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Abstract

Sequential ATPG (Automatic Test Pattern Generation)
is a very desirable CAD tool, but to date, the size and com-

plexity of circuits for which sequential ATPG could be per-

formed has been limited. We have discovered a method for
collecting functional information which makes fault obser-

vation signi�cantly easier. We also propose a new method

for state justi�cation which is a combination of function-
based methods and structure-based methods. Our sequen-

tial ATPG system deals with circuits without a reset state

or a synchronizing sequence, and the experimental results
show that the proposed method achieves signi�cant im-

provements over existing sequential ATPG methods.

1 Introduction

Sequential Automatic Test Pattern Generation (ATPG)
has been a goal of CAD developers for at least a decade.
Various sequential test generators have been proposed
in the past [GHOS] [NIER] [LEE] [CHO91] [POME92]
[CHO93] [POME94]. Recent advances in the Boolean func-
tion manipulation techniques based on Ordered Binary De-
cision Diagrams (OBDDs) [BRYA] have enabled reachabil-
ity analysis for the State Transition Graphs (STGs) of se-
quential circuits [COUD89], which dramatically improves
the performance of sequential circuit test generators. How-
ever, ATPG techniques based on the reachability analysis
can only be applied for the restricted set of circuits with a
designated reset state [CHO91] [POME94] or circuits for
which a synchronizing sequence can be found [CHO93].
Although other approaches do not have such limitations,
they are far from e�cient. Our research deals with the
generation of test patterns for sequential circuits without
the assumption of a reset state or a synchronizing sequence
and based on single observation test time strategy in con-
trast to multiple observation test time strategy [POME92].
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The process of sequential ATPG can be decomposed
into three sub-problems. These are 1) combinational
ATPG, 2) fault observation and 3) state justi�cation. Of
these three, combinational ATPG is by far the most ma-
ture. In this work, we propose enhancements for state
justi�cation based upon pre-image computation, and we
also introduce a new method for fault observation based
on theDi�erence Propagation Diagram . Experimen-
tal results show that the proposed ATPG methods achieve
signi�cant improvements over existing sequential ATPG
algorithms.

2 Sequential Test Generation

Algorithm Overview

The iterative array model [ABRA] used in most sequen-
tial test generators is shown in Figure 1. The circuit is
duplicated to take multiple time frames into account, and
thus the fault f exists in every array element. The array
element at t = 0 has the activation state where the fault
is activated for the �rst time. The fault e�ect is propa-
gated to a primary output by a propagation sequence, and
the activation state is justi�ed from the initial state by a
justi�cation sequence.
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Figure 1: Iterative array model

The fault propagation is guided by the Di�erence

Propagation Diagram which is a unique feature of our
ATPG system. We construct the Di�erence Propagation
Diagram for the good circuit. We use both functional



and structural methods to compute justi�cation sequences.
While structural methods process a cube at a time, func-
tional methods deal with functions and process multiple
cubes simultaneously. Hence, our methods either does
depth �rst search or does breadth �rst search. Functional
methods are based on the pre-image computation tech-
niques [PIXL] [COUD91] and are performed for the good
circuit. If the faulty circuit is driven to the activation state
by the justi�cation sequence, then the computed justi�ca-
tion sequence can be used. If the justi�cation sequence is
not valid, we use structural methods [LEE] [NIER] to com-
pute the justi�cation sequence for the faulty circuit. The
most signi�cant di�erence between our approach and ear-
lier work is in the fault propagation and state justi�cation
tasks. These are explained in detail below.

3 Fault activation and propagation

Figure 2 is an iterative array model of forward time pro-
cessing. x is the fault site at each time frame, and the thick
line is the sensitized path. At time frame 0, if possible, the
fault e�ect is propagated to a primary output. Otherwise,
the fault e�ect is propagated to a ip-op. Once the fault
e�ect is propagated to a ip-op, the search and decision
making is guided by the functional information represented
by the Di�erence Propagation Diagram.

