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Abstract

An interactive navigation system for virtual bronchoscopy is presented, which is based solely on 

GPU based high performance multi-histogram volume rendering.

I. Introduction

Virtual endoscopy has become an increasingly important tool for training, diagnosis, pre-

operative planning and intra-procedural image guidance. In virtual bronchoscopy navigation, 

real-time video images of the bronchoscope are compared to the virtual images generated 

from a diagnostic CT volume to locate the bronchoscope relative to the patient’s airways and 

pre-procedural CT. Current clinical methods for registration used in bronchoscopy 

procedures include video or image based as well as electromagnetic tracking based solutions 
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[1]. Various registration algorithms have been developed to automatically register real and 

CT-derived virtual bronchoscopy images [2,3]. These algorithms require rendering virtual 

bronchoscopy images at different locations and viewing angles to find the best match of the 

real image. Since the registration is carried out during the clinical procedure, fast virtual 

bronchoscopy rendering is highly desirable for less latency and more real time procedural 

adjustment. Current endoscopy navigation systems either strive for interactive rendering of 

an iso-surface from the polygonal representations, or high-quality volume rendering that has 

to be generated from a 3D image. While surface-based virtual bronchoscopy is very fast, it 

relies on an accurate segmentation of the airways. However, semi or automatic airway 

segmentations are not reliable when the airways are small or the resolution of the diagnostic 

CT image is low [4, 5]. As an alternative, volume rendering can be used when airway 

segmentation is not accurate. Even if volume rendering is ambiguous in small airways due to 

volume averaging, the clinician may use his or her knowledge to effectively locate the 

position of the bronchoscope. The registration algorithms may still find the best match 

between the real and virtual bronchoscopy images.

Intensive research has been conducted in developing fast volume rendering based endoscopy 

navigation. Wan et al. [6] proposed a fast direct volume rendering technique that exploits 

distance information stored in a potential field of a camera control model, and is parallelized 

on a multiprocessor. The proposed method is CPU based, and the navigation system requires 

a high-end workstation to run, such as the SGI power challenge with 16 processors. Kruger 

et al. [7] proposed a GPU raycasting method that combines volume rendering with iso-

surface rendering. On the pixel shader, a first pass performs single pass ray traversal and 

early ray termination on the surface to gather the depth and density info for each pixel. Then 

a second pass performs composition and shading to get the final image. Yuan [8] proposed a 

fast GPU raycasting algorithm to improve image quality. A linear interpolation is used to 

estimate the intersection between a ray and iso-surfaces in order to reduce resampling 

artifacts. Diepenbrock et al. [9] proposed a GPU based volume raycaster that generates two 

proxy geometries, a cube one for rendering, and a sphere one to map the user’s input to 

camera movement. An image analyzer overlays the two for final rendering. Limited research 

has been dedicated to support pure volume rendering based navigation without 3D surface 

rendering. Wan’s work is pure volume rendering, however, it is CPU based. All the above 

GPU based navigation systems constrain with 3D surface rendering to achieve high 

rendering quality.

Debate exists regarding the merits of surface rendering versus volume rendering [10, 11]. 

One advantage of iso-surface based volume rendering is the realistic lighting and shading 

effects, which enhance the perception of spatial relations of anatomic structure. One major 

limitation of this approach is segmentation. For example, in the context of virtual 

bronchoscopy, small airways are extremely easy to miss with semi-manual based human 

segmentation. Those small branches might be the diagnosed as highly suspicious lesion. In 

the pure volume rendering based navigation environment, an appropriate adjusted transfer 

function is desired for viewing the fine details of the small airways. Though interactive 

direct volume representations would be highly desirable, no system has yet been presented 

that is capable of delivering sufficient quality with a truly interactive frame rate [12].
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To overcome the inherent problems of the above approaches in a pure volumetric rendering 

context, we developed a bronchoscopy navigation system that satisfies the following 

requirements: 1) Pure volumetric view without any 3D iso-surface rendering to minimize the 

human based segmentation errors; 2) Intuitive mouse centric navigation control that is 

capable of steering the surrounding anatomic structure from the viewpoint; 3) Path planning 

with automatic fly through; 4) Achieve high rendering quality with interactive frame rate. 

