision, possibly 

affecting their behavior.  

A major limitation of IR methods is that the setup must be precise so that the light beams are aimed 

directly at the eyes. Since the visible surface area of the eye is small, the smallest misalignment in 

IR beam direction may lead to wrong recordings, as the relevant reflected light must come from 

the surface of the cornea and the eyelid, and not from the skin surrounding the eye.  

3.1.3. Video-based methods 

Video-based systems provide a less invasive and more natural way to record eyelid movement, 

with less obstruction to the animals’ vision. These methods consist of video recorders focused on 

the patients’ eye, recording for a given period of time, and using different approaches to image 
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processing to detect the eye structure within each frame. Subjects are not physically limited as in 

physical methods and the experimental setup is, in most cases, less cumbersome than light-based 

methods, physiological methods and physical methods, as recordings are done with cameras that 

are easy to set up and manage.  

Early methods of image processing to track movement used facial markers. Isono et al. introduced 

a system that used 24 markers fixed to the subject’s face in pre-determined locations. Recording 

at 30fps, the direction and distances of the markers were traced between consecutive frames, to 

create a map of facial movement, with a focus on eye closure [48]. While useful for tracking overall 

improvement in facial paralysis, this method did not capture single blinks, but rather the magnitude 

of marker movement. Somia and Bracha replaced the facial markers with eyelid-specific markers 

and a lightweight helmet with a camera mounted on it, to track the eyelid velocity and position. 

This method had higher temporal resolution and did track smaller changes compared to previous 

methods, since the camera was mounted on the helmet and maintained a nearly-fixed position 

relatively to the markers. However, the setup required many manual adjustments of the marker 

locations, and placement of a specially designed helmet, meaning it is not easily reproducible, as 

other researchers would have to reconstruct a similar helmet to achieve similar results, and adjust 

the algorithm to match their own version of the helmet. [49, 50].  

Subsequently, other video methods that do not require markers have been developed. One group 

of methods combines video recordings with background IR light for better detection of the eye. 

Thus, Lalonde created a dark recording environment, illuminating the subject’s face directly with 

near IR light, while recording with a black and white camera. Each pair of consecutive frames was 

differenced to detect areas of significant motion to locate the region of the eye. Once the region of 

interest (ROI) was set, an optical flow field was calculated and blinks were detected when there 
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was a downwards movement followed by upwards movement of both eyes [51, 52]. In a different 

study, the subject’s head was fixated to the recording chamber and filmed with a simple IR camera 

to generate a brightness matrix for each frame. Based on pixel intensity and the number of dark 

pixels in each frame, the algorithm determined whether the eye was open or closed. This method 

is very close to automatic; however, user intervention is still required to pick the ROI around the 

eye and manually define a pixel intensity threshold (changing from one recording to another), to 

differentiate an open eye from a closed eye. [53]. 

Another group of methods uses standard video recording with no IR gear. Pardas et al. analyzed 

the video images using a method based on the Snake algorithm (also known as active-contour), 

which, following an initial stage of detecting the eyes in the first frame, tracked a contour 

surrounding the eye as it changed throughout the video. The contour was moved around to fit the 

eye boundaries in each frame by minimizing an energy function depending on the mean value of 

the image around the contour and the smoothness of the contour. The study focused on tracking 

the location of eyelids, but did not attempt to extract any metric from the video or to produce a 

signal that quantified eyelid velocity or displacement [54]. 

Several template-matching methods that have also been applied to track blinks from simple video 

recordings [55-58]. These methods are based on the simple observation that, as the eye closes it 

looks less like an open eye, and as it opens, it looks more like an open eye. Based on this 

observation, two-dimensional cross-correlation scores between a given frame and an open-eye 

template are calculated for each frame, after the eye itself was detected. This correlation is high 

when the eye is open and decreases during a blink. The time-course of the correlation function was 

then analyzed to measure blink duration. The method’s accuracy in binary blink detection was 
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high at 95.3% and it has the great advantage of requiring no human intervention;  the whole process 

is completely automatic and can run in real time [57].  

Most video-based methods were designed to provide only binary detection of blinks. Eye closure 

is not quantified as a continuous signal but rather as a binary signal specifying whether the eye is 

open or closed. This is not suitable for the assessment of neural regeneration, since it does not 

provide a measure of how open an eye is or how well it is innervated.  

3.2.  Thesis Rationale 

As we saw, while there are many methods to detect blinks in humans and animals, most have 

significant limitations, such as invasiveness, high experimental setup complexity and binary-only 

output. These limitations make them unsuitable for our purposes. However, the literature review 

suggested we could overcome these limitations by recording video of the eye, using a single 

camera, and applying image-processing methods to extract blink information.  

This thesis focuses on the development and validation of image-processing methods using the 

active-contour method to obtain a quantitative measure of eyelid coverage of the eye. 

Our thesis objectives were therefore as follows: 

• Acquire video recordings to allow both whisker and eyelid tracking. 

• Track eyelid movement in a video recording of an animal model. 

• Detect blinks and quantify eye closure continuously.  
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Chapter 4: Methods 

4.1. Requirements   

The desired characteristics for our algorithm and experimental setup came from the review in 

chapter 3, as well as from requirements defined by our team, to ensure the algorithm could be used 

in the facial reanimation project. These include: 

• Non-intrusive recording apparatus: No physical contact (such as connecting a lever to 

the eyelid) should be used, since these are too intrusive for the animal during recording. In 

addition, the animal’s field of vision should remain unobstructed.  

• Low recording setup complexity: No facial or eyelid markers should be used, to reduce 

manual labour in setting up the experiments, when recording eyelid movement.   

• Reproducible and cost-effective: To ensure others can easily reproduce the experiment, 

we would like to record using a single camera, with no additional IR equipment that may 

bring costs up and complicate the process. 

• Whisker tracking ready: since this thesis is part of a wider project researching FP, we 

would like the system to be capable of simultaneously recording both eyelid and whisker 

movement. This will allow a whisker tracking algorithm (developed by other team 

members) to function in parallel with the blink tracking algorithm (developed by myself). 

The recording must be done with a frame rate and resolution high enough to capture minor 

whisking movements.  

• Continuous output: On top of binary blink detection, we would like to capture continuous 

eyelid movement. This will help in assessment of neural regeneration.  
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4.2. Experimental Setup 

The subjects were adult female Lewis rats weighing between 200 and 250 grams, housed 

individually in a 12h light-dark cycle with ad libitum food and water. All procedures were 

conducted in the Surgical Photonics and Engineering Laboratory (SPEL) of the Massachusetts Eye 

and Ear (Boston, MA), and were approved by the Institutional Review Board of the Massachusetts 

Eye and Ear.  

Each animal was fitted with a lightweight, titanium head implant (as seen in Fig. 3A-C) that 

provided four external attachment points for a head fixation device [59]. The device was mounted 

on a 75mm diameter polyvinyl chloride (PVC) half-pipe.  The animal was strapped to the PVC 

half-pipe using a cloth sleeve and multiple fabric straps, and fixed to the head fixation device using 

screws, as shown in Fig. 3 [17]. 