FFs

Activation
state

A

B

PIs

t=0
POs C

Figure 2: Fault activation and propagation

The Boolean di�er-
ence of a function f(x1; x2; :::; xi; :::; xn) with respect to
xi is written as @f(x1; x2; :::; xi; :::; xn) = @xi, and is de-
�ned as the EXCLUSIVE-OR of fxi and fxi , where fxi =
f(x1; x2; :::;1; :::; xn) and fxi = f(x1; x2; :::;0; :::; xn). The
next state functions of sequential circuits are represented
in terms of primary input variables and present state vari-
ables (variables which are associated with ip-ops at the
present time frame). Suppose a represents the present
state variable for ip-op A, and b represents the next
state function for ip-op B in �gure 2. Then, the func-
tion @b = @a = 1 represents the vector space where the
di�erence at ip-op A can propagate to ip-op B. Sim-
ilarly, if b represents the present state variable for ip-op
B, and c represents the primary output C, then the func-
tion @c = @b = 1 represents the vector space where the
di�erence at ip-op B can propagate to primary output
C. Note that these Boolean di�erences are expressed in

terms of (1) circuit primary input variables and (2) present
state variables.

We de�ne the cost of a cube in the Boolean di�erence
as the number of ip-op variable assignments. The cost
of di�erence propagation of a ip-op is de�ned as the
cost of the minimum cost cube. If @f = @xi has a cube
whose cost is 0 (vacuous in ip-op variables), then we
have found an input pattern by which we can propagate a
di�erence from a ip-op to a primary output or another
ip-op independent of the values of all other present state
variables (i.e. from any state).

A Di�erence Propagation Diagram is a graph G =
(V;E) where V is the set of ip-ops and primary out-
puts, and E is the set of edges (vi; vj) such that (vi; vj) is
in E if and only if a ip-op or a primary output repre-
sented by vj is structurally reachable from a ip-op rep-
resented by vi. For each edge in the graph, we compute
the Boolean di�erence of the function for the destination
vertex with respect to the variable for the source vertex.
The minimum cost cube and the corresponding di�erence
propagation cost are computed for the Boolean di�erence
and stored on the edge. Since we use OBDDs to represent
combinational functions of sequential circuits, the above
information can be computed easily due to the e�ciency
of OBDDs for function manipulation.

Observation cost of a ip-op is de�ned as the cost of
the minimum cost path to propagate the di�erence from
the ip-op to any primary output. The cost of a path is
the sum of the cost at each edge along the path. The obser-
vation cost is computed for each ip-op. Experimental re-
sults for ISCAS benchmark circuits [BRGL] show that for
most circuits, as many as 50% of ip-ops have observation
cost less than 2. We call the collection of input patterns
along the minimum cost path as MAXSIPS (MAXi-

mally State Independent Propagation Sequences).
The observation costs are used as an observability measure
for ip-ops.

We also store the Boolean di�erences of output/ip-op
functions with respect to each fanin ip-op variable when
their OBDD size �ts in the available memory. We use the
stored Boolean di�erences when the observation cost is not
0 and the stored cube contradicts the present state value.
Suppose the fault e�ect has been propagated to a ip-op
whose observation cost is 0. Then, MAXSIPS provides a
propagation sequence which guarantees observation of the
fault e�ect at a primary output. If a fault e�ect has been
propagated to a ip-op whose observation cost is greater
than 0, then we compare the values of ip-op variables
in the minimum cost cube with the present state variable
values. If their values match, we use them, and if they
contradict, we use the entire Boolean di�erence function.

Although MAXSIPS and the Di�erence Propagation
Diagram are computed for good circuits, it has been shown
that most propagation sequences for the fault-free circuit
are also valid for faulty circuits [GHOS]. Hence, chances
are very high that the information in the Di�erence Prop-
agation Diagram is also valid for faulty circuits.



Figure 3 is an example circuit and its Di�erence Propa-
gation Diagram. For each edge, the di�erence propagation
cost is shown, but the corresponding cube is not shown for
brevity. When the fault e�ect is propagated to FF 1, the
propagation sequence can be computed immediately (via
FF2 and FF3) from MAXSIPS. Note that primary input
cube (X1;X2;X3;X4) = (d; d; 1; 1), where d =don't care,
is a cube which propagates a di�erence from FF2 to FF3,
and it can be computed easily because we use OBDDs to
represent combinational functions. If we use conventional
constant (1 and 0) based ATPG, we need to set a value
at FF4, and extend time frames backward to justify the
value at FF4.
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Figure 3: Example circuit and its Di�erence Propaga-

tion Diagram

If the fault e�ect cannot be propagated to a primary
output, we propagate the fault e�ect to a ip-op with
the lowest observation cost. After propagating to a ip-
op, we try to set primary inputs according to the cube
and Boolean Di�erence functions stored in the Di�erence
Propagation Diagram. If the fault e�ect is not propagated
as desired, backtrack is performed to maintain complete-
ness. Experimental results show that this heuristic is very
e�cient for �nding propagation sequences. In the following
two sections, we will show the state justi�cation methods
and the entire ATPG system structure.

