Automatic Detection, Extraction and Analysis of Unrestrained Gait
Using a Wearable Sensor System

Amin Ahmadi!, Chris Richter?, Noel E. O’Connor! and Kieran Moran®

Abstract— Within this paper we demonstrate the effectiveness
of a novel body-worn gait monitoring and analysis framework
to both accurately and automatically assess gait during ’free-
living’ conditions. Key features of the system include the ability
to automatically identify individual steps within specific gait
conditions, and the implementation of continuous waveform
analysis within an automated system for the generation of
temporally normalized data and their statistical comparison
across subjects.

I. INTRODUCTION

Gait analysis is used in the clinical management and scien-
tific research of pathological gait related to neuromuscular-
skeletal damage and cognitive decline [1], [2], to facilitate
early screening, enhance intervention decision-making and
track long-term deterioration. Gait analysis can incorporate
joint kinematics (angle and angular velocity) and spatio-
temporal measures (step length, step duration, foot trajectory)
[3].

Gait analyses are traditionally undertaken in controlled
laboratory/clinical environments using expensive walkway
mats (e.g. GaitRite) or camera-based systems (e.g. Vicon).
However, analyses are not widespread because of system
costs and availability. More importantly, the ecological valid-
ity of the results is questionable because of the small number
of foot strikes (< 5), the very controlled environment where
participants are highly focused and only straight line walking
is assessed [1]. Given the implicit aim of gait analysis is to
capture a person’s natural gait, it would be far more appro-
priate to assess walking over a much longer time/distance
and, most critically, under ‘free-living’ conditions.

The use of small, light, wireless inertial sensors in a
body-worn monitor (defined as the sensors and associated
algorithms) offers a relatively cheap and accurate alterna-
tive [7]. A number of systems have been proposed that
examine issues of accuracy in spatial-temporal measures
[13] and joint kinematics [12] and are beginning to be
more widely employed within research and lifestyle-based
intervention studies. However, a major challenge is that ‘free-
living walking involves periods of acceleration (e.g. initiating
walking; after opening a door), deceleration (e.g. walking
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Fig. 1: Main components of the proposed framework.

within a crowd; coming to a closed door), turning cor-
ners, and ascending/descending curbs and stairs; with all of
these walking conditions affecting gait spatio-temporal and
joint kinematics. Given that intra-patient and inter-patient
comparisons are central to gait analysis, it is essential to
only compare across the same walking conditions. Therefore
it is necessary for body-worn gait monitoring systems to
automatically identify each walking condition and extract
each gait cycle.

Although kinematic measures are continuous in nature,
they are currently generally analyzed by extracting key
discrete events (e.g. maximum knee flexion); this can signif-
icantly undermine the accuracy of the findings [4]. Clearly it
would be more informative for a body-worn gait monitoring
system to automatically create and analyze representative
data across the whole gait step cycle.

Within this paper we propose a novel body-worn gait
monitoring and analysis framework to both accurately and
automatically assess gait during ’free-living’ conditions.

II. FRAMEWORK

The main components of our framework (Fig. 1) are: syn-
chronization, calculation of joint angle and spatio-temporal
measures, step detection, recognition of gait condition, gen-
erating representative data and statistical analysis. Each com-
ponent is presented and discussed below.

III. METHODOLOGY
A. Data Collection

To evaluate the proposed framework, five healthy partici-
pants (37 & 7 years; 1.76 £ 5 m; 77 £ 7 kg) were compared
to one patient with gait impairment (29 years; 1.88 m; 82 kg)
left sided hemiplegia (occurring prenatal). The patient was
highly functional, representing Ireland in multiple running
distances. The non-injured right side of the patient was



analyzed in order to provide a greater challenge to the system
to statistically identify gait kinematic differences.

Movement kinematics were assessed using four wearable
inertial sensors (x-IMU, x-io Technologies, UK) strapped
to the participants’ mid-foot, shank, thigh, and pelvis with
elastic Velcro straps (Fig. 2). The x-axes were aligned with
the longitudinal axes of the body segments.

