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Abstract

Atrial fibrillation (AF) is an irregular heart rhythm that can lead to stroke and other heart-related 

complications. Catheter ablation has been commonly used to destroy triggering sources of AF in 

the atria and consequently terminate the arrhythmia. However, efficient and accurate localization 

of the AF sustaining sources known as rotors is a major challenge in catheter ablation. In this 

paper, we developed a novel probabilistic algorithm that can adaptively guide a Lasso diagnostic 

catheter to locate the center of a rotor. Our algorithm uses a Bayesian updating approach to search 

for and locate rotors based on the characteristics of electrogram signals collected at every catheter 

placement. The algorithm was evaluated using a 10 × 10 cm 2D atrial tissue simulation of the 

Nygren human atrial cell model and was able to successfully guide the catheter to the rotor center 

in 3.37±1.05 (mean±std) steps (including placement at the center) when starting from any location 

on the tissue. Our novel automated algorithm can potentially play a significant role in patient-

specific ablation of AF sources and increase the success of AF elimination procedures.

Index Terms

atrial fibrillation; catheter guidance; atrial rotor source; non-pulmonary vein ablation; bayesian 
modeling

I. Introduction

Atrial fibrillation (AF) is characterized by irregular beating of the atria due to 

disorganization of electrical signals. AF is a major cause of stroke [1] and a serious health 

concern, thus making a critical field for research and development. Investigation of the 

sources of AF, and consequent development of electrical and pharmacological therapies, 

have been of great interest for decades. Catheter ablation therapy involving the isolation of 

pulmonary veins (PVs), called PV Isolation (PVI), is one of the most successful treatments 

for AF today. PVI aims to electrically isolate the PVs by cauterizing the tissue around the 

PV ostia using radio-frequency energy applied through an ablation catheter. This blocks the 

ectopic signals originating from PVs, which were found to be triggering the arrhythmia. 
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Current ablation procedures also employ linear lesions at locations that are predetermined 

mainly based on anatomy. These procedures are supported by advanced software tools for 

reconstructing the 3D anatomy of the left atrium (LA) and many other sophisticated 

operations. Despite such advancements in procedure and the technology used in procedure, 

the success rate of catheter ablation is suboptimal. A major reason for the suboptimal 

success rate is that the current ablation methods do not address patient-specific arrhythmic 

sources. Clinical studies on the mechanisms behind human AF have revealed the presence of 

high-frequency spiral waves in LA regions outside the PVs [2], [3], [4]. Ablating these 

potential arrhythmic drivers, commonly called “rotors”, could lead to significant 

improvement in the success rate, which has been evident from some human studies [5]. 

However, determining the location of rotors is a challenging task, and various approaches 

have been developed in the past to address it [6], [7], [8]. Once the rotor centers are found, 

ablation can be performed to terminate them.

We present a novel probabilistic method that uses a Bayesian updating technique to 

iteratively guide the catheter towards the center of a rotor. The developed algorithm, the first 

of its kind, allows the clinician to use a Lasso multi-pole diagnostic catheter to localize 

rotors without any additional cost or risk to the patient. The catheter could be placed initially 

at any arbitrary location on the tissue. The algorithm will then iteratively guide it to the rotor 

center using local information such as the 2D location and electrogram (EGM) 

characteristics. The accuracy of the estimates involved in the algorithm gradually increases 

with every iteration, thus minimizing the time taken to reach the center of rotor.

II. Methods

The proposed algorithm employs a Bayesian method to estimate the location of a rotor, as 

discussed in the following sections.

A. Rotor Simulation

We employed a numerical simulation to generate human atrial fibrillation data. A 10 cm × 

10 cm 2D atrial tissue with a spatial resolution of 0.025 cm and sampling frequency of 500 

Hz was simulated using the Nygren human atrial cell model [9]. A single stable rotor was 

initiated on the tissue and a 10-bipole Lasso catheter (Biosense Webster) with 15 mm 

diameter and 4.5-1-4.5 mm electrode spacing was simulated. The bipolar EGMs of the 

Lasso catheter were calculated from the unipolar EGMs which are the weighted sum of the 

Laplacian of the transmembrane potentials.

