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Abstract

Primary motor-cortex multi-unit activity (MUA) and local-field potentials (LFPs) have both been 

suggested as potential control signals for brain-computer interfaces (BCIs) aimed at movement 

restoration. Some studies report that LFP-based decoding is comparable to spiking-based 

decoding, while others offer contradicting evidence. Differences in experimental paradigms, 

tuning models and decoding techniques make it hard to directly compare these results. Here, we 

use regression and mutual information analyses to study how MUA and LFP encode various 

kinematic parameters during reaching movements. We find that in addition to previously reported 

directional tuning, MUA also contains prominent speed tuning. LFP activity in low-frequency 

bands (15–40Hz, LFPL) is primarily speed tuned, and contains more speed information than both 

high-frequency LFP (100–300Hz, LFPH) and MUA. LFPH contains more directional information 

compared to LFPL, but less information when compared with MUA. Our results suggest that a 

velocity and speed encoding model is most appropriate for both MUA and LFPH, whereas a speed 

only encoding model is adequate for LFPL.

I. INTRODUCTION

Primary motor-cortex (M1) is the major area for harnessing neural signals for brain-

computer interface (BCI) control. In recent years, single-unit activity (SUA), multi-unit 

activity (MUA) and local-field potentials (LFPs) have been proposed as possible control 

signals for BCIs. While the relationship of SUA to various movement parameters during 
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reaching movements has been extensively studied (e.g. [1]–[7]), that of MUA and LFP is not 

as well understood. Several groups have studied low-frequency LFP in the time or frequency 

domain, concluding that it encodes hand position, direction or velocity information [8]–[13]. 

Studies of high-frequency LFP in the frequency-domain have shown similar results [9], 

[13]–[18]. Comparisons of movement related information encoded by LFP to that encoded 

by either SUA or MUA have resulted in contradicting results: some studies have reported 

that the amount of information encoded by LFP exceeds that encoded by spiking activity, 

while other studies report less movement related information in LFP than in spiking.

Several factors could account for this discrepancy. First, experimental paradigms differ 

across the various groups. Second, while some studies used averaged neural activity, others 

used instantaneous activity. Third, some studies decoded kinematics from neural activity, 

while others used mutual-information (MI) or linear correlation based analyses. Finally, 

each of the studies made different assumptions about the encoding model.

Here, we extend previous work by systematically studying tuning properties of LFP and 

comparing them to MUA tuning. Motor-cortical SUA has been previously shown to encode 

both direction and speed [5]. We therefore considered tuning models which included 

direction, velocity, speed and their additive combinations. We used instantaneous neural 

activity and kinematics, as opposed to averaged data, to make our conclusions more relevant 

for real-time BCI use. We found that MUA exhibited prominent speed tuning, along with 

directional tuning which was especially evident in a small subset of the channels examined. 

Low- and high-frequency LFP were speed tuned. Some high-frequency LFP channels 

demonstrated directional tuning similar to that of MUA.

II. METHODS

A. Behavioral Task and Data Collection

A Rhesus monkey was trained to perform center-out movements using the arm contralateral 

to the recording site. The animal was comfortably seated in a primate chair, in front of a 

computer screen, with one arm restrained and the other free to move behind the screen, thus 

obscured from the animal. An active marker system (Phasespace Inc, San Leandro, CA) was 

used to track its hand position in real-time. This 3D position was projected to a 2D plane and 

was used to render a cursor on the computer screen in real-time. At the beginning of each 

trial, a center target appeared and the animal had to move its hand so that the cursor location 

matched the center target. Then, after 200–400ms, a peripheral target appeared. The animal 

reached so the cursor moved to the peripheral target, within ~800ms, or else the trial would 

fail. Successful trials were indicated with a water reward. On some trials, the animal had to 

move its hand so the cursor followed paths of varying shapes and thicknesses. On most 

trials, the hand path was not constrained. Neural tuning did not seem to differ between these 

two tasks, so those data were combined for the analyses described here.

After the animal had sufficient proficiency in the task, a 96-electrode silicon array 

(Blackrock Systems Inc.) was chronically implanted in the arm region of the contralateral 

motor-cortex. All surgical procedures followed protocols approved by the University of 

Pittsburgh Institutional Animal Care and Use Committee. Post-surgery, the animal resumed 
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performing the task while neural activity was recorded and stored for off-line analysis using 

a TDT system (Tucker-Davis Technologies, Florida). The 3D hand position (sampled at 

120Hz) and relevant task information were stored in synchronization with the neural data.