Participants performed a walk along a predefined path
to mimic various free-living conditions (Fig. 3), includ-
ing: gait initiation/acceleration and deceleration, changes in
direction, straight line walking, opening doors, ascending
and descending stairs, and semi-stationary standing (as if at
a shop counter). The path was walked in both directions
(returning to the start). Walking speed was self-selected.
Annotated video along with the calculated location of the
foot along the gait path, was used as the ground truth
for evaluating the automatic segmentation and recognition
of gait conditions. The experimental procedures involving
human subjects described in this paper were approved by
the Institutional Review Board.

B. Synchronization

An internal SD card was used to store data from each
sensor (256Hz). A physical event (5 repeated stiff jumps
to generate high impact accelerations simultaneously in all
sensors at the start and end of the walking trial) was
used to help temporally synchronize all sensors. This was
achieved by automatically identifying the first acceleration
peak associated with the first stiff landing from all sensors
prior to walking. The effectiveness of this was evaluated
by comparing the last acceleration peak from the fifth stiff
landing from all sensors immediately after the walking trial.
The system was 100% successful in synchronizing.

C. Calculation of Joint Angle and Spatio-temporal Measures

We use a customized gradient descent optimization algo-
rithm [5], [7] on three-dimensional (3D) accelerometer and
gyroscope data to estimate the sensor orientation with respect
to the Earth frame. This algorithm has been shown to provide
effective performance at low computational expense and is as
accurate as the Kalman based algorithm [5]. Each sensor unit

Fig. 2: Placement of four inertial sensor units.
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Fig. 3: Walking path (A to B and back to A). Walking from B
to A, the door was open; participants were in semi-stationary
standing at point C (20 seconds).

frame was aligned with the body frame [6] and a technique
described in [7], [8] was then applied to the foot, shank, thigh
and pelvis segments to measure ankle, knee and hip flexion-
extension joint angles. In theory, double integration of the
acceleration measurements should yield position. However,
due to accelerometer drift error, position estimates are only
valid for a short period of time and require drift correction
[91, [10].

During early stance, the total acceleration of the foot
sensor is very small (almost zero) indicating when the initial
velocity can be set to zero; and consequently the 3D position
of the foot during the swing phase can be calculated [11],
(Fig. 4).
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Fig. 4: Overview of the foot position estimation process.

D. Data Analysis

Although a large number of kinematic measures and
walking conditions were included, we limit our analysis of
continuous variables here to sagittal plane flexion-extension
and foot z-position, during periods of straight-line walking
that did not involve stair climbing or acceleration.

1) Step Detection: Step cycles were defined as heel-strike
to heel-strike. Heel strike detection employed two phases.
Firstly, we calculated the moving standard deviation (M S D)
of the vertical velocity of the foot sensor (in the global frame)
over a moving window of 100 frames (0.39seconds). The
M S D was used to identify where the foot was in a stationary
foot position (i.e. flat foot of the stance phase). At every
frame (t), the foot was defined as stationary and stored into
a StepIDX if (1) was satisfied:

MSD; > [min(MSD) + range(MSD) x 0.5] (1)

Secondly, we selected the root mean square value of the
vertical acceleration at the start of every defined stationary
foot position as the threshold to detect heel strike (i.e. the
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Fig. 5: Step detection using the foot sensor.

last value above this threshold) (Fig. 5). The position (x, y
and z) and coordination angle of the foot sensor were zeroed
using the value at 20% of the movement cycle.

2) Recognition of Gait Conditions: Using the z-position
of the foot sensor, the correlation coefficient (r) was calcu-
lated between the step mean and the individual z values dur-
ing each step cycle. Correlation coefficients of less than 0.8
identified phases of standing, acceleration (opening/closing
doors) and stair climbing. Periods of curved walking (turning
corners or swerving to avoid other people) were identified
by an absolute coordinate angle of the foot greater than 0.1
radian in the ground (horizontal) plane. In addition, based on
pilot testing, three steps before and after curved walking, stair
climbing, opening doors and being stationary were removed
as further periods of acceleration/deceleration. The remaining
cycles were defined as straight line walking at relatively
constant speed, and analyzed.