B. Discrete Search-space Definition

The 2D simulated tissue described earlier is considered as the bounded space for searching 

for the rotor center. First, this search space is discretized to form a 2D grid, as shown in Fig. 

1. Now, each grid location is represented by 2D coordinates (x, y). Therefore, the center of 

rotor could be present at any grid location. The center of the Lasso can be placed anywhere 

on the grid to collect the bipolar EGMs.
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C. Characterization of Simulated Electrograms

At any location of recording, the following local EGM characteristics are calculated 

according to their definitions:

1) First Activated Bipole—The First Activated Bipole (FAB), denoted by Φ, is a 

characteristic that refers to the label number of that bipole of the catheter encountering the 

earliest activation due to the rotor wavefront. The label numbers of bipoles are considered to 

be 1 through 10 starting from the farthest end of the Lasso.

2) Rotor Propagation Ratio—Rotor Propagation Ratio (RPR), mathematically denoted 

by τ, is the ratio of the EGM characteristics “Total Conduction Delay” and “Cycle Length”, 

which are defined as follows:

Total Conduction Delay (TCD) is the sum of the time delay between activations of adjacent 

bipoles that belong in the same cycle. Cycle Length (CL) is the average of time delays 

between two activations in the same bipole, but belong in adjacent cycles.

Hence, RPR (i.e., τ) is defined as the ratio of TCD to CL. Intuitively, the RPR provides a 

metric for the time taken for the rotor wavefront to propagate through the catheter placed at 

a particular location, relative to the time taken for the rotor to complete one rotation with 

reference to that location.

D. Convergence at the Rotor Center

Rotor convergence is defined as the condition where the catheter is at the center of the rotor. 

An interesting observation on RPR, based on previous studies, is that it increases to 1 as the 

catheter is advanced towards the rotor center from an initial location away from the center 

[10]. Therefore, using this relationship, the following RPR value can be used as the 

mathematical condition for rotor convergence.

RPR 1 τ ≃ 1 (1)

E. Proposed Catheter-guidance Algorithm

1) Overview—A block diagram illustrating the algorithm’s input and output is provided in 

Fig. 2. The primary input to the algorithm is the coordinates of the discretized 2D search 

space that was discussed earlier. In order to process the probability estimates, the algorithm 

utilizes the FAB (Φ) and RPR (τ), hence making them the other pair of the input parameters.

The output of the algorithm is the 2D coordinates of the estimated location of the rotor 

center. Briefly, the entire search process using the algorithm works as follows: the catheter is 

initially placed at any arbitrary location on the tissue, where bipolar EGMs are recorded and 

subsequently, FAB and RPR are computed. Now, rotor convergence is investigated and if 

rotor convergence is not achieved, the inputs are provided to the algorithm for further 

analysis. This completes one iteration of the algorithm. The catheter is now moved to the 

location estimated by the algorithm, and the process of EGM recording, characteristics 
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computation and rotor convergence verification are repeated for this new location. This 

search procedure continues until the algorithm locates a rotor, or until it reaches a maximum 

number of iterations.

2) Mathematical Formulation—Consider a 2D N × N search grid, where each location is 

given by Sn = (xn, yn), n ∈ {1, 2, 3, …,N}. The center of the catheter can be placed 

anywhere in Sn. Then, the 2D coordinates of the FAB, Φ, are determined and are given by 

SΦ. Let R be a random variable representing the rotor’s presence in the search grid. Hence, 

P(R = Sn) is the probability of rotor convergence at location Sn.

As shown in Fig. 1, with the center of the catheter as the origin (location A in the figure), the 

vector from this center to SΦ and its normal vector are defined as the new coordinate system 

(x*, y*). Then, for every Sn, the angle θn and distance (i.e. magnitude of the vector) dn are 

calculated with respect to the new coordinate system. The algorithm now represents every 

location Sn in polar form as dnejθn. Fig. 1 shows two example locations (see squares labeled 

as Sn) and their corresponding parameters. For example, for location with AC, θn = 0 and dn 

= dmax, where dmax is the maximum distance from A.