Experiments were performed using two recording setups. In setup A, videos were recorded with 

a Yi Action Camera (Xiaomi, Beijing), at 240 fps and a resolution of 720x480. The recordings 

were done with normal ambient lighting. With the rat fixed in place, the camera was placed above 

the rat’s head, and video recorded for up to one minute with room lighting.  
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A second recording setup (setup B) built later, contained both whiskers and eyelids within the 

frame. In this setup, a recording chamber created a more controlled environment. The chamber 

   

 

Fig. 3 – Head fixation and half pipe. A) The titanium implant attached to a rat’s skull; B) The titanium 

implant post-surgery; C) The titanium implant attached to the head fixation device; D) The rodent is 

placed inside the PVC half-pipe, where it is strapped and fixed to prevent movement using the titanium 

implant and the head fixation device. Images A-C obtained from [59]. 

(B) 

 

(A) 

 

(C) 

 

(D) 
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comprised a rectangular box, height 376 mm, width 158 mm, made of four 2.5mm thick aluminum 

plates, with an opening (80 mm high by 110 mm wide) through which the animal and half-pipe 

could be inserted. A fifth plate, mounted directly above the animal, contained a 50.8mm diameter 

hole for the camera. Ambient lights were turned off during recordings, and the chamber was 

illuminated with a A4 Portable LED Light Box (LitEnergy) mounted on the chamber base. The 

light-box was covered with a 200x200 mm White Diffusing Glass (Edmund Optics, Barrington, 

NJ) to ensure equal distribution of the light. The chamber walls were covered with plain white A4 

paper to increase reflection. An ace acA800-510uc HD camera (Basler, Ahrensburg, Germany)) 

with a 6mm UC Series Fixed Focal Length lens (Edmund Optics, Barrington, NJ) was fixed in 

place above the light-distributing plate using a metal rod, recording at 500 fps, f2.8 aperture and a 

resolution of 720x500p. The camera was focused on the rat’s snout. Fig. 4A shows the recording 

chamber and its main features, while Fig. 4B shows an animal inserted into the chamber.  

Prior to each recording, animals were brought to the lab for an adjustment period of at least 30 

minutes. The animal was placed in a cloth sleeve, to which it had been previously conditioned and 

placed in the half-pipe, and had its head attached to the head fixation device. The half-pipe was 

inserted into the recording chamber and recording was begun. Recordings lasted up to 60 seconds. 

Up to five recordings were made for each placement of the animal. Video images were transferred 

to a workstation via USB connection and saved in an uncompressed “TIFF” format with 96x96 

dpi. SPEL shared the images with our lab at McGill for analysis using a secured Dropbox account.
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Fig. 4 – Recording chamber and main 
features. 

A) A front view of the recording chamber. A 

HD camera was fixed from the top plate; the 

base of the chamber comprised a diffusing 

glass placed on light emitting plate; the 

chamber is covered with plain A4 paper to 

increase indirect illumination. 

B) Rodent inserted into the chamber prior to 

recording, while placed in a cloth sleeve, 

inside a PVC half-pipe. The rodent’s head 

was fixed in place using the head fixation 

device.  
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4.3. Pilot Study Analysis Methods  

Two pilot analysis studies were conducted to determine the properties of the video recordings and 

the challenges associated with tracking and detecting blinks. To quantify eye closure, we used the 

minor axis of an ellipse fitted to the eye contour. This choice was made since the eye has the 

general shape of an ellipse and using any other shape to fit the eye contour was less reasonable. 

The minor axis was used rather than the more intuitive measure, eye area, since blinks occur along 

the minor axis of the eye, so that any opening and closing movements of the eyelid are best 

captured in this direction. This was decided after inspecting both output measures and comparing 

the algorithm results to validation data, as will be discussed in section 5.4. The first study attempted 

to identify red pixels within each frame to define the eye area, fitted an ellipse to them, and used 

the minor axis length as a measure of how open the eye was. The second study explored the use 

of edge detection to establish a contour around the eye in each frame, fitted an ellipse to it, and 

again used the minor axis length as an output measure.  

4.3.1.  Red Pixel Tracking 

This study attempted to track eye closure using a simple pixel count. The animals used in the 

experiments were Lewis rats, which have red eyes and white fur, as seen in Fig. 5. Consequently, 

we thought that it might be straightforward to separate the eyes from the rest of the body purely 

based on color.  
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Fig. 5 - Lewis rat used in the recordings. The rat has white fur and red eyes that are easily 

distinguishable.  
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Fig. 6 shows the flowchart of the method we developed to measure eye closure from red pixel 

tracking. Fig. 7 shows examples of key steps in the procedure: 

 

Fig. 6 - Red-pixel tracking algorithm flowchart. 
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1. Manually outline the eye area in the initial frame (Fig. 7A). 

2. Extract pixel information from the initial area (using MATLAB’s rgb2hsv) (Fig. 7B): 

a. Average and standard deviation of hue (H). 

b. Average and standard deviation of saturation (S). 

c. Average and standard deviation of brightness (V). 

d. Length of the minor axis of the eye. 

e. Angle of the eye with respect to the horizon. 

3. Threshold the HSV values to keep pixels based on the following conditions (Fig. 7C): 

a. Pixel hue to be smaller than average hue, minus its standard deviation, or larger 

than the average hue, plus its standard deviation. 

b. Pixel saturation to be within one standard deviation of the average saturation. 

c. Pixel brightness to be within one standard deviation of the average brightness. 

4. Dilate image to remove small gaps between individual pixels using MATLAB’s 

imdilate (Fig. 7D). 

5. Fit an ellipse to the detected red area using MATLAB’s regionprops(Fig. 7F). 

6. Validate the fitted ellipse by checking that: 

a. Ellipse angle must be within 10 degrees from that of the initial eye outline. 

b. Area is no larger than 120% of that of the initial outlined eye outline. 

7. If validation fails, set the current frame value to null (in MATLAB, NaN) Go to the next 

frame, and repeat from step 2.  

8. If validation is successful, save the minor axis length. Go the next frame and repeat from 

step 2. 
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9. After all frames have been processed, interpolate across all nulls using MATLAB’s 

interp1 function, to close gaps due to skipped frames.  

 

4.3.2. Edge Tracking 

A second study attempted to track blinks using edge detection based on the image intensity 

gradient. To highlight drastic changes in pixel intensity and uncover edges, we used a common 

filter, known as the Sobel operator, which computes the gradient of intensity changes in both 

horizontal and vertical directions at each point in the frame. The Sobel operator is frequently used 

 

 

Fig. 7 - Red pixel tracking algorithm, key steps. A) User selects eye area during the initial run; B) 

Frame in HSV color space prior to applying threshold; C) Frame in binary view, after threshold of 

irrelevant pixels; D) Dilation reduces gaps between individual pixels; E) Eye pixels highlighted in 

their original color; F) Eye pixels with the fitted ellipse. 

