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Abstract

Constructing deliberative real-time AI systems is challenging due to the high execution-time variance

in AI algorithms and the requirement of worst-case bounds for hard real-time guarantees, often resulting

in poor use of system resources. Using a motivating case study based on RoboCup, the general problem

of resource usage maximization in a real-time AI agent is addressed.

In this thesis it was shown that by employing a hybrid task model, for imprecise computation of

the form “Prologue-Optional-Epilogue”, a variety of AI algorithms with different hard and optional

(anytime) timing requirements can be supported. An exact schedulability, based on a simple offset

between the Prologue and Epilogue components, is devised but shown to be computationally prohibitive

when a large number of imprecise tasks are present. For this reason, a tractable sufficient schedulability

test was also devised, inspired by Tindell’s analysis, where the time complexity of calculating the busy

period of each task is reduced from O(2n) to O(2n).

Further, with a novel scheduling scheme based on Dual Priority Scheduling, schedulability can be

guaranteed for the hard Prologue and Epilogue tasks while the latter can be delayed as much as possible

for allowing optional and anytime components to be executed for enhancing system utility. Sugges-

tions on how aperiodic tasks can be scheduled effectively within the framework and how tasks can be

prioritized based on their utilities by an efficient algorithm are also provided.

The works presented in this thesis provide new advances in fixed priority response time analysis

for imprecise computation which, together with present results in the literature, should provide a more

comprehensive scheduling framework where real-time AI systems can be suitably supported.
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Chapter 1

Introduction

Real-time systems are ones for which the correctness of the system depends not only on the correct

computation but also on the times that they are delivered [107, 28]. Late computation or reaction of a

system may lead to catastrophic consequences due to the fact that they have been applied in domains like

chemical and nuclear plant control, military operations, and railway switching systems. Predictability is

a central issue concerned in real-time computing [110].

Real-time systems are becoming more complex as more intelligent behaviours are required [108, 81].

Examples are intensive care unit monitoring, robotics, avionics, space missions and military applications.

As a result more AI techniques are considered to be employed in real-time systems.

Artificial Intelligence (AI) research, traditionally, has not been concerned about real-time performance

of systems [88]. Many problem-solving algorithms in AI, such as planning and decision making with a

knowledge base, make extensive use of searching through a large solution space whose running times are

unpredictable. Even worse, the time available for some particular computation may vary in a dynamic

environment. When advanced AI technologies are desirable in real-time domains, the unpredictability

can become problematic.

Nevertheless, to exhibit intelligent behaviours, deliberations, which involve planning, reasoning, mak-

ing decisions and predicting their effects in order to act, are necessary. The kind of intelligent AI systems

which requires deliberations are called Deliberative Agents [96]. Because deliberations are computa-

tionally expensive, various techniques have been developed to make AI algorithms more real-time. The

overlapping subarea of these two fields of research is termed Real-Time AI (RTAI)1.
1A less commonly used name is real-time intelligent control.
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One approach to the problem of unpredictable execution times of AI algorithms is to use solutions

that are “good enough” rather than ones that are complete. This is referred as “satisficing” in the seminal

work on Bounded Rationality by Herbert Simon [105]. A satisficing solution is an approximation to the

exact solution. There are broadly two different kinds of approximation algorithms - iterative refinement

and multiple methods, both allow trading off solution quality for computation time. Depending on the

timing constraints the best possible approximation is used, the duration of computation is thus made

predictable.

Iterative refinement, perhaps more commonly known as Anytime Algorithms [44], has the advantage

that it can be stopped and have an answer at hand anytime. The reason why anytime algorithms are

important is that while an AI algorithm may take a long time to generate complete results, they often can

generate very good partial results in a much shorter time. Multiple Methods [75] share a similar spirit in

that a different method can be used when time is not enough, and therefore providing quality tradeoffs.

As Russell and Wefald pointed out, flexible, autonomous systems in complex environments require

the ability to reason about the appropriate resources to allocate to computation at any point, and about

which computations will be most effective [93]. Here AI systems which utilize this kind of technique to

compromise when full deliberation is impossible in real-time environments are considered, in order to

provide a smoother transition from pure reacting to planning. And they are referred to as Deliberative

Agents in the rest of this thesis and we assume that they have to operate in real-time and perform tradeoffs

when needed.

Being able to reason about the time constraints and to decide how much time to use for obtaining good

enough results can make AI systems more adaptive. This is an example of Bounded Rationality because

agents need to perform rationally under “recognised” resource constraints, such as available time and

computation resources enabled by the underlying architecture. Anytime algorithms have been used as a

means of realizing bounded rationality in agents [124], where the system is composed of a set of anytime

algorithms. Moreover, meta-level reasoning is necessary when one wants to incorporate the available

reasoning resources, such as processing space and time, into the reasoning process itself. Therefore, op-

timal partitions of meta-reasoning and actual reasoning [61] has been investigated. Decision theory has

been applied in deliberation scheduling for dealing with uncertain information and outcomes. Further-

more, deciding how much time to allocate for deliberation and acting where the deliberation scheduling

can itself be an anytime algorithm [22].
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However, RTAI research has been focusing on time-constrained techniques (e.g., anytime algorithm)

without concerning issues normally present in real-time systems. For example, in a real-time system, in

order to guarantee a set of tasks to be schedulable, their worst case execution time (WCET), arrival times

and deadlines must be known a priori. At run time, however, tasks may not execute up to their WCET

and not suffered maximum interference by all the eligible higher priority tasks. Slack is thus available

which may be used to facilitate longer execution of anytime algorithm to yield higher quality results.