3) Generating Representative Data Following Temporal
Normalization: Walking speed affects joint and foot kine-
matics. To remove temporal variations all kinematic curves
were landmark registered to key events [15]. Firstly, the
following landmarks were identified: maximum hip, knee
and ankle angles, and tested for and removed outliers [14].
Time warp functions were then created by fitting each cycle’s
landmark sequence to the mean landmark sequence using
a polynomial fit (4¢h order) for every cycle. Finally, the
hip, knee and ankle angles as well as z-position and the
normalized percentage (1:100) of every cycle were registered
using its corresponding time warp function, utilizing Cubic
Spline data interpolation to generate representative data for
both the normal gait and the hemiplegic (impaired) gait.

4) Statistical Analysis: To examine statistical differences
in the continuous data (joint angles and foot z-position)
between healthy participants and the patient, we applied a
continuous waveform analysis recently developed by our
group [Analysis of Characterizing Phases (ACP)] [4]. The
ACP used 99% of the variance in the data to generate subject
scores to examine the full area over which participants dif-
fered [16]. Statistical differences in the ACP subject scores,
as well as the discrete spatio-temporal measures (step length;
step duration), were examined using independent t-tests or
Mann-Whitney U test when non-parametric. (p < .05 was
adopted). Cohen’s D was calculated to examine the effect
size.
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Fig. 6: Registered means and confidence intervals for (a)
hip, (b) knee, (c) ankle, angle, and (d) foot vertical height,
for normal versus impaired walking. Phases of significant
differences are indicated by the vertical red bands. D is the
Cohen’s effect size.

IV. RESULTS AND DISCUSSION

In comparing the identified walking actions to the ground
truths from both the video and the calculated location of the
foot along the preplanned gait path, the system was able to
automatically exclude phases of curved walking, climbing
stairs, acceleration/deceleration, and semi-stationary stand-
ing). Within 470 detected steps of straight line walking, 3
cycles were incorrectly included (unusual long steps during



acceleration) and subsequently manually removed prior to
statistical analysis. [Their inclusion however would not have
altered the general outcomes of the analysis]. Identifying and
grouping different walking conditions is extremely important
in the generation and statistical analysis of representative
data given that they will utilize different joint and foot kine-
matics. Without this function, it is not possible to effectively
compare across participants (as in this study) or to longitudi-
nally track individuals for the early identification/screening
of neuro-musculoskeletal injury or cognitive decline [1], [2].
Currently, no systems appear to facilitate this.

Representative data for joint flexion-extension and for
the vertical position of the foot are depicted (Fig. 6). All
graphs exhibit the classic shapes for gait, testifying to the
accuracy of the implemented joint angle and spatio-temporal
algorithms. Given that the unaffected’ side of the hemiplegic
gait was analyzed, which has smaller differences to normal
gait [17] than the affected side, the clear statistically signifi-
cant differences identified lend support to the processes used
here in generating and analyzing the representative data. In
particular the use of continuous waveform analysis (rather
than discrete points), which has been previously shown to
be superior [4], [16] is shown to be extremely important.

The hemiplegic gait demonstrated more pronounced (0 —
36%) and higher rates (0 — 10%) of passive plantar flexion
during stance, which may be associated with a higher and
faster transition off of the affected side, which is charac-
teristically very rigid and has a shorter stance time [17],
[1]. During early swing (51 — 88%) the patient used more
ankle dorsiflexion, which may reflect a strong desire to avoid
hemiplegic associated tripping [1]. The greater knee flexion
throughout almost the entire gait cycle (0 — 90%) may be
due to hip hitching on the affected side forcing the knee
into more flexion due to inter-segmental reactions. Flexion-
extension of the hip did not differ. Differences in the vertical
position of the foot were reflective more of the differences in
ankle dorsiflexion than knee flexion. For hemiplegic gait the
step length was longer but the step duration was shorter (Fig.
7). The former may be due to rocking over the more rigid
and straighter affected (left) side or simply because he was
taller than the normal participants. The shorter step duration
requires further investigation.

While the proposed framework was evaluated in a ’free-
living” condition, not all free-living conditions were included
(e.g. outdoor and uneven ground, complex crowds). Further
work is needed in this regard.
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