(A) (B) (C) 

(F) (E) (D) 
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for edge detection problems, and it is more noise resistant than other common methods, like the 

Prewitt filter [60]. Moreover, it is supported in MATLAB’s image processing toolbox.  

The kernels used in the Sobel operator are: 

𝑆𝑆𝑥𝑥 =  �
−1 0 1
−2 0 2
−1 0 1

� , 𝑆𝑆𝑦𝑦 = �
1 2 1
0 0 0
−1 −1 −1

� 

where 𝑆𝑆𝑥𝑥 represents the kernel used for edges in the X direction, and 𝑆𝑆𝑦𝑦 for edges in the Y direction. 

The kernels are convolved with each frame (𝐹𝐹𝐹𝐹), and to generate the edge images, 𝐺𝐺𝑥𝑥 and 𝐺𝐺𝑦𝑦:  

𝐺𝐺𝑥𝑥 = 𝑆𝑆𝑥𝑥 ∗ 𝐹𝐹𝐹𝐹;     𝐺𝐺𝑦𝑦 = 𝑆𝑆𝑦𝑦 ∗ 𝐹𝐹𝐹𝐹 

These are then combined to form the overall edge image: 

𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 = �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 

which accounts for all edges in both directions. 
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Fig. 8 - Edge-detection tracking algorithm flowchart. 
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Fig. 8 shows a flowchart for the method we developed for blink tracking with edge detection. It 

comprised the following steps: 

1. Define the eye location, size and orientation from the first frame (Fig. 9A). 

2. Pre-process the image to: 

a. Convert it from RGB to grayscale using rgb2gray (Fig. 9B). 

b. Filter with a Gaussian kernel with 𝜎𝜎 = 6, selected after several trials using different 

values (Fig. 9C). 

3. Apply Sobel edge detection, using the edge function from the MATLAB Image Processing 

Toolbox (Fig. 9D). 

4. Dilate the image to connect nearby disconnected edges (non-continuous lines), using 

imdilate function (Fig. 9E). 

5. Extract the image skeleton by removing pixels on the boundaries of objects, using bwmorph 

function (Fig. 9F). 

6. Fit an ellipse to the resulting skeleton around the original eye location and calculate the 

following parameters: 

a. Minor axis length. 

b. Ellipse area. 

c. Ellipse angle. 

7. Validate that the detected ellipse matches the eye by testing:  

a. Ellipse angle must be within 10 degrees from the original eye angle extracted in the 

first frame. 

b. Area is no larger than 120% of the original eye area.  

8. If validation fails, set the output value is to null (NaN), go to the next frame. 
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9. If validation succeeds save the minor axis length as output for the current frame. 

10. Move to the next frame and repeat from step 2. 

11. After all frames have been processed, interpolate across all nulls using MATLAB’s 

interp1 function, to close gaps due to skipped frames. 

Fig. 9 illustrates the key steps of this process. 

 

 

 

Fig. 9 - Edge tracking, key steps. A) User selects eye area for the first frame B) Frame converted to 

grayscale; C) Frame is smoothened using a Gaussian filter; D) Edges are detected using the Sobel 

operator; E) The image is dilated to close gaps between edges; F) Image skeleton is extracted to define 

the edges. 

(A) 

 

(B) 

 

(C) 

 

(F) 

 

(E) 

 

(D) 
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4.4. Final Algorithm: The active-contour Method 

The initial studies paved the way to the choice of the final algorithm. We learned that using the 

natural properties of the rat’s appearance, such as fur and eye color, could assist in tracking the 

eye surface. In addition, we saw that eye edges change with eyelid movement; thus, edges can be 

valuable features to use when measuring eye closure. These takeaways, as well as methods we 

reviewed in chapter 3, led us to the active-contour (or snake) approach, similar to that suggested 

by [54]. 

4.4.1.  Rationale 

The active-contour method tracks contours in an image using an iterative process that minimizes 

an energy function based on features in the image and the contour. We used the implementation 

of MATLAB’s image processing toolbox of this algorithm since it had several advantages for 

robust tracking of the eye in a video recording. In particular, it is not color dependent, its dynamic 

characteristics support tracking over multiple frames, and it is resilient to minor head movements 

that might occur [61]. 

4.4.2. Method Background 

The active-contour method starts with an initial contour or snake, 𝐶𝐶0,  defined by the user or the 

program, near a contour of interest, 𝛾𝛾0, in the image. The position of 𝐶𝐶0 can be described 

parametrically as: 

𝒗𝒗(𝒔𝒔) = �𝒙𝒙(𝒔𝒔),𝒚𝒚(𝒔𝒔)�, 𝒔𝒔 ∈ [𝟎𝟎,𝟏𝟏]  (1) 

where 𝑥𝑥(𝑠𝑠) and 𝑦𝑦(𝑠𝑠) are coordinates along the contour. The snake’s position is changed iteratively 

to minimize an energy function 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 given by: 
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𝑬𝑬𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = ��𝑬𝑬𝒊𝒊𝒔𝒔𝒊𝒊�𝒗𝒗(𝒔𝒔)� + 𝑬𝑬𝒔𝒔𝒙𝒙𝒊𝒊�𝒗𝒗(𝒔𝒔)��𝒅𝒅𝒔𝒔 
𝟏𝟏

𝟎𝟎

 
 

(2) 

where 𝑬𝑬𝒊𝒊𝒔𝒔𝒊𝒊 is an internal energy component defined by: 

𝑬𝑬𝒊𝒊𝒔𝒔𝒊𝒊 =
𝟏𝟏
𝟐𝟐

[𝜶𝜶|𝒗𝒗′(𝒔𝒔)|𝟐𝟐 + 𝜷𝜷|𝒗𝒗′′(𝒔𝒔)|𝟐𝟐] 

 
 

(3) 
 

and 𝑬𝑬𝒔𝒔𝒙𝒙𝒊𝒊 is an external energy component defined by: 

𝑬𝑬𝒔𝒔𝒙𝒙𝒊𝒊 = −|𝜵𝜵𝜵𝜵(𝒙𝒙,𝒚𝒚)|𝟐𝟐 

 

(4) 

We can use discrete approximation to find the derivatives [54]. For example: 

𝒗𝒗′′(𝒔𝒔) = 𝒗𝒗𝒊𝒊−𝟏𝟏 − 𝟐𝟐𝒗𝒗𝒊𝒊 + 𝒗𝒗𝒊𝒊+𝟏𝟏 (5) 

 

Equation (3) defines the internal energy, which imposes a smoothness constraint on the contour’s 

curvature. The first derivative of the contour defines the distance between the snake’s vertices 

while the second derivative defines the angles between vertices. The parameters 𝛼𝛼 and 𝛽𝛽 define 

the smoothness and sharpness of the contour. The relative values of 𝛼𝛼 and 𝛽𝛽 control the smoothness 

of the contour. As default, both parameters are equal and set to 𝛼𝛼 = 𝛽𝛽 = 1.  