Techniques like milestone methods, dynamic slack reclaiming, multiple servers and capacity sharing, as

reviewed in the next two chapters, are potentially applicable in intelligent real-time agents which need to

tradeoff computation quality against time.

1.1 Motivation

One observation is that as AI is concerning more about real-time constraints and being used in safety-

critical hard real-time domains, increasingly it has to consider and possibly re-use various technologies

that have already been developed in real-time systems research. For example, resource access and sharing

are likely to be required by more complex anytime algorithms in the future. A resource access protocol

that guarantees bounded blocking time is important because a high priority task can be blocked by a

low priority task with an unknown amount of time and in turn misses its deadline. The priority ceiling

protocol has been proved effective in real-time systems [101]. Careful extensions of current techniques

can hence avoid re-inventing the wheel.

From a real-time systems perspective, providing hard guarantees for AI algorithms is difficult because

of the large variance in execution time [126]. Such guarantees, if granted, may lead to very poor system

utilization at run time. On the other hand, forcing developers to employ AI methods which have more

predictable execution time will result in limiting the choice of (e.g. deliberative) algorithms and thus

affect the usefulness of the application.

When AI systems have to operate under real-time constraints where approximation is necessary, one

solution is to employ anytime algorithms mentioned above [44], which are a kind of imprecise com-

putation (iterative refinement) [37, 83] for providing quality-time trade-off and approximate solutions.

This is especially true when deliberations, such as reasoning and planning, are required since they can

be highly expensive computationally.

However, the supporting task model can be a source of difficulty when hard guarantees are required:
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consider an anytime planning algorithm [44, 69], the initial part of which requires a budget for guaran-

teeing a minimum acceptable plan to be constructed. The algorithm then refines the quality of the results

whenever there are available resources. At some point it has to stop to meet its timing requirement and

the final result may need to be written back to a shared memory area, an I/O device or sent over a net-

work (e.g., in a cooperative multi-agent system). It then waits for the corresponding acknowledgement,

which under real-time constraints may require a particular real-time access protocol for guaranteeing

schedulability. Even using the “Mandatory-Optional” task structure in the original imprecise computa-

tion model [83], the final part of the computation is not guaranteed and may not finish before its deadline.

Such computation can be regarded as the action component of the “Percept-Deliberation-Action” cycle

in common AI agents [95].

The “Prologue-Optional-Epilogue” (P-O-E) task model proposed by Audsley el al. [11, 7], which is a

generalization of that of Liu et al., can accommodate tasks of such structure. The authors devised schedu-

lability tests, based on response time analysis with task offsets [8, 117], for guaranteeing schedulability of

the mandatory (prologue and epilogue) tasks, where the optional components can be unbounded. How-

ever, their work mainly concerns system schedulability rather than maximizing the available time for

scheduling optional components, which is constrained by the interval between the prologue and epilogue

tasks.

With regard to this problem, one approach is to adopt a Slack Stealer [72] or a bandwidth-preserving

server such as the Deferrable Server [113] for delaying the execution of hard tasks in favor of schedul-

ing optional tasks. Unfortunately the Slack Stealer is characterized by very high overheads whereas

bandwidth-preserving algorithms are not designed for this purpose and will introduce pessimism in the

schedulability analysis. Dual Priority Scheduling [43] has been shown to be effective in scheduling ape-

riodic tasks with low overheads. In particular, the execution of hard tasks is deferred as much as possible

based on the their worst-case response times. It is shown that the approach can also be applied to support

imprecise computation by devising a modified promotion strategy for different types of tasks.

System support can also be an issue: most of the earlier scheduling algorithms and results in imprecise

computation are EDF-based while the majority of existing real-time operating systems (RTOS) use static

priority scheduling [27, 81, 109]. They therefore do not provide the necessary support for software

designers to implement imprecise algorithms. Yet fixed priority response time analysis [10, 8], which this

work is based upon, has been extended to accommodate various timing requirements such as task release

jitter, offsets, arbitrary deadlines, etc., emerging as a mature real-time scheduling technology [23, 27].
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This thesis shows how real-time AI applications can be supported by theories and tools available in fixed

priority preemptive scheduling (FPPS).

1.2 A Case Study From RoboCup

Here a general problem of maximizing resource usage that many real-time AI applications have in

common is presented. In particular, it is demonstrated through a case study based on a simplified version

of the RoboCup simulation league [30] in which two teams of autonomous agents compete in a simulated

soccer game. The RoboCup is chosen because it is very well known in the AI community for employing

AI techniques in environments with real-time constraints, where many advanced and approximation

techniques have been developed. Irrelevant details are ignored and only a simplified version with the

necessary timing requirements that captures the essence of the problem is presented.