An RMS based threshold was used to obtain threshold-crossing event times for every 

channel. Here, we refer to these threshold-crossing events as MUA, but that does not 

necessarily imply these are multi-unit clusters of neural activity that are well separated from 

the noise floor. LFP activity was obtained by band-pass filtering channel voltage signals 

(10–500Hz), and was stored at a sampling rate of 1220Hz. Off-line, MUA threshold-

crossings were converted to firing-rates by counting events in consecutive 100ms bins and 

dividing by the bin width. The LFP power-spectral density (PSD) was computed at a 

temporal resolution of 16ms with a frequency resolution of 5Hz using the mem library 

(BCI2000 Project [19]), and then log-transformed. In the analyses presented in this paper, 

we used two frequency-bands: 15–40Hz (LFPL) and 100–300Hz (LFPH). These two bands 

demonstrate the two major types of modulation commonly found in LFP during reaching 

movements (suppression and facilitation relative to baseline, e.g. [20]). Due to noise 

artifacts in the frequency band 28–32Hz, these frequencies were notch-filtered prior to 

computing the LFP PSD. We chose the LFPL and LFPH frequency bands based on both 

single channel and channel averaged normalized time frequency plots. We found that 

frequencies in these ranges tended to demonstrate similar tuning (data not shown). 

Furthermore, R2 values for the 41–99Hz band (see sec. II-B) were significantly lower 

compared to the other two bands, hence we ignored it in further analyses.

B. Tuning Models Estimation

Based on previous studies, suggesting that SUA contains both directional and speed 

information [5], we considered the following 5 tuning models:

(1)

(2)

(3)

(4)

(5)

where:

• y is a single-channel MUA instantaneous firing-rate in Hz, or a single channel log-

transformed instantaneous LFP PSD averaged across a given frequency band

• d⃗ = (dx, dy) = (cos(θ), sin(θ)) is the instantaneous direction of hand movement

• v⃗ is the instantaneous hand velocity
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• s = |v⃗| is the instantaneous hand speed

These models relate neural activity to instantaneous direction (eq. 1), velocity (eq. 2), speed 

(eq. 3), direction & speed (eq. 4), and velocity & speed (eq. 5). Together, they allow 

systematic investigation of how MUA and LFP relate to direction and speed components in 

a multiplicative or additive manner. Prior to fitting the regression models, MUA firing-rate 

and kinematic features were spline-interpolated to match the LFP PSD sampling frequency. 

We also performed a lag analysis, where we fit the above models with varying lags between 

the neural and kinematic features. We considered lags ranging from causal values (−300ms) 

to non-causal values (+400ms), at 50ms steps. For most MUA channels, the best fits, as 

determined by coefficient of determination (R2) values, were obtained with causal lags in the 

range of −100 to −150ms. For real-time BCI control, a single time-lag would likely be used 

for all channels; therefore we chose a causal lag of 100ms for all channels (MUA and LFP), 

for all analyses in this paper.

C. Mutual Information Estimation

The models in eq. 1–5 explore the linear relationship between neural activity (MUA, LFP) 

and velocity, direction and/or speed. However, if neural activity is linearly related to 

velocity, then it might be non-linearly related to its magnitude (speed). We therefore 

explored non-linear relationships between neural and kinematic features, in the form of 

mutual-information (MI), which measures any dependency between two random variables, 

regardless of its functional form. MI was empirically estimated by:

(6)

where:

• Y represents single-channel instantaneous neural activity

• X represents instantaneous direction or speed

Empirical MI estimations are sensitive to data discretization, hence we chose the following 

discretization schemes. Given that the behavioral task used peripheral targets at roughly 8 

regions around the center target, we discretized movement direction (θ) to 8 bins. To ensure 

similar entropy for direction and speed, speed was discretized to 8 bins as well. We used 

varying bin widths resulting in close to uniform marginal distributions for direction and 

speed. For Y, we used MUA spike counts in 100ms bins, or discretized LFP PSD for a given 

frequency-band.

Empirical MI estimates tend to be positively biased [21]. We estimated this bias by 

permuting the neural data and computing the MI to direction and speed 100 times; then 

computing the bias as the mean of these 100 null MI values. This bias estimate was then 

subtracted from the MI estimate, for every channel and neural data type, in all the analyses 

described here.

To determine an optimal discretization for LFP PSD, we computed the bias-corrected MI 

using 5–305 bins (in steps of 5). As expected, both the MI and bias increased with the 
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number of bins, but bias-corrected MI estimates for all LFP channels and frequency bands 

tended to plateau for more than 25 bins. We therefore discretized LFP PSD using 25 bins.

III. RESULTS

A. Linear Tuning to Kinematics

We first explored linear tuning of MUA and LFP to direction, velocity and speed using the 

regression models from sec. II-B. We fit the models using data from multiple recording 

sessions and results were qualitatively similar. We chose to present data from the two 

sessions with the largest number of trials. Fig. 1 summarizes our findings in the form of R2 

box-plots across all channels, one for every model and neural modality (MUA, LFPL, 

LFPH). It should be noted that R2 values are lower than those previously reported using 

averaged data, because we used instantaneous non-smoothed data, as would be the case in 

on-line BCI control.

While previously published results indicated that SUA encodes direction or velocity [5], 

[11], [17], we found that MUA encoded speed better than either direction or velocity, 

possibly due to the fact that threshold-crossing events in MUA originated from multiple 

single-units with different directional tuning. The two models incorporating direction & 

speed (eq. 4) or velocity & speed (eq. 5) yielded the highest R2 values across MUA 

channels. These models were better than either speed, direction, or velocity only models, 

indicating that MUA encoded directional information which was independent of speed 

information. The differences between the mean and median R2 for all models indicated that 

the R2 distribution has a long positive tail. Therefore, MUA tuning was heterogeneous, 

where a small subset of channels (~20%) encoded the kinematic features better than the 

other channels.