Equation (4) defines the external energy component, which depends on the image gradient ∇𝐼𝐼 in 

each frame and will be minimized when the snake is aligned with pronounced image features, such 

as edges or dark lines.  

We force the contour 𝑣𝑣(𝑠𝑠), to be closed for each frame, by enforcing the condition: 

𝒗𝒗(𝟎𝟎) = 𝒗𝒗(𝟏𝟏), 𝒔𝒔 ∈ [𝟎𝟎,𝟏𝟏]  (5) 

The contour movement in a picture is determined by gradient-descent minimization, where each 

step the energy function is minimized further. The direction of movement is determined by the 

derivative of the energy function – the contour will move towards the steepest slope, leading to 
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the local minimum. The process stops when a local minimum is reached, or after a predefined 

number of iterations. Contour initialization is therefore very important – the contour will converge 

to a local minimum, and so the initial contour needs to be set in a relevant ROI.   

This process is designed to work on a single picture, rather than a video. To enable this process in 

a video recording, we must make sure each frame produces a contour that is used as a reference 

contour for the following frame. The reference contour will change its size and location based on 

image features, to find a new local minimum in the next frame. 

4.4.3. Problems and Solutions 

While developing the method and testing it on our videos, we faced two significant problems. The 

first problem caused the contour to disappear when full blinks occurred, and the second problem 

led to the contour “leakage” from the relevant eye area. The following sections explain these 

problems and their solutions. 

4.4.3.1. Full Blinks 

As a full blink occurs, the contour of the eye becomes smaller and eventually disappears 

completely as Fig. 10 illustrates.  This causes a problem for the active-contour method since there 

is then no contour to use as a reference in subsequent frames. A reference contour is essential for 

the algorithm to work, since it forms the basis for the updated contour at each step. Without a 

reference contour the algorithm cannot work.  
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To resolve this, we introduced a procedure to identify when a full blink occurs. During the 

validation stage (step 9 in the algorithm described in section 4.4.4), the frame is tested to see if the 

minor axis length is less than two pixels. If so, we classify it as a full blink frame. 

When a full blink is detected, the algorithm skips ahead 150 frames (with frame rate of 500fps, 

this is the duration of an average blink) to a frame where the eye will be fully, or almost fully open. 

The tracking algorithm is reset using the original contour as reference. Active-contour tracking is 

then run backwards towards the point of full-closure. Once it reaches the frame where the full blink 

was detected in the first place, it jumps again 150 frames forward (which will, in most cases, be 

sufficient for the eye to open to some extent), but this time, continues to run in the original 

direction, and the process continues as normal. If the eye remained shut for more than 150 frames, 

this solution might fail, however this  is unlikely to happen, since rats’ blinks are rare and short 

[62]. This solution prevented misclassifications of full blinks or sudden stops in the program when 

a full blink occurred.  

   

Fig. 10 - Full blink problem. A) A fully open eye, with the detected contour marked in red and the cyan 

ellipse in cyan. B) An almost fully closed eye, one frame prior to the contour disappearing. The red spot 

is the contour detected in this frame.   

(A) 

 

(B) 

 



42 
 

4.4.3.2. Contour Leakage 

Contour leakage occurs when the borders of the eye in the preprocessed image are blurry, 

preventing an edge from being detected. This results in the contour “leaking” outside of the eye 

area, as illustrated in Fig. 11A. This happened most often in rats who had been operated on to 

crush their facial nerve to mimic facial paralysis. In these surgeries, a portion of the fur under the 

eye was shaved to expose the skin for operation. Videos of these rats had lower separation between 

the eye and the background, as there was no fur between them (as visualized in Fig. 12). After 

preprocessing, this led to border blurring between the eye and background, and a minimal edge.  

 

To solve this issue, we used the observation that the eye’s brightness and saturation are 

considerably different from its fur surroundings. To take advantage of these differences, we 

converted the frame to HSV color space; we introduced an additional step of conversion to the 

HSV space and threshold of irrelevant pixels out. The threshold was set on the brightness and 

  

Fig. 11 - Contour leakage and post processing view. A) A contour leaking out of the eye to the background 

due to bad separation; B) Eye area following HSV threshold and grayscale.  

 

(A) 

 

(B) 
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saturation channels, as they distinguished eye from surrounding areas the best. Thresholding was 

done by picking only pixels that met both the brightness and saturation constraints. After 

conversion and threshold of pixels is complete, we can see that relevant pixels are within the eye 

area, rather than in the background (Fig. 11B). 

 

4.4.4. Eye Tracking Algorithm 

The flowchart (Fig. 13) shows the final algorithm developed to track eyelid movement and 

measure eye closure, using the active-contour method explained above.  

 

Fig. 12 - Fur separation. On the right side of the frame (left eye), there is a clear separation between 

they eye area and the dark background. On the left side of the frame (right eye), the separation is not as 

good, and there is some overlap between the eye and the background.  
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Fig. 13 - Active-contour tracking algorithm flowchart.  
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The algorithm can be broken down into the following steps: 

1. Load the first frame of a video recording. 

2. Select a rectangular ROI around the eye area (Fig. 14A). 

3. Define an initial contour that around the eye border (Fig. 14B). 

4. Extract the following information from the eye area: 

a. Average and standard deviation (STD) of the hue, saturation and brightness (value) 

for all pixels within the eye area. 

b. Eye area. 

c. Angle between the eye and the horizontal axis. 

d. Coordinates of the eye area center. 

5. Load the next frame of the video and crop it to the ROI selected in the first frame. 

6. Preprocess image to: 

a. Convert from RGB to HSV color space (Fig. 14C). 

b. Convert irrelevant pixels to black. Relevant pixels are those with: 

i. Brightness values within two standard deviations from the average eye 

brightness. 

ii. Saturation values greater than two standard deviation below average 

saturation (Fig. 14D). 

c. Convert to grayscale (Fig. 14E). 

d. Erode and dilate the frame using MATLAB’s bwmorph, function to reduce noise 

from outliers and gaps (Fig. 14F-G). 

e. Filter the image with a 2-dimensional, low-pass, Gaussian filter, with 𝜎𝜎 = 6 (Fig. 

14H). 
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7. Apply the active-contour method (using activecontour function) to find the eye 

boundary (Fig. 14I): 

a. Use the contour from previous frame as the initial contour. 

b. Limit the number of iterations to 15. 

8. Fit an ellipse to the contour detected around the eye. Extract the following information 

(Fig. 14J): 

a. Area within the contour (representing the eye boundary). 

b. Angle of the ellipse fitted to the eye. 

c. Center point of the ellipse that fits the eye. 

d. Minor axis of the ellipse that fits the eye. 

9. Validate the output: 

a. Ellipse angle must be within 10º from the original eye angle. 

b. Ellipse center points must be inside a 50x50-pixel box centered around the original 

eye center point. 

c. Contour area must be less than 120% of the original eye area. 

d. Minor axis length must be larger than a single pixel. 