In the competition, there are two machines each hosting 11 instances of an agent program which

connect to a referee server for soccer game simulation via a network connection. The agents in each

machine have to decide an action command to be sent to the simulation server based on the environmental

information they receive from the server. The programs can make use of any reasoning method; they just

have to obey the protocol of the game. The simulation and perception of world state updates every 100ms

and each agent is required to indicate a movement action every 10ms. Here the latter timing is taken as

hard requirement which the agent program has to meet.

The problem is that, given a target machine for the agent programs to be run upon, how does one build

the agent (to be run with 11 instances using the same program) such that the system resource usage can

be maximized? In particular, each agent has to make an action decision every 10ms; how can one make

sure all the “Percept-Deliberation-Action” computation of the 11 agents will finish within the timing

constraint while not wasting any free system capacity?

If the AI methods employed are sophisticated, where the worst-case execution time is large, then the

system may not be able to guarantee the schedulability of all agents. And if it can be guaranteed, since

the worst-case rarely happens one runs the risk of serious under-utilization at run-time. However, using

restricted methods also results in inefficient use of resources, decreasing the utility that can be gained by

giving more time for agents to perform deliberative reasoning and planning.

It is for this reason that the machine provided by the official organization in the competition is very fast

- fast enough to encourage more sophisticated methods to be developed by the AI researchers. Having
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said that, there will always be available resources that can be harnessed for enhancing agent’s utility.

How should these resources be managed?

1.3 Thesis Statement and Structure

The central hypothesis of this thesis is that significant improvements over current approaches in sup-

porting real-time AI applications, based on theories in fixed priority preemptive scheduling (FPPS), are

possible.

The remainder of this thesis is organized as follows: in the next chapter the related works in the

area of RTAI, including various developed techniques and architectures for providing timely intelligent

behaviors, are reviewed.

In Chapter 3 a review is provided for fundamental results in real-time scheduling, with an emphasis

in response time analysis, and scheduling results in imprecise computation applicable for real-time AI

applications.

Using a case study based on a scenario in the Robocup competition, the task model for imprecise

computation that support the real-time AI systems concerned is presented in Chapter 4 where an exact

schedulability test is derived. This result is based on Audsley’s method with a simple offset value between

the prologue and epilogue tasks, within the fixed-priority scheduling framework.

In Chapter 5, an enhanced scheduling strategy based on dual-priority scheduling is proposed. First the

theory is presented where the applicability and performance are demonstrated. Potential ways by which

aperiodic tasks can be scheduled are also discussed.

The exact schedulability derived is NP-hard in the worst case. For practical systems with many tasks a

more efficient method is needed. A tractable and sufficient, but not exact, schedulability test is formulated

for solving this problem in Chapter 6 where performance evaluation is provided.

Determining task priority easily is important in flexible real-time AI systems. In Chapter 7, an optimal

priority ordering algorithm is presented where it is shown that given a task set ordered by task utility

which is feasible, the algorithm will find it with the property that the lexicographical distance to the

optimal ordering will be minimized.

Finally the thesis is concluded and future research directions are discussed.
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Chapter 2

Literature Review: Real-Time AI

Real-Time AI (RTAI) is a sub-area of AI research concerning about real-time performance of AI systems.

In general, AI research can be thought of as formalizing and modelling human intelligent behaviors

including the abilities to perform complex reasonings. Solving problems by search is a common approach

in AI, which can prove time-intractable with just moderate problem size. One major problem, in terms

of real-time scheduling, is that they have effective unbounded worst-case execution time (WCET).

Although resource constraints were not an issue in traditional AI research, it becomes very important

in real-world domains such as medical care, robotics and military operations where there are stringent

time requirements that a system has to satisfy. When they have to operate in some dynamic environment

the time available for computation varies from time to time, and from situation to situation.

Consequently, various complexity-limiting techniques have been developed in the AI community.

These techniques include: 1) satisficing - Anytime Algorithm and, Multiple and Approximate Methods;

and 2) Meta-reasoning. In addition to particular RTAI techniques, another approach is to build systems

consisting both real-time and AI components. In this chapter these techniques and attempted RTAI

architectures are reviewed.

2.1 Anytime Algorithms

The term Anytime Algorithm was coined by Dean and Boddy [44]. Anytime algorithms refer to the

class of algorithms that the quality of computation, in terms of completeness, precision or certainty,

improves gradually over time. In particular, they are useful in real-time situations because they always
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have an answer at hand. Many problems in AI, such as planning, are intractable such that optimal results

can not be obtained within reasonable amount of time. However, although getting an optimal solution is

intractable, a good partial result may be obtained in a much shorter time. In essence, anytime algorithms

provide a mechanism of “satisficing”. In addition, having the ability to reason about how much time

is needed for getting a solution of acceptable quality, can make an agent more adaptive to a dynamic

environment.

Due to the relatively general definition of anytime algorithm many other algorithms with similar prop-

erty also fall into this category. For example, one can argue that a simple breadth-first search algorithm

is a kind of anytime algorithm if the best-so-far solution is always kept and returned when needed. Other

algorithms with anytime characteristic include numerical approximation, dynamic programming, and

Monte Carlo algorithms.