4 State justi�cation

After the fault e�ect is propagated to a primary output,
the activation state is justi�ed through backward time pro-

cessing.
The pre-image of a set of states A under ~� is de�ned

as

pre�image(~�;A) = f~x j 9~y; ~y 2 A;~�(~x) = ~yg

where ~x consists of present state variables and primary
input variables, and ~y consists of next state variables.
[COUD91] and [PIXL] proposed a pre-image computation
techniques using OBDD. We use these techniques in the
justi�cation sequence computation process for good cir-
cuits whose overall algorithms are shown in Figure 4. In
�gure 4, Sa is the activation state and Sp is the last state
resulting from the test vectors for previous faults. Pre-
image computation is continued until Sp is reached, there
is no assignments on ip-op variables, or no new state
is visited. Though no assignments on ip-op variables
implies Sp is reached, we consider the two cases indepen-
dent for clarity of explanation. ExtractStates performs
universal abstraction on primary input variables. When
the ATPG process starts for the �rst fault, we have an
unknown state as Sp, and the algorithms in �gure 4 are
modi�ed so that pimg[i] share the same input pattern.

Compute Good Circuit Justification Sequence

by Function-based Methods (Sa, Sp)

{

i=0

pimg[i]=start=totalVisited = Sa

while(1)

i=i+1

pimg[i] = preImage(start)

if pimg[i] has a cube which consists of only

primary inputs or is included in Sp

break

else

if pimg[i] is included in totalVisited

return FAIL

else

start = extractStates(pimg[i])

totalVisited = totalVisited + start

compute justification sequence from pimg[]

return SUCCESS

}

Figure 4: Function-based justi�cation sequence com-

putation algorithms

Suppose the result of fault activation and propaga-
tion stage is the activation state Sgf . From Sgf , we ex-
tract the good circuit state Sg . For example, if Sgf is
(1=x; 0=0; x=1; 1=1; x=x), then Sg is (1; 0; x; 1; x). We com-
pute the justi�cation sequence of Sg for the good circuit
using the above algorithms. If Sg is unreachable from the
initial state, then Sgf is also unreachable from the initial
state. Therefore, the complexity of identifying unreacha-
bility of an activation state decreases dramatically when
the activation state is unreachable in the good circuit do-



main, because the good and faulty circuit domain complex-
ity is O(N2) when the good circuit domain complexity is
O(N). Since if a state is unreachable from a speci�c state,
then the state is also unreachable from the unknown state,
the completeness of the ATPG algorithm is not a�ected
in case the initial state is not the unknown state, but a
speci�c state resulting from previous test vectors.

If the activation state Sgf is reachable from the initial
state and the activation state requires no assignment on
the faulty circuit, the justi�cation sequence for the good
circuit is also valid for the faulty circuit. For example, if
the activation state is (1=x; 0=x; x=x; 1=x), then the jus-
ti�cation sequence of Sg , (1; 0; x; 1), is also a justi�cation
sequence for Sgf . Otherwise, the justi�cation sequence
of Sg is concatenated with a propagation sequence and
simulated against the faulty circuit to check if the fault
is detected. If the sequence cannot detect the fault, we
use structural methods [LEE] to compute a justi�cation
sequence of Sgf .

While structure-based conventional methods deal with
a cube at a time, function-based methods deal with func-
tions, which are collections of cubes. Therefore, the ways
of performing search are breadth �rst search for function-
based methods and depth �rst search for structure-based
methods. Theorem 1 shows the advantage of function-
based methods due to the breadth �rst property of
function-based methods. In theorem 1, for simplicity, we
assume state justi�cation is computed for the good circuit.

Theorem 1 Suppose s is an activation state, and we are

trying to �nd a justi�cation sequence from s to the initial

unknown state. If the set of justi�cation sequences com-
puted by structure-based methods is Ss and the set of jus-

ti�cation sequences computed by function-based methods is

Sf , then Ss � Sf and Ss 6� Sf .
Proof: Suppose the justi�cation sequence t = t0; t1; :::tn�1

is computed by structure-based methods, t is applied to

the circuit at the initial state, and the state of the cir-
cuit changes in the order of s0, s1, s2, ..., sn, where s0
is the initial state and sn is the activation state. Pre-

image computation for state sn can identify all combina-
tions of states and input vectors whose successor state is

sn. Hence, if structure-based methods can identify sn�1

and tn�1, function-based methods can also identify them.
The same holds for sn�2 and tn�2, ..., s0 and t0. There-

fore, function-based methods can compute t.