10. If the validation fails, set the output value is set to NaN, go to step five, and use the contour 

from the first frame as the reference contour. 

11. If validation succeeds, save the minor axis as the output. Go to step five. 

12. After all frames have been processed, interpolate across all nulls using MATLAB’s 

interp1 function, to close gaps due to skipped frames. 
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Fig. 14 - Key points in the algorithm to track eye closure using the active-contour method.  

A) User selects a ROI; B) User selects initial eye contour; C) Frame converted to HSV; D) Relevant 

pixels after threshold; E) Frame converted to grayscale; F) Image dilated; G) Image eroded; H) 

Smoothened frame after filtering; I) Following active-contour detection, this is the area within the 

contour; J) The frame, with the active-contour detected (in red), and the ellipse fitted to it (in cyan).  

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

(I) 

 

(H) 

 

(G) 

 

(J) 
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4.5. Validation  

Output validation is an essential part of algorithm development, since we must confirm that the 

measures it produces are accurate. Such performance evaluation requires a data set accurately 

describing levels of eye closure throughout videos. 

Since no automated method to track eye closure and blink detection was available, we developed 

a manual analysis method, that required a user to manually go through a video recording and mark 

the eye contour in a set of frames (as illustrated in Fig. 15).  

The method worked as follows: 

1. Load a frame and present it on-screen. 

2. Present the original contour (that the user set when running the algorithm originally) 

around eye area, as polygon with its vertices (as seen in Fig. 15A). 

3. Allow the user to use mouse pointer to change vertices locations, to match the eye contour 

(Fig. 15B). 

4. Fit an ellipse to the contour. 

5. Extract ellipse and contour information for current pixel: 

a. Contour area (pixels) 

b. Ellipse minor axis length (pixels)  

6. Skip either one or five frames ahead, based on user keyboard input. The choice was made 

based on the stage of blink in a particular time in the video. In case the rat was not blinking, 

and the eyes were mostly static, five frames could be skipped at once; if, however, a blink 

was in progress, the user would skip one frame at a time, to capture the smallest changes 

in eye closure. 
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7. Repeat steps 3-6 until reaching the end of the video. 

8. Save all frames information into a .mat file to compare later with signals generated by our 

algorithm. 

Originally, videos were recorded at high frame rate (500fps) to allow capture of whisker 

movements. However, since this process was manual we first down-sampled the recording to 

250fps (we used this rate in the pilot studies, and it was enough to capture blinks entirely), as this 

cut manual processing times by half. 

 

  

  

Fig. 15 - Manual validation steps. A) A random frame from the video, with the contour surrounding the 

eye, where the blue dots mark moveable points in the contour; B) The following frame from the same 

video, as a blink begins. As can be seen, the eye is smaller and the contour has changed, with one more 

moveable point to be changed by the user, using the mouse pointer (cyan). 

(A) (B) 
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Chapter 5: Results 

5.1. Introduction 

Chapter 4 explained the methods we used to track eye closure, in both pilot analysis studies and in 

the developed algorithm. We will now present the results of the different methods to demonstrate 

their performance and goodness-of-fit to the manually validated data and present the results for 

both experimental setups using the final, active-contour based, algorithm.  

We used three measures to assess algorithm performance: 

• Root mean square error (RMSE) was calculated to get the exact error for each video 

analyzed. It was calculated as follows: 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 =  ��
�𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖  �

2

𝑁𝑁
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Where 𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖 is the ith element in the automated output signal, 𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖 is the ith element in the 

manual validation signal and 𝑁𝑁 is the number of elements in the signals.  

• R2 score – was calculated to estimate the goodness-of-fit of the algorithm output to the 

manually generated validation data: 

𝑅𝑅2 = 1 −  
∑ �𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖 − 𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖�
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Where 𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙����� is the mean of the validated data. 

• Cross-correlation coefficient function (𝐹𝐹𝑡𝑡𝑣𝑣) was calculated as well for each video analyzed, 

to demonstrate the correlation between the output and validation data. We begin by finding 

𝑅𝑅𝑡𝑡𝑣𝑣, the cross-correlation function between validation data 𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙 and algorithm output 𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡: 

𝑅𝑅𝑡𝑡𝑣𝑣(𝜏𝜏) = 𝐸𝐸[𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙(𝑡𝑡)𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡(𝑡𝑡 + 𝜏𝜏)] 
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where 𝜏𝜏 is the lag, in seconds. We then calculate the cross-covariance function between the 

two: 

𝐶𝐶𝑡𝑡𝑣𝑣(𝜏𝜏) = 𝑅𝑅𝑡𝑡𝑣𝑣(𝜏𝜏) − 𝜇𝜇𝑡𝑡𝜇𝜇𝑣𝑣 

where 𝜇𝜇𝑡𝑡 and 𝜇𝜇𝑣𝑣 are the means of the output and validation data, respectively. Finally, we 

can find the cross-correlation coefficient function by: 

𝐹𝐹𝑡𝑡𝑣𝑣(𝜏𝜏) =
𝐶𝐶𝑡𝑡𝑣𝑣(𝜏𝜏)

�𝐶𝐶𝑡𝑡𝑡𝑡(0)𝐶𝐶𝑣𝑣𝑣𝑣(0)
 

where 𝐶𝐶𝑡𝑡𝑡𝑡, 𝐶𝐶𝑣𝑣𝑣𝑣 are the auto covariance functions of the output signal and validation signal, 

respectively.  

5.2. Pilot Studies 

5.2.1. Red Pixel Detection 

The red pixel detection method was applied to four short recordings from an injured rat, between 

8 and 17 seconds long. For performance evaluation, only videos with blinks were considered, as 

we would like to measure blink detection rates.  

Fig. 16 shows an example where the red-detection algorithm worked well.  It is evident by 

inspection that the two signals were highly correlated and that blinks were captured successfully 

(Fig. 16A; blinks are marked with arrows across panels). Fig. 16B shows the residuals between 

the output and validation signal, measured in pixels. During opened-eye periods, these residuals 

were close to zero, but they increased somewhat during blinks, reaching up to 80 pixels difference. 

Fig. 16C shows the high correlation between the output and validation data. This is backed up by 

the R2 score (0.935). The RMSE for this recording was 20 pixels. 
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However, the red-pixel algorithm did not work as well in all other videos. Fig. 17A shows an 

example where the algorithm’s output was noisy and differed substantially from the validation 

signal. Fig. 17B shows the residuals in this case are larger than before and persist throughout the 

video. Fig. 17C supports this observation as well, showing lower correlation between the two 

 

Fig. 16 - Red-Pixel Tracking Results (video recording YDXJ122, left eye). R2=0.935; RMSE=20 

pixels. Arrows between panels A and B represent blinks. A) The output of the red-pixel detection 

algorithm output superimposed on the manual validation signal. B) The residuals between the two 

signals; C) Cross correlation between the two signals.  
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signals. Fig. 18 shows a snapshot of the erroneous red-pixel detection from the same recording. 