Because the time in searching a particular solution can be different each time it is performed, time-

variations can be unpredictable [114]. A real-time heuristic search technique was proposed by Korf

[69], called Real-Time A* (RTA*). RTA* introduces a time constraint associated with node expansion

which determines the lookahead time allowed in making a decision. The algorithm is proved to make a

locally optimal decision and is guaranteed to find a solution with certain assumptions. There are other

techniques in depth-constrained searching that may be useful in real-time applications; examples are

progressive reasoning [121] and depth-first iterative deepening [68].

One major problem in using anytime algorithm is in generating performance profiles of search-based

algorithms which allow backtracking [53]. A performance profile is a function that returns the expected

quality of an anytime algorithm when given a certain amount of time. In non-search domains with well-

defined error functions, precise performance profiles may be obtained. This is similar to the Imprecise

Computation without the mandatory part; imprecise computation is discussed with more details in Sec-

tion 3.4.

2.1.1 Deliberation Scheduling

Dean and Boddy [44] considered the problem of time-dependent planning in which the time available

for planning varies from situation to situation. Deliberation scheduling is a procedure used to explicity

allocate resources to deliberation tasks, which are anytime algorithms, in order to maximize the total

utility of actions chosen in deliberation. With the assumptions they devised, they gave two different
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optimal algorithms in scheduling anytime tasks. Because tasks are assumed to be independent, the

scheduling algorithms are computationally inexpensive and are therefore not included as part of the cost

for scheduling.

2.1.2 Composition and Compilation of Anytime Algorithms

A real practical system is often consisted of many layers and subsystems with many dependencies.

Zilberstein and Russell have been formalizing many aspects of anytime algorithms including composing

system in which the output of a set of anytime algorithms can be the input of another anytime algorithm,

whose quality profile is represented as a conditional performance profile [97, 124]. Given a specific

amount of time, a compilation of anytime algorithms is the best allocation of time among individual

algorithms so that the expected utility is maximized. Such a compiled program is called a contract

anytime algorithm, which states that the amount of time for execution must be told in advance. Otherwise

no answer of expected quality is guaranteed to be returned.

It was also shown that if unrestricted dependencies are allowed between performance profiles, the

complexity of compilation is NP-Complete in the strong sense [124]. However, if the dependencies are

restricted to linear or tree composition, there are local heuristic (in pseudo-polynomial time) compila-

tion algorithms yielding globally optimal results, assuming that all conditional performance profiles are

monotonic non-decreasing function of their input. In addition, they showed that any usual anytime algo-

rithm can be constructed from contract anytime algorithm with a penalty of execution time at most four

times greater [97].

An immediate issue one may see is the time complexity of compilation may be prohibitive for online

use. As in the time-dependent planning problem, the time that is available for execution may vary

depending on different situations. Offline compilation seems to be inflexible since in real-time systems,

there may be available slack from the system dynamically due to hard tasks not using all the WCET and

sporadic tasks not arriving at the maximum rate. Fixed compilation will not be adaptive enough to make

use of dynamically available resources or make tradeoffs when anticipated resources are not available

because of the nature of contract anytime algorithm. Moreover, the assumption that partial result from

an anytime algorithm can be used as input for another anytime algorithm may not be justified in practical

applications.
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2.2 Multiple Methods and Approximate Processing

In multiple methods, a set of methods is used to make tradeoffs between quality and time instead

of a single anytime algorithm which improves gradually over time. The methods may have different

performance characteristics depending on the environment. This tradeoff mechanism was also termed

approximate processing by Lesser [75].

Multiple methods have two important advantages over anytime algorithms. The first one is that some-

times it may be difficult to find an algorithm that improves predictably and monotonically over time,

this is however not an issue for multiple methods. Another one is that they do not have to provide qual-

ity/time tradeoffs only - different methods for a task can be entirely different depending on the problem’s

nature. Note that the imprecise computation with 0/1 constraint and the exception-handling in real-time

system research can be seen as special cases of multiple methods with only two versions [81]. However,

a potential advantage of anytime algorithms over multiple methods is that usually one anytime algorithm

of each type of task has to be programmed, whereas in multiple methods there may be several versions

for each task. This may reduce the programming time needed and the likelihood of errors.

The Design-to-Time [52] approach assumes the existence of multiple methods for tasks and considers

the problem of designing a solution (a schedule), from the available methods, that uses all available

resources to maximize solution quality. In the task model, there are groups of tasks in the system and

tasks can further have subtasks recursively. Tasks are allowed to have interdependencies similar to that

considered by Zilberstein’s compilation of anytime algorithms [97, 124]. The name comes from the fact

that it tries to use all available time to generate the best solutions possible. The approach relies heavily

on accurate monitoring of tasks’ execution and intermediate results sharing among tasks. That is, system

support becomes very important. In the case of small set of tasks, near linear time performance for

designing solutions can be obtained. However, when task set size and interdependencies increase, the

algorithm does not scale well. One way to work around is to use tradeoffs made between the schedule

precision and the schedule-deliberation time, which exhibits the contract anytime algorithm character.