With those simple requirements in mind, we developed a prototypical GPU based multi-

histogram volume navigation system.

The proposed GPU navigation system is built on top of the MIPAV [13] visualization 

framework. The framework utilizes the WildMagic [14] game engine to handle the 

rendering. In general, 3D camera control in computer games has only limited use in the area 

of volume rendering [9] because the game engine based rendering pipeline leads to a 

substantial problem with volume navigation on the GPU. We developed a work around 

method to solve the problem, which is presented as the following: 1) overview of the GPU 

based rendering architecture; 2) explanation of the bottleneck GPU rendering constraint in 

the context of volume navigation; 3)the work around method;4) basic functionalities of a 

prototype bronchoscopy navigation system.

Methods

A. Old GPU-based Multi-histogram Rendering Framework

The previous published paper [14] introduced MIPAV visualization framework on top of the 

WildMagic game engine. WildMagic is a C++ game engine [15] that provides the low-level 

geometry routines and complete high-level scene graph management for game applications. 

We ported the WildMagic library to Java specifically for the shader-based rendering pipeline 

and shader-effects library. WildMagic is optimized for fast and efficient use of GPU memory 

by sharing texture and shader data.

Figure 1 depicts the layered MIPAV visualization framework. The WildMagic library is 

layered between MIPAV and the Jogl library to implement ray-cast based volume rendering. 

GPU based GLSL shaders produce very efficient rendering results through the use of 

extensive graphics hardware optimization.

In later work [16], we integrated the GPU-based multi-histogram rendering into the MIPAV 

visualization framework. The multi-histogram rendering framework proposed by Kniss et al. 

[17] gives the volumetric data the 3D impression of overlaid multiple shapes (iso-surfaces). 

Multi-histogram rendering gives greater emphasis to boundary visualization than does the 

traditional one dimensional transfer function based volume rendering. Figure 2 depicts the 

rendering pipeline.

In the preprocessing stage, the gradient magnitude, Laplacian volume, and the volume 

normal are calculated by OpenCL routines on the GPU. The WildMagic library renders the 

3D volume proxy geometry to sample the volume data. Each time the proxy geometry is 

rendered, the pixel shader calculates the current location in the volume to sample, renders 

the volume data with gradient magnitude and Laplacian values, and calculates the output 
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color and opacity. If more than one 2D multi-histogram widget is applied, the values are 

combined before being written to the framebuffer. Each rendering pass is blended with alpha 

blending in the framebuffer.

The proxy geometry is rendered as a color cube, which is sized to fit the volume data. At the 

start of rendering, the back-facing sides of the cube are rendered, where back face color is 

determined by the x, y, z location on the rendered face. This produces a 2D texture as seen in 

Figure 2. Next the proxy geometry is rendered again, this time rendering the front-facing 

sides of the cube. When the front faces are rendered, the 2D back-facing texture is passed to 

the pixel shader program. The pixel shader program uses the positions on the front-face of 

the cube and the positions of the back-side of the cube, which it reads from the 2D texture, 

to calculate a view-direction along which to sample the volume data. During each pass the 

pixel shader reads the volume data, gradient magnitude, Laplacian, and normal map from the 

3D textures, and computes the color and opacity from the multi-histogram transfer function. 

Blinn-Phong illuminations model is used to compute the shading at each voxel. The pixel 

shader program calculates a single location along the ray to render, and multiple rendering 

passes are used to generate the final image in the framebuffer. Thus, ray-casting is realized 

in sense of multi-pass, which utilizes the parallel GPU processing power of the modern 

graphics hardware.