As seen in the snapshot showing the processed image (Fig. 18B), most of the red pixels of the eye 

were not captured and the ellipse was therefore only fitted to the main bulk of pixels that was 

detected. This caused a misidentification of the ellipse and its minor axis.  

 

 

Fig. 17 - Red-Pixel Tracking Results (video recording YDXJ121, left eye). R2=0.408; RMSE=69.2 

pixels. A) The output of the red-pixel detection algorithm output superimposed on the manual validation 

signal. B) The residuals between the two signals; C) Cross correlation between the two signals. 
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We observed minor head movements in the video presented above (Fig. 17) at a specific point in 

time (after approximately 7 seconds). We hypothesized that the cause for misclassifications was 

the head movements, since these can change the angle of reflected light and alter the tones of red 

in the eye. Fig. 19 shows the eye’s ROI’s red channel histogram and the significant difference in 

its location prior to the movement (marked in red), and after (marked in black). Due to this change, 

pixels that passed the threshold as red pixels before the rodent moved its head, may have not 

counted as red later on, thus creating a wrong measure of the eye area and affecting the minor axis 

length and overall output of the method. 

Fig. 18 - Eye misclassification in red 

pixel tracking.  

A) Typical raw frame 

B) Processed frame following steps to 

focus only on red pixels. Clearly, most 

of the red pixels of the eye were 

disregarded. 

 

 

 

 

 

 

 

 

(A) 

 

(B) 
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5.2.2. Edge detection  

Tracking using edge detection was applied to the same four blink recordings. Edge detection by 

itself was less accurate and noisier than the red-pixel results.   

First, full edges could not be detected in all videos. Fig. 20 illustrates a case where fully closed 

contour could not be generated, due to blurry edges and low gradient of pixel intensity. When the 

contour between the eye and its surrounding area was undefined, the edge could not be detected 

(Fig. 20C), which led to wrong output data, because the ellipse is fit accurately to fully closed 

lines. In this case, ellipses were fitted to parts of the contour, as seen in Fig. 21. 

 

Fig. 19 - Red channel histogram of left eye region of interest, recording YDXJ121. Red histogram 

indicates pixel count before recorded head movement; Black histogram indicates pixel count after head 

movement. 
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Fig. 22 compares the edge-detection algorithm output with the validation signal; clear differences 

are evident. The edge-detection output signal is very noisy. The noise was introduced when the 

edge around the eye was not clearly defined, as we see in Fig. 21. Two main problems repeated: 

First, gaps in the detected edge led to wrong ellipse fit by the program (as seen in Fig. 21A, where 

the ellipse detected by the algorithm is smaller than the actual eye, due to open edge). Second, fur 

around the eye led to larger ellipses detected by the program (as seen in Fig. 21B, where the ellipse 

is larger than the eye contour due to proximity to whiskers and fur).  

   

Fig. 20 - Incomplete edges. A) A typical frame where the border between the top of the eye and the fur 

is blurry and poorly defined; B) Edges detected, prior to any processing; C) Final edges, after applying 

the edge-detection algorithm. Note the large gap in the edge indicated by the arrow. 

(A) 

 

(B) 

 

(C) 
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Blinks were clearly evident in the output signal (Fig. 22A) despite the mismatch and low 

correlation between the output and validation (Fig. 22C), indicating that this algorithm could be 

used for blink detection but not for eyelid tracking, if a low-pass filter were to be used to remove 

high frequency changes. 

  

Fig. 21 - Misfitted ellipses due to false edge detection. A) An open edge due to blurry border, and an 

ellipse incorrectly fitted to a smaller area of the eye leading to wrong measure of minor axis length; B) 

Incorrect fitting of the ellipse due to irrelevant edges from rat whiskers and fur. 

(A) (B) 
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Fig. 22 - Edge-detection tracking results (video recording YDXJ121, left eye). R2 score was 0.237 and 

RMSE was 77.4 pixels. Blinks are marked with arrows between panels A and B. 

A) Edge-detection algorithm output and manual validation data superimposed; B) Residuals between the 

two signals; C) Cross-correlation between the two signals.  
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5.3. Active-contour Algorithm 

The active-contour method was applied to two sets of videos. The first set comprised six videos 

obtained with experimental setup A, and had high levels of eye illumination. The second set of 

videos (five recordings), obtained with the revised experimental setup designed to support accurate 

whisker tracking (setup B), had higher contrast and higher resolution, but lower eye illumination. 

In total, the algorithm was run on fourteen eyes from seven recordings. Only eleven were 

considered, as the other three did not include blinks and so could not be accurately validated. A 

clear breakdown of the recorded eyes and video files is provided in Table 1 and Table 2. 

Fig. 23A shows the output of the active-contour algorithm applied to a 35-second video recording 

using experimental setup A. It is evident that the two signals are very similar, and all blinks were 

detected by the algorithm. Fig. 23B shows that the residuals between the two signals were close to 

zero during open phases but increased somewhat during blinks (marked between panels A and B 

with arrows). Fig. 23C demonstrates the high correlation between the two signals. The RMSE for 

this recording was 2.9 pixels, with R2=0.967. 



60 
 

 

Fig. 24 shows the result of applying the active-contour method to a video acquired with 

experimental setup B. Here, we see lower correlation between the two signals (with R2=0.895), as 

the eye is harder to differentiate from its surroundings, since the images obtained are darker due 

to the lack of front lighting (see section 4.2). This means that borders between the eye and the fur 

 

Fig. 23 - Active-contour-based tracking (video recording 6400t1, right eye, setup A). R2=0.967; 

RMSE=2.9 pixels. A) Automatic algorithm output and manual validation data superimposed; B) 

Residuals; C) Cross-correlation between the signals. 
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are not as clear as in the original experimental setting. However, all blinks are accounted for, and 

the RMSE remained low at 2.7 pixels.  

 

Table 1 summarizes the results of the active-contour method for all videos analyzed using setup 

A.  These yielded very accurate results, with mean R2 score of 0.981±0.011, mean RMSE 

 

Fig. 24 - Active-contour-based tracking (video recording AN3v2, right eye, setup B). R2=0.895; 

RMSE=2.7 pixels. A) Algorithm output with manual validation data superimposed; B) Residuals 

between the two; C) Cross-correlation between the two. 
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4.62±2.20 pixels, and all blinks successfully detected. In comparison, results for videos from 

experimental setup B (summarized in Table 2) demonstrated a lower R2 score of 0.845±0.055 and 

mean RMSE of 3.65±1.71 pixels and all blinks were successfully detected as well.  