The multiple methods provide more discrete tradeoffs rather than the linear-like property of anytime

algorithms. This may or may not be a desired property although it can be seen that less research has

been done on multiple methods compared to anytime algorithms. Nevertheless, multiple methods seem

to be a more general approach for that incremental improvements in anytime algorithms can be thought

of as many individual methods. Undoubtedly, more extensions are needed to the current imprecise
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computation research for representing and scheduling the more general multiple methods developed in

RTAI.

2.3 Decision-Theoretic Meta-reasoning

Decision-theoretic meta-reasoning [94] applies the theory of information value to select computation.

The value of computation depends on both its costs and benefits. For example, one can guarantee a

searching algorithm to have anytime characteristics automatically if one designs it with a meta-reasoning

technique. However, meta-reasoning can be expensive computationally where heuristics, compilations

of reasoning strategies and decisions may need to be implemented.

Horvitz considered the general problem of partitioning resources between meta-reasoning and prob-

lem solving [61]. The problem-solving itself involves planning and base-level computation. He found

optimal mathematical solutions to various partition problems by assuming the characteristic functions to

be in some particular forms. However, he ignored the meta-metareasoning cost (analogous to the negli-

gible scheduling costs in real-time scheduling) because the complexity is constant in time - solutions are

only computed by plugging values into simple equations with the defined assumptions.

Since satisficing techniques seem to be a more natural approach than meta-reasoning, research has

been focused on anytime algorithms and multiple approximate methods. One reason may be that anytime

algorithms have the advantage that they can be stopped anytime in an emergency; while meta-reasoning

seems to require more information a priori, which may not be flexible enough in a dynamic environment.

2.4 RTAI Architectures

The above techniques can be seen as trying to be as “intelligent” as possible in the available time.

Another way of being both deliberative and reactive at the same time is to build a system consisting of

asynchronous subsystems - reactive real-time subsystem for fast responses and deliberative subsystem

for intelligent adaptive behaviors [53], examples are PRS [65], Phoenix [62] and Guardian [57]. This

architecture, as argued in [88], seems able to solve the weaknesses mentioned above because it imposes

least limitations on the techniques from the two areas.

However, most so called “real-time” AI systems, including the Soft Real-Time Agent (SRTA) archi-

tecture [119] for instance, do not run on a real-time operating system (RTOS) but only on a genereal
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purpose operating system [59]. The authors noted that the agent is only statistically “fast enough” and

although individual components may be able to run efficiently but when they are opearating together, the

time variance can be so large that important tasks may miss their deadlines.

This is clearly not desirable in safety-critical domains such as medical care and military applications

where AI techniques are being applied. Therefore, it becomes increasingly necessary to provide a suit-

able hard real-time, yet flexible infrastructure for implementing real-time agents - before the general

purpose operating system becomes the norm.

CIRCA (Cooperative Intelligent Real-Time Control Architecture) [87] is also a two-level system that

can provide hard real-time guarantees by only making plan that is executable by the lower system in

time. More specifically, in the reasoning process, the AI subsystem reasons about actions with their

known execution times and produces a plan consisting of individual actions in such a way that the plan

can be implemented by the real-time subsystem by some deadline, and the two subsystems cooperate

through a communication interface. Nevertheless, the real-time subsystem in CIRCA is a simplistic one

that only runs a cyclic executive plan supplied by the AI subsystem. The disadvantages of using a cyclic

executive are well known in the real-time systems community [12].

2.5 Practical Issues

As noted above, a common problem among current real-time AI systems is that they only run on gen-

eral purpose operating systems (GPOS) [88, 60], which is only soft real-time at best. Hard guarantees,

which are of major concern in real-time systems, are not provided. For example, contract anytime algo-

rithms [124] require strict resource reservations a priori otherwise the quality of the results produced is

not guaranteed; this guarantee however can not be provided by a GPOS. Zilberstein [126] also considered

a resource allocation profile for a composite system consisting of a set of anytime algorithms. However,

it is only valid when there are no other processes in the system since only the resource allocation among

the anytime algorithms is considered. New processes can enter into the system at any time and common

resources may also be held without a well-defined upper bound duration, effectively breaking down any

optimality in such predefined allocations.

Satisficing techniques are still not a mature and popular technology in practice. Little research efforts

have been witnessed from the real-time community since the works in early 90’s discussed above. In the

AI community, recent research has been focusing on making programming anytime algorithms easier [54,
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56], combining different satisficing methods together in a system, and building RTAI component to be

embedded in larger real-time systems [53]. RTAI research has been focusing on defining and elucidating

particular satisficing techniques such as anytime algorithms and multiple methods. These techniques,

when used alone, have very limited practical advantage. Thus a more hybrid and heterogenous approach

is necessary, for example, solving a particular problem where the combination of both anytime algorithm

and multiple methods is better than using each technique alone.

Currently, satisficing techniques tend to be ad hoc and only customized to the particular problems for

which they are designed to solve [53]. Hence, they are generally not reusable or portable to other AI

systems. Problems also arise when they are integrated into larger system in which they have to cooperate

with other components in the system, where the assumptions and so-derived optimality they held may

be no longer valid. The compilation of anytime algorithms may have to be performed at runtime in

some dynamic environment in which the time available for execution can not possibly be known a priori.