B. Multi-histogram framework rendering constraint in the context of navigation

Due to historic reasons, the MIPAV visualization framework relies heavily on the WildMagic 

game engine architecture to handle the GPU based volume rendering. The proxy geometry, 

the color cube, is the key to rendering the volume.

One typical step with the traditional WildMagic game engine rendering pipeline is described 

in Figure 3.

From the model space, the image scene graph tree contains all the 3D geometry objects in 

the game scene. View frustum culling goes through each 3D geometry surface, eliminating 

portions of the object, possibly the entire geometry object that is outside the view frustum. 

Then the remaining geometry figures in the image scene graph are projected into the 

homogeneous canonical view volume (CVV) for rasterizing. Each geometry object is 

attached with its own shader for GPU surface rendering. To navigate into the game scene, 

the camera simply moves around inside the game environment, viewing the closest 3D 

geometry figures that are visible inside the view frustum. Frustum culling is performed at 

each frame of the rendering loop. One point needs to mention is the clipping. Clipping 

against the view frustum tests the intersection of the front-facing object’s triangle meshes 

with the view frustum clipping planes. The portions outside will be clipped away. The 

remaining parts will regenerate the triangle meshes for the new 3D objects. In the context of 

game based navigation, clipping against the 3D geometry objects turns out to be unnecessary 

since the game player never needs to navigate inside the 3D figures. Occasionally, a hollow 

3D surface shows up when the player moves the camera into the 3D object. Clipping against 

the 3D figure to regenerate the triangle meshes turns out to be the performance overhead in 

the gaming environment. Therefore, culling without clipping is a general operation in the 

game engine architecture.

Cheng et al. Page 4

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2018 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We build the multi-histogram rendering framework based on top of the WildMagic game 

engine. The culling without clipping scenario introduces a substantial design pitfall in the 

context of volume navigation. Figure 4 illustrates the problem.

In the context of volume navigation, the proxy geometry is the only geometry object under 

the image scene graph tree. From the old multi-histogram rendering framework, rendering 

works smoothly when the camera is far from the volume proxy geometry since the geometry 

resides entirely inside the view frustum. To navigate into the 3D volume, we move the 

camera close to the volume, as shown in Figure 4 b,c. The volume data is rendered with a 

pixel shader on the GPU. The shader is activated by rendering the volume proxy geometry. 

One problem with this technique is that the WildMagic library culls off the bounding-

volume proxy geometry cube with the view-frustum near plane before rasterizing. The front-

face and back-face of the proxy geometry are no longer rendered on the GPU, and therefore 

the fragment shader is no longer activated. This causes the whole volume rendering to 

disappear as the user tries to navigate inside or zoom into the volume. This pitfall from the 

game engine architecture design becomes the bottleneck in the context of volume navigation 

with the GPU based rendering framework.

C. Work around method in the context of navigation

One work around method we developed is to automatically detect clipping of the volume 

proxy geometry by the view frustum near plane as the camera moves into the volume. When 

clipping is detected, the algorithm generates a new triangle mesh by intersecting the near 

plane with the original proxy bounding cube. The newly generated triangle mesh serves as 

the new volume proxy geometry to pass down to the shader for rasterizing. The resulting 

effect is an appearance of navigating into the volume. Before rasterizing, the plane-cube 

intersection and re-meshing are computed for each frame inside the CPU based rendering 

loop. We follow the references [18, 19] to implement the algorithm. Figure 5 demonstrates 

the possible clipping configurations of the near-plane and the proxy geometry cube.