Suppose �gure 5 is the state transition graph of the cir-
cuit, and s5 is the activation state. If we use function-based

methods, fs3; s4; s5g are identi�ed as the pre-image of s5
with input 1. Pre-image of fs3; s4; s5g with input 0 is com-
puted as the whole state set, fs0; s1; s2; s3; s4; s5g. Hence,

01 is a justi�cation sequence of s5 starting from the ini-

tial unknown state. But, if we compute a cube at a time
as in structure-based methods, computing the justi�cation

sequence 01 is impossible unless s3, s4 and s5 can be rep-

resented as one cube. Therefore, structure-based methods
may not �nd a justi�cation sequence which function-based

methods can �nd. 2
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Figure 5: Example state transition diagram

While function-based methods have the advantages of
breadth �rst search, structure-based methods have advan-
tages of depth �rst search. Depth �rst search can �nd a
niche in cases when the depth of search is deep, or the
amount of information needed for breadth �rst search is
too large. Since we use both breadth and depth �rst
search, our algorithms result in signi�cant improvements
over previous approaches.

5 Experiments and Results

Our ATPG algorithms have been implemented with the
C language and has been run on ISCAS sequential bench-
mark circuits [BRGL] with a SPARC station 2. We do
not assume that circuits have reset states or synchroniz-
ing sequences. CPU time and fault coverage are compared
in table 1 between two existing methods [NIER] [LEE]
and our new method. The CPU times are measured in
seconds for all the faults including untestable faults and
aborted faults. HITEC was run on a SPARC Station 1,
and [LEE] was run on a SPARC station 2. The more re-
cent HITEC results reported in [LEE] are used instead of
those in [NIER]. As one can see, our new methods give
comparable fault coverage in signi�cantly less CPU time.

We also found that our methods give shorter test length
for most circuits, because of breadth �rst search character-
istics of function-based justi�cation methods.

6 Conclusion

We have presented two innovations for sequential
ATPG. We have demonstrated the e�ectiveness of the in-
novations by showing the experimental results. Our se-
quential ATPG system deals with circuits without a reset
state or a synchronizing sequence.

The use of functional information by Di�erence Prop-
agation Diagram has been shown to be very e�ective for
fault observation. Once a fault e�ect is propagated to a
ip-op, we could propagate the fault e�ect to a primary
output without much e�ort. Since the Di�erence Propaga-
tion Diagram is constructed for only the good circuit, the
expense of computing the diagram is negligible.

For state justi�cation, we used both function-based
techniques and structure-based techniques, which gives sig-
ni�cant improvements over existing methods. Therefore,



Circuit CPU time test length fault coverage
HITEC LEE NEW HITEC LEE NEW HITEC LEE NEW

s208 29 49 16 184 194 160 63.7 63.7 63.7

s298 15969 3250 1570 306 203 207 86.0 85.7 86.0

s344 4785 354 34 142 64 78 95.9 96.1 96.1

s349 3235 407 27 137 84 83 95.7 95.7 95.7

s382 43197 3278 538 4931 1286 1109 90.9 91.2 91.2

s386 82 82 23 311 292 232 81.7 81.7 81.7

s400 43587 3817 515 4309 1098 1001 89.9 90.2 90.2

s420 17015 1034 207 120 172 167 41.3 41.6 41.6

s444 58131 3252 1276 2240 840 897 87.3 89.0 89.0

s526 168710 13434 7651 2232 1919 1900 65.7 81.2 81.2

s641 1083 28 9 216 185 174 86.5 86.3 86.3

s713 95 242 39 194 175 149 81.9 81.7 81.7

s820 5806 4096 882 984 903 902 95.6 95.5 95.8

s832 6350 3911 1303 981 905 905 93.6 94.0 94.0

s1196 102 149 44 453 376 352 99.7 99.7 99.7

s1238 144 195 59 478 372 362 94.6 94.6 94.6

s1488 13348 2749 529 1294 1270 979 97.1 97.1 97.1

s1494 6981 2345 368 1407 1163 850 96.4 96.4 96.4

Table 1: Test generation results comparison

we could take advantage of both breadth �rst and depth
�rst search methods. The test sequences were shorter com-
pared with existing methods, mainly due to the breadth
�rst characteristics of our methods.
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