The Bayesian formulation of the algorithm is described below:

P(R = Sn ∣ Φ, τ) =
P(R = Sn)P(Φ, τ ∣ R)

P(Φ, τ) (2)

where,

P(Φ, τ) ≜ ∑
n = 1

N
P(R = Sn)P(Φ, τ ∣ R)

In Eqn. 2, P(R = Sn|Φ, τ) is the posterior probability distribution over the search grid, which 

indicates the probability of rotor convergence at every Sn given the observed EGM 

characteristics (i.e., Φ and τ); P(R = Sn) is the prior probability distribution; P(Φ, τ|R) is the 

likelihood function of the EGM characteristics and P(Φ, τ) is the normalization function for 

the probability distribution P(R). The rest of this section describes how we employed the 

physical characteristics of an AF rotor source to develop the likelihood distribution in Eqn. 

2.

The initial prior is considered to be a uniform distribution, implying that every location in 

the search grid initially has equal probability for the rotor to be present. The likelihood 

function is designed as the sum of two likelihoods – one function for Φ and the other for τ. 

Hence, the total likelihood function is defined as follows:

P(Φ, τ ∣ R) ≜ LΦ(θ) + Lτ(d) (3)
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where, LΦ(θ) and Lτ(d) are the likelihood distribution functions corresponding to Φ and τ, 

respectively; θ refers to the set of unique angles (in radians) that are calculated as discussed 

earlier; and similarly d is the set of unique distances.

The distribution for LΦ(θ) is designed to be linear, based on the observations from our 

previous studies [10]. An example of this distribution is illustrated in Fig. 3. LΦmin and 

LΦmax are the minimum and maximum likelihood values that are hard-coded in the 

algorithm. θth
+  and θth

−  are the threshold values within the direction of the FAB (i.e., θ = 0), 

which indicate that the likelihood is always maximum.

The distribution for Lτ(d) is a multivariate distribution as shown in Fig. 4. To construct 

Lτ(d), we begin by assuming a linear model for the two parameters τ and d. The range for τ 
is hard-coded to be between the constants τmin and τmax, which are empirical values based 

on extrema of the linear region of the function τ(d). The values of d range from 0 to the 

maximum distance with respect to the current location of recording (dmax, as shown in Fig. 

1). Then, if the RPR computed at the current location of recording is τ0, the corresponding 

distance value d0 is estimated by minimizing the residual error with respect to the linear 

model. The maximum likelihood Lτmax for the value τ0 is then assigned to the distance 

value d0. This creates the likelihood distribution for a particular τ over the distance values d. 

Hence, the likelihood for increasing values of τ vs. d results in a multivariate distribution, as 

illustrated in Fig. 4.

From Fig. 4, it can be seen that, for τmin, the maximum likelihood lies at the farthest 

distance; it then gets shifted towards the shorter distances gradually with increasing τ, and 

finally for τmax it lies at the shortest distance available with respect to the current location of 

recording (which is 0). The proposed likelihood distribution ensures that for low RPR 

values, the farther search grids to the catheter center have higher probabilities of rotor 

convergence, while for the higher RPR values, the closer search grids have higher 

probability. This design is motivated by our prior work [10].

The overall likelihood is then calculated using Eqn. 3. This is then multiplied with the 

uniform prior in the first iteration and normalized to produce the posterior probability 

distribution P(R = Sn|Φ, τ). From the second iteration of the algorithm, the prior is replaced 

by the posterior obtained from previous iteration and this process is repeated during every 

iteration. The algorithm reports the location of the highest posterior probability (SR) as the 

output, then moves the catheter to this new estimated location and repeats the entire process 

until a rotor is located or the algorithm reaches to a maximum number of iterations.

III. Results

The algorithm started by placing the Lasso catheter at an initial location on the 2D atrial 

tissue. It then guided the catheter iteratively based on the EGM characteristics and the 

procedure described in Section II. The constant parameters in the algorithm θth = 0.056π, 

τmin = 0.2 and τmax = 0.5 were determined empirically. The process was repeated until a 

rotor was located or a maximum number of iterations of 20 was reached. The algorithm was 

executed for a total of 114,921 uniformly spaced initial catheter positions, and the ratio of 
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the number of successful rotor localizations compared to the number of trials was reported 

as the convergence rate.