We found that LFPL encoded only speed, with no evidence of directional tuning. The 

difference between the LFPL mean and median R2 was very small, suggesting that LFPL 

speed tuning was homogeneous, in the sense that most channels encoded speed equally well. 

Most LFPH channels contained prominent speed tuning, but in contrast to LFPL, a subset of 

channels (~20%) were also directionally tuned.

Fig. 1 also allows us to compare tuning across neural modalities. As expected, most MUA 

channels encoded direction and velocity better than either LFPL or LFPH channels. A subset 

of LFPH channels (~20%) demonstrated direction or velocity R2 values equivalent to the 

average MUA R2. Speed was best encoded by LFPL: the worst LFPL channels encoded 

speed better than ~80% of MUA channels and ~70% of LFPH channels.

B. Non-Linear Tuning to Kinematics

We used the information theoretic analysis described in sec. II-C to capture potential non-

linear dependencies between MUA, LFPL, LFPH and direction or speed, beyond the linear 

tuning described in sec. III-A. Fig. 2 shows box-plots of MI values across all channels and 

neural modalities. The results in Fig. 2 are qualitatively similar to Fig. 1. Direction was best 

encoded by MUA, followed by a subset of LFPH channels with weaker direction encoding. 

While MI(LFPL; direction) was very low, MI(LFPL; speed) was higher than 
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MI(MUA;direction). MI(MUA;speed) and MI(LFPH ; speed) were similar across channels, 

both lower than MI(LFPL; speed). These results support the tuning analyses in sec. III-A, 

suggesting that linear models adequately describe the relationships between MUA, LFP and 

speed or direction.

IV. DISCUSSION

Multi-unit activity (MUA) and local-field potentials (LFPs) are two potential control signals 

for brain-computer interfaces. Recent studies relating MUA and LFP to various movement 

kinematics resulted in disagreement. Some studies suggest that LFP based decoding is 

equivalent to MUA based decoding, while other studies have found MUA based decoding to 

be superior. One possible reason for the contradicting results is the different tuning models 

used in those studies. Another reason could be data pre-processing: some studies used 

averaged data, others applied different filters to instantaneous data. The relative time-lags 

between neural data and kinematics also varied across studies.

Here, we studied a rich set of MUA and LFP encoding models using instantaneous non-

filtered data, with a fixed lag, to closely match the type of data used in on-line BCI studies. 

We found that while MUA was directionally tuned, as previously reported, it was more 

strongly tuned to speed. Based on this finding, decoding models utilizing MUA would 

benefit from taking speed tuning into account. A velocity-speed encoding model (eq. 5) best 

represented MUA tuning in our data. MUA tuning was heterogenous across channels: some 

channels encoded speed or direction much better than others. This suggests that BCI 

decoding might also benefit from some form of channel selection criteria.

Of the models we tested, we found that our low-frequency LFP activity (LFPL) was driven 

predominantly by speed, and that LFPL activity across channels was highly correlated. 

High-frequency LFP activity (LFPH) encoded both speed and direction, although directional 

information was lower compared to MUA. LFPH activity across electrodes was more 

heterogenous compared to LFPL: similarly to MUA, a subset of LFPH channels best 

encoded speed or direction. We determined that the most appropriate LFPL encoding model 

was a speed only model (eq. 3), whereas a velocity-speed encoding model (eq. 5) best 

described LFPH tuning.

Our regression and mutual-information analyses showed similar trends for both MUA and 

LFP, suggesting that linear direction and speed models adequately capture the neural tuning 

in our data. Based on our findings, a hybrid MUA-LFP decoder, accounting for the 

prominent speed tuning in both neural modalities, should prove superior to velocity-only 

based decoders.
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Fig. 1. MUA and LFP Tuning Model R2

Population tuning model R2 for the 5 models described in sec. II-B: Direction (D), Velocity 

(V), Speed (S), Direction & Speed (D+S), Velocity & Speed (V+S). Box-plots describe the 

5th, 25th, 75th and 95th R2 percentiles, as well as the mean (solid line) and median (dashed 

line) R2, across all channels with significant regressions. Percentages above the 95th 

percentile indicate the proportion of significant regressions among 87 channels. MUA 

demonstrates the strongest direction and velocity tuning. MUA speed tuning is prominent. 

Most LFPL and LFPH channels are speed tuned. Some LFPH channels show direction and 

velocity tuning, equivalent to MUA. LFPL shows the strongest speed tuning across the three 

modalities.
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Fig. 2. MUA and LFP MI Comparison
MI between MUA, LFPL, LFPH and kinematics (direction and speed) is compared. MI 

between MUA and direction is the highest among the three modalities. MI between LFPL 

and speed is the highest among the three modalities. Compare to fig. 1 where linear tuning is 

shown.

Perel et al. Page 10

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2015 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