 

Video File Experimental 

Setup 

Duration 

(sec) 

Actual 

Blinks 

Detected 

Blinks  

R2 Score RMSE 

(pixels) 

YDXJ121L Setup A 16.5 6 6 0.995 8.04 

YDXJ122L Setup A 7 3 3 0.995 3.58 

6400t1L Setup A 16 4 4 0.979 7.38 

6400t1R Setup A 38 13 13 0.967 2.95 

6400t2L Setup A 20 12 12 0.968 2.92 

6400t2R Setup A 20 12 12 0.985 2.85 

    Mean: 0.981 4.62 

    STD: 0.011 2.20 

Table 1 - Results for all videos analyzed using the active-contour method in experimental setup A.  

Video File Experimental 

Setup 

Duration 

(sec) 

Actual 

Blinks 

Detected 

Blinks  

R2 Score RMSE 

(pixels) 

AN1V1BR Setup B 54 4 4 0.878 2.44 

AN1V3m8L Setup B 60 3 3 0.788 7.03 

AN1V3m8R Setup B 50 1 1 0.783 3.08 

AN3V2R Setup B 30 6 6 0.895 2.74 

AN3V2L Setup B 30 6 6 0.884 2.94 

    Mean: 0.845 3.65 

    STD: 0.055 1.71 

Table 2 - Results for all videos analyzed using the active-contour method in experimental setup B. 
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5.4. Eye Area vs. Minor Axis Length  

Eye area and minor axis length were extracted from all recordings as possible eye closure 

measures. We calculated for each recording the mean relative error (MRE), for both minor axis 

output and eye area output. Calculation was done as follows: 

𝑅𝑅𝑅𝑅𝐸𝐸 =
1
𝑁𝑁
�

�𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖�
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where 𝑁𝑁 was the total number of frames, 𝑦𝑦𝑡𝑡𝑜𝑜𝑡𝑡𝑖𝑖 was the algorithm output (minor axis length or eye 

area) in a given frame 𝑖𝑖, and 𝑦𝑦𝑣𝑣𝑠𝑠𝑙𝑙𝑖𝑖 was the manually validated output (minor axis length or eye 

area) in the same frame.  

As seen in Table 3, the MRE for eye area as output was three times higher than the minor axis 

MRE. This means that the minor axis was closer to the manual output across recordings, thus we 

chose it as the preferred output measure of our algorithm.  

Several factors might lead to the advantage of minor axis over eye area. First, to maintain a 

reasonable runtime, the algorithm is limited to 15 iterations in each frame, that was determined 

empirically after comparing with both higher and lower number of iterations. Increasing the 

runtime to MATLAB’s default 100 iterations or above will significantly slow down the process as 

all calculations reoccur each iteration. This means that the contour might not fully converge to the 

borders of the eye and include small areas outside of the actual eye area, which will lead to a 

miscalculated area measurement. Secondly, the borders of the eye are sometimes blurred, and the 

contour may have trouble finding the exact edge, which will also cause misidentification of eye 

area. These two factors might affect minor axis measurements as well but the main difference is 
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that these errors are limited to the minor axis direction only, while in area measurement, any wrong 

addition to the contour by the algorithm, in any direction, will increase the error in measurement.  

 

  

Video File Experimental Setup Mean Relative 

Error, Minor Axis  

Mean Relative 

Error, Area 

YDXJ121L Setup A 0.063±0.107 0.056±0.193 

YDXJ122L Setup A 0.002±0.057 0.023±0.103 

6400t1L Setup A 0.061±0.483 0.084±0.516 

6400t1R Setup A 0.029±0.040 0.003±0.113 

6400t2L Setup A 0.035±0.061 0.037±0.072 

6400t2R Setup A 0.041±0.045 0.073±0.063 

AN1V1BR Setup B 0.134±0.354 0.440±0.681 

AN1V3m8R Setup B 0.078±0.284 0.370±0.360 

AN1V3m8L Setup B 0.367±0.315 1.105±0.663 

AN3V2R Setup B 0.114±0.250 0.410±0.330 

AN3V2L Setup B 0.096±0.375 0.386±0.411 

 Mean: 0.093 0.271 

 STD: 0.099 0.328 

Table 3 - Results table showing the mean relative errors for both minor axis and area outputs, for both 

experimental setups. 
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Chapter 6: Discussion and Conclusions 

6.1. Discussion 

6.1.1. Summary 

The main goal of this study was to develop a method to quantify rodent eyelid movements from 

video recordings. We explored algorithms based on red-pixel detection and edge detection, which 

led to the development of a final algorithm that used an active-contour approach.  

We learned that using a simple edge detection approach on an entire frame might introduce noise 

from irrelevant edges, such as whiskers and fur, so we decided to focus edge detection on a smaller, 

more relevant ROI around the eye area. This helped us arrive at the conclusion that active-contour 

could be a possible direction for development, since it focused the effort on the border of the eye 

and its surroundings. From the red-pixel algorithm, we found that tracking the eye based on color 

only is ineffective, as recording light may vary and affect the tones of red in the eye, and animal 

colors vary from one to another. However, we saw that conversion to HSV color space could be 

very useful in helping separate the eye from its surroundings. This came in handy when we 

encountered the leakage problem during development of the final algorithm, as we managed to 

overcome the issue thanks to conversion to HSV and separation based on brightness levels.  

While developing the algorithm using the active-contour approach, we faced several problems; the 

main two were contour leakage and loss of reference contour in full blinks. We managed to 

overcome the first problem by introducing a concept we used in the red-pixel approach – 

converting the color space to HSV and setting a threshold to remove irrelevant pixels, only this 

time we used brightness and saturation values. In addition, we solved the full blinks issue, by 

introducing a skip-forward approach, where tracking was stopped in case a full blink was detected, 
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the time marker skipped forward 150 frames and the algorithm was run backwards until reaching 

the point of full closure. 

Our final eyelid-tracking algorithm overcame the initial approaches problems (noisy edges and 

red-tone inaccuracies) and proved to work with a 100% blink detection rate and high rates of 

goodness of fit to the actual measures. For setup A, the algorithm presented an average R2 score 

of 0.981, and for setup B an average R2 score of 0.845. Using this method allowed detecting partial 

blinks as well as full ones, and provided an accurate measure of eye closure, that will be useful in 

assessing nerve regeneration at a later stage.  

Now that we have managed to quantify eye closure, an important piece of the project is completed. 

The algorithm described in this document will be used to map different EMG patterns from healthy 

facial EMG into corresponding eyelid movement. In turn, this will be used to understand the 

required functional electrical stimulation that is required to induce similar movements in the 

injured side, thus creating the desired symmetrical facial movement.  

In its current form, I believe the algorithm is ready to be used by our group. The code was written 

in MATLAB and is fully documented and explained, in case any parameters will require change 

(due to changes in recording setup or possible new setups). It proved to be robust enough to work 

in both setups we used and demonstrated 100% blink detection rate and high correlation to the 

validation data. 

6.1.2. Experimental Setup 

Another goal of the project was to create a system that can be easily implemented and not require 

extensive setup procedures. The experimental systems described in chapter four cover two 

different setups, one simpler to implement (setup A) but the other capable of recording whisking 
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as well as blinking. Both setups are easily reproducible in other lab environments that require head 

fixation, since they require very little equipment – either a camera alone or a camera with a simple 

chamber and back light - and can be modified depending on research needs without altering the 

algorithm code.  