The proxy cube and the view frustum intersection test is the key to solving the clipping 

problem. As illustrated in Figure 5, the intersection between a cube and the near plane 

generates an irregular polyhedron, which contains at most 6 vertices. The intersection test 

algorithm is outlined as follows. When the near plane intersects an edge of the cube, the 

plane is given in Hessian normal form,

n · x = d (1)

where n is the unit normal vector of the plane and d the length of the normal vector. An edge 

Ei j between two vertices V i and V j of the cube can be described by the straight line,

Ei j = V i + λ(V j − V i) with 0 ≤ λ ≤ 1 (2)
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The intersection point between the near plane and the straight line spanned by edge Ei j is 

calculated as,

λ =
d − n · V i

n · (V j − V i)
(3)

The near plane intersects the edge of cube when λ ∈ 0, 1 , otherwise there is no 

intersection. A key point in performing the plane-edge intersection calculation is to maintain 

a clockwise or counter-clockwise ordering of the intersection points such that the final result 

forms a valid polygon. Figure 6 shows the remapping of the points on the cube so that the 

nearest point is V0, and is on the cube top-face. This corner is clipped by the view frustum 

and will serve as the starting corner in creating the new mesh surface. Vertex V7 is the 

furthest vertex lying on the opposite corner of the cube back-face. There are three 

independent paths from V0 to V7 as marked in Figure 6a by the solid lines with different 

shaded gray colors. Each path consists of a sequence of three edges E1, E2, E3 , such as, 

E1 = E0 1, E2 = E1 4 and E3 = E4 7 for the light gray path. Any viewport-aligned 

clipping plane that intersects the cube will have exactly one unique intersection point along 

each of the three paths.

If the intersection polygon has only three vertices, there are exactly three intersections points 

with the three paths. We can compute three intersection points Pi by checking intersections 

with a sequence of edges, respectively, as shown in Figure 6b.

P0 = Intersecting with E0 1 or E1 4 or E4 7

P2 = Intersecting with E0 2 or E2 5 or E5 7

P4 = Intersecting with E0 3 or E3 6 or E6 7

In case that the intersection polygon has more than three vertices, we need to insert new 

points at the dotted lines. For example, insert a new point P1 at the light gray dotted line 

E1 5. As a consequence, there must be two consecutive edges linking to P1, and the two 

points reside either on the solid light gray path or the solid mid gray path as shown in Figure 

6 c,d. If the intersection with the dotted line doesn’t exist, we just set the point to P0, which 

is on the light gray path. The intersection points with the dotted lines are expressed as:

P1 = Intersection with E1 5, otherwise P0

P3 = Intersection with E2 6, otherwise P2

P5 = Intersection with E3 4, otherwise P4

Following the above idea, we find all the six intersection points of the near plane with the 

proxy bounding cube in a sequence that forms a valid polygon while simultaneously re-
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meshing the clipping plane. The newly generated proxy geometry is passed down to the 

shader for GPU based rendering. Clipping the proxy cube with the near plane solves the 

problem of the volume navigation with the general game engine based rendering pipeline. 

After applying the clipping algorithm, users are able to navigate into the volume.

D. Prototype Virtual Bronchoscopy Navigation

By solving the clipping problem with the general game engine rendering architecture, we 

build a prototype volume navigation system for the virtual bronchoscopy based on the GPU 

enhanced multi-histogram rendering framework. Multi-histogram is a very effective way to 

visualize material boundaries from the complicated anatomy structure without rendering the 

3D surfaces. It avoids the tedious semi-manual human segmentation with the large dataset, 

i.e. 512×512×256. Our motivation for the multi-histogram is to view the tiny branch 

structures along the bronchial airway during the navigation. Those small airways can easily 

be neglected with the human based segmentation

To unleash the full potential of the volume navigation, we implement two control modes: 

one with mouse centric control to steer and fly into the volume; the other is the path 

planning based automatic fly-thru. Users can easily switch between the two modes with a 

single button click.