Without any catheter-guidance algorithm, the existing clinical strategy to search for a rotor 

consists of randomly placing a catheter in the atrium until the source is localized or the 

clinician gives-up after several placements. We implemented this strategy and applied it to 

our AF computer simulated data for comparing it with our proposed catheter-guidance 

algorithm. The random placement strategy follows the same initial placement and rotor-

convergence conditions as the ones explained in Section II.

Fig. 5 shows the catheter’s path starting from four initial locations. The voltage map of the 

rotor can be seen in the background. Each path consists of 3 steps of catheter placement 

starting from s1, followed by s2 and s3. In the third step, s3, the catheter guidance was 

stopped because the rotor-convergence condition was met, implying that the rotor center was 

encompassed by the catheter. The algorithm was executed during steps s1 and s2 of each 

path. As can be seen in this figure, when the catheter was farther from the center of the rotor, 

the algorithm made the catheter take larger jumps (i.e., s1 to s2), but as it got closer to the 

rotor-center, the algorithm tended to take shorter jumps.

Table I shows the percentage of trials in which the algorithm successfully located a rotor 

source. As can be seen from this table, the proposed method was able to locate the rotor 

source in all the 114,921 cases with a 100% convergence rate, while the random-placement 

strategy was successful in only 34% of the cases.

Table I also reports the average number of steps taken until (and including) rotor 

convergence. As shown in the table, the mean±std over the entire grid was 3.37 ± 1.05 steps, 

and the median was 3 steps. The mean±std was 6.58 ± 3.72 for the random catheter-

placement strategy, considering only the convergent scenarios. These results clearly 

demonstrate the robustness of the proposed algorithm to successfully locate an AF rotor 

source within a few iterations and independent of how far or close the starting location is.

IV. Conclusion

We developed a novel catheter-guidance algorithm to localize rotors outside the pulmonary 

veins in the atria. The algorithm was designed using a Bayesian method to iteratively guide a 

Lasso catheter to the rotor center from any arbitrary location on the tissue. We evaluated the 

proposed algorithm using simulated human AF data and compared it to a random catheter-

placement method inspired by the existing clinical strategy. Our evaluation demonstrated 

that the algorithm’s performance is stable, regardless of the distance or direction of the 

starting location from the rotor center. Hence, with improvements to the algorithm in the 

future (such as incorporating 3D atrial geometry, introducing multiple rotors and 

heterogeneity, etc.), a full-fledged software package using the algorithm could be developed 

and potentially integrated into clinical EP systems to locate rotors in real time during an 

ablation procedure.
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Fig. 1. 
Discrete 2D search grid and algorithm parameters – The voltage map of the rotor is shown in 

the background. The circle is a Lasso catheter and A is its center, the squares labeled as Sn 

are two example grid locations, and the star indicates the FAB.
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Fig. 2. 
Overview of the guidance algorithm – The inputs are the search space and the two EGM 

characteristics, RPR (τ) and FAB (Φ) and the output is the estimated location of rotor.
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Fig. 3. 
Likelihood distribution corresponding to the function LΦ(θ) – LΦmin and LΦmax are the 

minimum and maximum likelihood values selected to be 0.1 and 2, respectively. θth
+  and θth

−

are −0.056π and 0.056π, respectively.
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Fig. 4. 
Likelihood distribution corresponding to the function Lτ(d) – Lτmax and Lτmin are maximum 

and minimum likelihood values and are selected to be 0 and 1, respectively. dmax is the 

maximum distance with respect to the current catheter location.
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Fig. 5. 
Some examples of the catheter-guidance paths using the proposed algorithm – Each path is 

indicated from the first step, s1, to the rotorconvergence location in s3.
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TABLE I

Results of Rotor localization algorithm

Method Convergence Rate (%) Number of steps to convergence (mean ± std)

Proposed Algorithm 100 3.37 ± 1.05

Random catheter placement 34 6.58 ± 3.72
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