More efficient compilation method needs to be devised or, if still inefficient, heuristics may need to be

employed.

One real-time AI system that provides better system-level guarantee is the CIRCA platform as de-

scribed earlier. However, the disadvantages of using a cyclic executive at the scheduling level, such as

inflexibility in programming, are well known in the real-time systems literature. The approach employed

in this thesis is more integrated where tasks can be facilitated directly by more flexible scheduling in the

operating system, which is supported with schedulability theory in fixed priority scheduling.

2.6 Summary

As mentioned before, the more advanced scheduling technologies in real-time systems can be useful

in supporting real-time AI applications. At the moment AI researchers tend to ignore these possible

options and focus on restricting AI techniques to be real-time for high level problem-solving [59]. For

example, data sharing and resource accessing control have always been issues in real-time systems and

effective solutions have been developed. RTAI applications may be facing similar problems in the near

future and therefore more real-time research results should be considered.

In real-world safety-critical applications, periodic control and monitoring processes are often neces-

sary. These can be safely scheduled and guaranteed by traditional real-time systems. When cognitive

and intelligent behaviors are needed, an AI subsystem can be built upon the real-time system. In such
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architecture cooperations between two systems are needed. For example, slack time is sometimes avail-

able in the base real-time systems due to tasks not using up the guaranteed time resources. Satisficing

algorithms can possibly use this slack for improving result quality.

Run time monitoring is essential in using anytime algorithms and multiple methods because one must

stop running an algorithm when time is up or measure whether the output quality of the algorithm is the

same as expected [124, 88]. Many of these functions run at a lower level that they can be delegated to

the base real-time systems because more accurate control can be achieved due to the finer granularity at

the system level. Such issues have been addressed by the real-time systems community in the past where

system-level supports have been well studied.

In the next chapter, the relevant scheduling theories and results, mainly based on fixed priority pre-

emptive scheduling, are reviewed with an emphasis on supporting real-time AI systems.
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Chapter 3

Literature Review: Real-Time Systems

Scheduling

In the first chapter the need and advantage of using real-time technologies to support deliberative agents

were briefly mentioned. In this chapter real-time scheduling theories and recent developments are re-

viewed along with their assumptions, validity and limitations. Since scheduling is the fundamental means

of providing resource allocation and management in a real-time system, to support deliberative agents

that make tradeoffs depending on available resources, one has to look at scheduling.

In general, the followings are the minimum requirements that a real-time system should meet [110,

27]:

• all tasks in the system be schedulable using average execution times and average arrival rates;

• all hard tasks are schedulable using worst-case execution times and worst-case arrival rates of all

tasks in the system.

A deliberative agent will require the system, in addition to the above objectives, to [26]:

• maximize system utility by making use of all available resources - including spare capacity and

dynamically available resources such as gain time1;

• minimize tradeoffs whenever they are inevitable.
1And, at the same time, recognize the limitation imposed by the capability of the system.

15



It is assumed that an agent is implemented as an ordinary application in a system, running upon an

operating system in which other applications and system-level tasks exist that are not concerned by

the agent, but are necessary for proper system functioning. Within such context, with regard to bounded

optimality, the agent tries to maximize its utility by making use all the resources enabled by the hardware

architecture (processor speed, etc.) and all the remaining resources from the system after guaranteeing

all hard tasks meet their deadlines.

Like a traditional real-time application, a RTAI application also needs to deal with issues such as

aperiodic task scheduling, resource access control, task interdependencies, resource reclaiming, etc.;

unlike a usual real-time application, it has to maximize its overall utility by making use of all available

resources, and make tradeoffs depends on particular environment, which is not a conventional issue

that real-time systems address. Hence in the real-time systems literature, there already exist useful

technologies with, nevertheless, different limitations for facilitating satisficing. The related works are

surveyed in the literature broadly according to the following categories:

• Guaranteeing hard periodic tasks;

• Imprecise computation;

• Scheduling soft aperiodic tasks with spare capacity;

• Multiple applications and hierarchical scheduling;

• Practical issues: programming language and system support.

In particular, fixed-priority scheduling theory is, among others, the focus of this review, due to its

matureness and existing system supports [8, 6]. The works to be mentioned in different categories below

are all closely related to facilitating satisficing techniques. We describe their relations to, and when

appropriate, their prospect in supporting RTAI applications. In addition, the consideration is restricted to

single processor systems.

3.1 Background

There are broadly two types of timing constraints in real-time systems: hard and soft. A task is hard

if it is critical and requires absolute guarantee that the system will meet all its timing constraints; a soft

task is one that whose timing constraints, when missed, does not cause serious negative effects.
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A schedule is feasible if all tasks in it completes by their deadlines. A set of tasks are schedulable

if there is at least one algorithm that can produce a feasible schedule and “schedulable by a particular

scheduling algorithm” if the algorithm always produces a feasible schedule when used. A scheduling

algorithms is optimal in the sense that it always produces feasible schedule whenever one exists. Feasi-

bility is the dominant metric in hard real-time systems. One can also use other kind of metrics such as

average and maximum tardiness, average response time for soft tasks.