In the mode of mouse centric control, press and hold down the left mouse button with the 

control key to pick a target point as the flying direction. Then rotate the mouse wheel 

forward once to fly toward the target direction or rotate it backward once to fly in the 

opposite direction. Fly through is implemented with Java thread control. The flying motion 

continues until the user presses the mouse again to stop at the current location. This is 

necessary when the user needs to switch between branches during navigation. Flying is 

realized by moving the camera at a constant speed. Features with the camera centric 

navigation metaphor are also implemented. The following key and mouse button 

combinations affect the view orientation and direction: 1) Ctrl + right mouse button – 

Counterclockwise roll rotation; 2) Alt + right mouse button – Clockwise roll rotation; 3) 

Shift + right mouse drag – Move the camera location horizontally or vertically, independent 

of the volume; 4) Shift + left mouse drag – Yaw, pitch rotation around the volume with 

camera centric location. The camera centric steering features are convenient for observing 

the small airways in bronchoscopy. Figure 7 shows a mouse centric control view. The upper 

panel shows the virtual bronchoscopy volumetric view. The lower three panel cross-hairs 

show the current virtual camera location.

In the mode of planning automatic based fly-thru, the user selects the annotation points to 

create the tracking path. A point of interest is captured by clicking the left mouse button on 

one of the bottom three planar panels while holding down the shift key. After a new point 

has been captured, it is added along with the current location to a list of other captured 

points, and then a small green sphere is rendered as the selected point of interest. When user 

clicks the generate path button, a B-Spline smoothed path is created. Figure 8 shows a 

tracking path in red color with the tri-planar view. Basically, the user creates a tracking path 

starting from the lesion region as the initial anchor point, and traces back to the entry point 

of the bronchus structure. To fly-thru, the user simply rotates the mouse wheel forward once 
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to fly along the B-Spline path, or backward once to fly back. Figure 9 shows the volumetric 

view of path planning fly-thru, and the corresponding path hidden behind the volume scene.

III. Result

To conduct the performance measure, we evaluate the frame per second (fps) with the path 

planning automatic fly-thru mode. Frames rates were captured during the fly-thru with fine 

tuning the sampling rate. Measurements were conducted on a general desktop PC equipped 

with 8 GB RAM and an Nvidia GeForce GTX 550 Ti card with 1.0 GB texture memory. 

Table 1 shows the figures with different CT datasets. The GPU base multi-histogram volume 

navigation can achieve an acceptable interactive frame rate with smoother visual rendering 

quality.

IV. Conclusion

In virtual bronchoscopy simulation, it is important to develop a navigation method that 

enables users to control the position and orientation of virtual camera easily and intuitively. 

We propose a prototype navigation system that utilizes the GPU based multi-histogram to 

render a clear bronchial airway in a pure volumetric context, without any 3D surface 

rendering involved. The proposed system overcomes the GPU volume navigation constraint 

[9] imposed by the traditional game engine based medical simulation architecture. It can 

generate a trajectory path with a simple path planning tool, allowing users to fly-thru the 

airway easily and efficiently. The system also provides a mouse centric control to steer the 

camera around the volume. In addition, with the multi-histogram widget control it is 

intuitively easy to extract a bronchial airway view. It avoids a tedious step of semi-manual 

bronchial airway segmentation and minimizes the human based segmentation errors in the 

small airways structure. The proposed navigation system runs on general PC with a low end 

3D graphics card, but can still achieve a relatively high rendering quality with interactive 

frame rate. The developed tool can be adapted for different non-invasive virtual endoscopy 

simulations, such as colon, bronchi, and blood vessels. We develop the system as a proof of 

concept tool for future simulation of minimally invasive image guided procedures.
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Figure 1. 
MIPAV visualization framework layers
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Figure 2. 
Old GPU based multi-histogram rendering pipeline
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Figure 3. 
General game engine rendering pipeline view frustum culling
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Figure 4. 
View frustum culling in the context of navigation
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Figure 5. 
Plane-cube clipping configurations
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Figure 6. 
Remapping of points on the proxy cube
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Figure 7. 
Mouse centric control view
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Figure 8. 
Path planning
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Figure 9. 
Path planning mode fly-thru
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Table 1

Performance (fps)

Size FPS

CTlung 512×512×73 28

Bronchus 512×512×256 20

Lung(female) 512×512×313 15
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