An important success of the new experimental setup (setup B) is that it can be used for both whisker 

tracking and eyelid tracking, without any modifications, and with a single recording session. The 

camera and recording chamber described in detail in chapter 4 were crafted in a trial-and-error 

process, each trial trying to improve the captured video, so that whiskers can be captured in detail 

and processed offline, as well as the eyes. Ensuring that both elements of the rodent’s face were 

captured in sufficient quality differentiates this recording system from any other currently 

published, as it allows analysis of both whisker movement and eyelid movement from a single 

video recording, acquired from a single camera. This simplifies an existing process that requires 

laser measurements and infrared eyelid sensors, as presented in chapter 2 [17].  Our colleagues at 

MEEI are refining an existing algorithm for whisker tracking to fit to our experimental system, 

and once this is complete, both eyelid and whisker tracking could be combined into a single 

program. 

6.1.3. Limitations 

In its current form, the algorithm still has several limitations: 

• Limited validation set: So far, a single tester manually validated all videos, as there was 

no ready-made automatic method to perform validation. Since eye borders are not clearly 

defined, manual validation could be biased to a single person’s opinion on where borders 

lie. This means that our performance estimations rely on a single opinion, and high 

goodness-of-fit errors could represent either a problem in the algorithm workflow or a 
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problem with the manual process. Since there is only manual data from one tester, we do 

not have high certainty if the errors that do occur are due to algorithmic or human errors.  

• Analysis speed: Processing times are currently very long. On average, runtime is 17.6 

seconds per 1 second of video. This issue is not crucial right now, since this algorithm is 

meant to work in an offline environment in the context of our study, and processing time 

is not the top priority. However, if we would like to have this algorithm used by other teams 

in different research contexts, we must reduce processing time significantly.   

• Not fully automatic: Currently, user input is required at two points in the process: picking 

the ROI around the relevant eye and setting an initial contour circling the eye. While being 

fully automatic was not one of the requirements of the project, we believe that an automated 

algorithm has multiple benefits. It can reduce waiting time between steps, as no human 

interaction will be required, and the process will run on its own. In addition, it will simplify 

the process significantly, and require only loading a video and waiting for the processing 

to complete. Consequently, we believe it will be more appealing to other research groups 

to use this algorithm.   

• Mandatory head fixation: As mentioned above, both experimental settings are 

reproducible and can be implemented by other researchers without much effort. Both 

settings, however, require the animal’s head to be fixed in place and implanting the 

titanium device requires surgical knowledge and expertise. This might limit the method’s 

use to research facilities that can perform such surgery on-site.  
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6.1.4. Future Work 

We must take into account the challenges and whether the algorithm will be used by our group 

only or also by other research groups, when considering any future work. Some of the future 

directions of work include the following: 

• Adding human testers for manual validation: As discussed in the previous section, using 

a single human tester to validate all videos can be problematic. Introducing additional 

testers will allow comparison of error rates of different testers. This will help understanding 

if performance errors are due to problems in the algorithm or in human validation errors.   

• Adding videos for improved performance: Development of the algorithm was done 

using a limited number of videos. This provides a proof of principle as the algorithm 

worked well using the settings provided in our recordings and will behave the same as long 

as no significant changes are introduced to setup A or setup B, described in chapter 4. 

However, I believe we have not used enough videos to ensure performance in extreme 

situations. As we saw earlier, when we introduced new videos, we came across new 

challenges we had to face, such as contour leakage in shaved animals, or loss of contour in 

cases of full blinks. Using eleven recordings up until now, it is likely that we have not yet 

seen all extreme cases. Recording new videos will have to take place in our colleague’s lab 

in MEEI, as that is where the experiment setup is located, together with the animals. 

• Reducing run time: A first step in improving runtime will be to perform a bottleneck 

analysis on our code and detect any pain points that drain most of the time. These could 

then be modified or optimized to reduce lag significantly. Another common method of 

reducing runtimes in time-consuming algorithms is using parallel computing. Parallel 

computing breaks down a problem into parts that can be solved concurrently, and uses a 
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different processor to solve each part, before combining all parts to achieve the final output. 

Since our method has frame-by-frame dependencies, we cannot implement the algorithm 

as-is using parallel computing. A possible use of parallel computing would require 

reprogramming the algorithm to run backwards as well as forward: the video can be 

processed normally up to a given point halfway through the video, while the rest of the 

video can be processed from the end to the same halfway point. The process could  be done 

on more than two processors by splitting the video into quarters, eighths or more, 

depending on the machine.  

• Fully automating the algorithm: To achieve full automation of the algorithm, we must 

eliminate the need of user input at the beginning of the process. The ROI can be 

automatically cropped for the preset area containing the eye in the recording chamber. If 

the recording setup is final and does not change, this preset area will remain constant 

between all videos. The initial eye contour could be predefined as well, to an ellipse that is 

significantly smaller than the eye area and that will expand upon the first iteration of the 

algorithm, as it will look for the nearest border. By removing these two steps from the 

workflow and assuming we maintain the same recording apparatus as described in chapter 

4, we can eliminate these user-dependent steps. 

• Enabling recording without head fixation: A possible future version of our algorithm 

may include eye recognition in a video frame, such that it could process videos recorded 

while the rodent is free to walk around the cage without any head fixation. This would 

eliminate the need of a head fixation device and pre-recording surgical procedure, and 

permit a more natural behavior, ideal for behavioral studies. This work will require 
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additional resources to develop animal tracking and eye detection algorithms, or use 

existing work to build upon [63, 64]. 

• Introducing graphical user interface: To run the program in its current form, basic 

MATLAB understanding is required since the code must run using the MATLAB Editor 

and Command Window. However, if we wish to make it more accessible to external users 

that are not part of the current research group, we should consider incorporating a front-

end interface. This will allow distribution of our program with non-MATLAB users who 

seek a simple, ready-made solution for eyelid tracking. Such interface can include an option 

to load a video recording, select the ROI and initial contour, process the tracking and 

present the output in same window. 

6.2. Conclusions  

This thesis has demonstrated that we met our early requirements and achieved eyelid tracking in a 

non-invasive, easy-to-set-up environment. We built an experimental environment that uses a single 

camera to record both eyelid and whisker movement, both in sufficient quality and resolution to 

be analyzed and tracked. We demonstrated that the output of the algorithm detects 100% of blinks 

in both experimental settings. The output was highly correlated to the manually generated data and 

presented minimal errors. We believe it is now ready to be used in experiments. 
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8. Appendix 

8.1. Project code 

The project code is available in the following public repository: 

https://github.com/reklab/eyelid_tracking 

8.2. Code manual 

The manual for running the code is available in the same repository. Link to manual: 

https://github.com/reklab/eyelid_tracking 

 

 

https://github.com/reklab/eyelid_tracking
https://github.com/reklab/eyelid_tracking
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