A schedulability test is a validation method for ensuring a set of tasks is schedulable. Offline schedu-

lability analysis ensures a system will meet all its timing constraints and it is always performed for val-

idation in hard real-time systems before the system actually runs. In open systems where new requests

can arrive, online acceptance test can be performed before admitting them into the system.

A test is called sufficient if the set of tasks which passes the test is indeed schedulable; a test is called

necessary if a set of tasks failing the test is in fact unschedulable. An exact schedulability test is both

sufficient and necessary.

Offline scheduling refers to generating pre-computed schedules before the system actually executes.

At run time, the system simply follows the schedule of what task to execute. The scheduling is done

offline. An example is a Cyclic Executive. Offline scheduling requires information about all the tasks be

known a priori and is inflexible if the future workload of the system is unknown. Many other problems

with Cyclic Executive scheduling are documented in [84]. Nevertheless it is suitable for environment

which is completely deterministic; most safety-critical systems used cyclic executive until only recently

[12].

Online scheduling algorithms make each scheduling decision only when the parameters of a task

becomes available after it is released. One example is the fixed-priority scheduling described in this

section. As mentioned, this kind of algorithm is crucial in dynamic environment that we concern. Note

that scheduling results in this section only apply to single processor scheduling unless otherwise stated.

3.2 Computational Model and Notations

The well known periodic task model [80] is a simple model without aperiodic and sporadic tasks. The

followings are the assumptions used:

• there are only hard periodic tasks, with known period;
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• tasks are independent of each other;

• all tasks have deadlines equal to their periods in each invocation;

• all tasks have fixed worst-case execution time;

• tasks are preemptable;

• tasks can not suspend theirselves during execution;

• context switch times are ignored.

There are n number of tasks in the system. A task τi has distinct priority i, so that 1 ≤ i ≤ n (the

smallest the number the highest the priority), and is basically characterised by:

• Period Ti: the minimum arrival interval of task;

• Computation time Ci: the amount of time the processor needs to execute the task without inter-

ruption;

• Deadline Di: the time before which task should finish its execution.

hp(i) is used to denote the set of tasks with higher priority than task τi. In addition, when applicable:

• Utilization Ui: the utilization of a task, which equals C/T ;

• Interference Ii: the time interference caused by preemption of higher priority task;

• Blocking time Bi: the worst case blocking time due to waiting on lock release of semaphore;

• Release jitter Ji: the bounded delay of actual release of a task;

• Response time Ri: the worst-case finishing time after the release of a task;

3.3 Guaranteeing Hard Periodic Tasks

Guaranteeing hard periodic tasks is the first and foremost requirement in hard real-time systems; and

it will continue to be imperative in future safety-critical systems. In general, finding optimal scheduling

policy (the priority assignment algorithm and corresponding schedulability test) is a primitive objective

in real-time scheduling for verifying a set of hard tasks will meet all their timing constraints.
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3.3.1 The Liu and Layland Analysis

With the simple periodic model, in 1973, Liu and Layland [80] showed one can analyze the schedula-

bility of a system by considering only the utilization of a task set. The total utilization U of a system is

defined to be:

U =
∑
∀i

Ci
Ti

(3.1)

They show that Rate Monotonic (RM) priority ordering, which assigns priority according to task

period (the smaller the period the higher the priority), is optimal in any static priority assignment when

the simple model is assumed and that deadline is equal to period (Di = Ti).

A sufficient schedulability test was given [80] when tasks are ordered according to the rate monotonic

policy: ∑
∀i

Ci
Ti
≤ n(2

1
n − 1) (3.2)

As the number of tasks increases, the bound tends to ln(2), which is about 69.3%. This is a simple

and powerful test because we know that as long as the total utilization is below the 69.3% bound, the

system is schedulable and all tasks will meet their deadlines; but failing the test does not mean the task

set is not schedulable.

The rather restrictive computation model limits the applicability of the result. For example, it is

reasonable for tasks to have their deadlines before their period. Leung and Whitehead [76] showed that

rate monotonic policy is not optimal in this case, but the Deadline Monotonic (DM) priority ordering by

which task’s priority is assigned by the highest priority to the smallest relative deadline. If assumptions

of the task model are to be relaxed the simple schedulability test above can not be applied. It is obvious

that for advanced AI systems, in which tasks may be nonpreemptable, have precedence constraints and

share common resources, the simple task model can not capture the actual scenarios and thus can not

be used. Later research in real-time systems extended the Liu and Layland model by relaxing various

assumptions imposed on the model.

3.3.2 The Exact Response Time Analysis

The simple test above is sufficient but not necessary; that is, it is pessimistic and it was shown that on

average the utilization bound for a large set of tasks, based on RM, is about 88% [74], compared to the

worst-case 69.3%.
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A more accurate schedulability test can enable a system to schedule more different task sets. Rather

than using utilization, there is an alternate way to determine the schedulability of a system. The response

time analysis [10, 8] depends on calculating task’s worst-case response time by taking into account all the

possible interference that can happen due to higher priority tasks being released during a task execution.

One way to calculate the interference Ii that a task can suffer is to compute the time used by all higher-

priority (hp) tasks released before its deadline Di:

Ii =
∑

j∈hp(i)

⌈
Di

Tj

⌉
Cj (3.3)

This account of interference is sufficient, but, not necessary. Initiated by Harter [89], then later by

Joseph and Pandya [66], and Audsley et al. [10, 8], an exact method is used for evaluating interference.

The longest response time Ri of a task τi is determined, at the critical instant2, as:

Ri = Ci + Ii, (3.4)

where

Ii =
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (3.5)

Therefore,

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (3.6)

So a task τi will meet its deadline if:

Ri ≤ Di (3.7)

And a system is schedulable if and only if for all tasks the above relation holds.

However, solving equation 3.6 is not trivial as the term Ri exists at both sides of the equation and the

term Ri in the right side is inside a ceiling function. It is a fixed-point equation for which many solutions

may exist; but the smallest (non-negative) solution corresponds to the worst-case response time for a

task. Audsley et al. [8] proposed an efficient method for solving equation 3.6 by forming a recurrence

relationship:

Rn+1
i = Ci +

∑
j∈hp(i)

⌈
Rni
Tj

⌉
Cj (3.8)

At each iteration the value Rn+1
i is re-evaluated using the previous Rni and increased in a monotonic

non-decreasing fashion. When Rn+1
i = Rni , the solution is found. If the found value is greater than R0

i

2A time at which all higher priority tasks also released at the same time (the worst-case)[80].
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(which can be set to 0 or Ci initially) then it is the value we want. If there is no solution found then

Ri will continue to increase - this implies it is a low-priority task which continue suffering interferences

from higher priority tasks and can not be scheduled in the system.

The response time analysis is pseudo-polynomial in complexity but is superior to the utilization-based

test in the sense that it is both sufficient and necessary. It allows tasks having deadlines less than period as

well as arbitrary priority assignment policy because it does not make any assumption on the task’s priority

assignment. It is flexible and has been extended to account for different application requirements, such

as resource access blocking time [101], release jitters and arbitrary deadlines of tasks [118], as well as

fault tolerance (by trivially adding an extra term in the equation), which make it a very versatile real-time

scheduling technology [6].

3.3.3 Allowing Task Interdependencies

Besides the relaxations on task period and priority assignment, another relaxation of the task model is

task’s interdependencies. When tasks are allowed to access or synchronize mutual exclusive resources,

blocking can happen due to the mechanism of resource locking. In hard real-time systems any blocking

time must be bounded for accurate analysis. Although it can be solved by making critical section non-

preemptable [85], one particular problem in fixed-priority systems is that of Priority Inversion where a

high priority can be blocked (for an arbitrary amount of time) by a medium priority task because a low

priority task has locked a resource needed by the high priority task [71, 100]. This is clearly not a desired

property in a priority-based system because higher priority tasks are supposed to be more critical.

Priority Inheritence Protocol [100, 101] (PIP) was introduced by Sha et al. for solving the priority

inversion problem. In particular, the protocol specifies that if a higher priority task is blocked by a low

priority one, the block-causing task should execute at the maximum possible priority - either of its own

or the highest priority of the tasks that it is blocking. The approach, however, does not prevent deadlock

and multiple blocking. These problems are solved by introducing an additional rule to PIP: to associate

a priority ceiling to each shared resource, resulting in the Priority Ceiling Protocol (PCP) [100, 101].

Desirable features of PCP as a resource control protocol includes:

• A high-priority task can be blocked at most once during its execution by lower-priority tasks;

• Deadlocks are prevented;
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• Transitive blocking is prevented;

• Mutual exclusive access is enforced by the protocol itself.

PCP states that each resource is associated with a priority ceiling, which is equal to the highest priority

of all the tasks that locks the resource. A task has a dynamic priority that is the maximum of its own static

priority and any it inherits due to it blocking higher-priority tasks. A task can only lock a resource if its

dynamic priority is higher than the ceiling of any currently locked resource (not counting any resources

it has already locked).

Because the worst-case blocking time can be determined in PCP, one can incorporate into the response

time analysis by introducing a blocking term Bi [10]. The response time equation is thus:

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (3.9)

where

Bi = max
k∈K

usage(k, i)C(k) (3.10)

K is the total number of critical section and C(k) is the worst-case execution time of critical section k.

The function usage returns either 0 or 1 - 1 if there is at least one lower priority task and at least one

equal or higher priority task that uses the resource k.

Equation 3.9 can be solved by forming a recurrence relation mentioned above. However it may now be

pessimistic with the blocking term because whether a task will suffer the maximum blocking depends on

the actual phasing of task. That is, the test may not be both sufficient and necessary. However, generally

the equation provides an effective means for performing scheduling analysis [27].

Precedence constraint between tasks is another kind of task interdependency. Two tasks are said

to have precedence constraint if the successor can not execute before the predecessor has finished its

execution. There are not many scheduling results on tasks with precedence constraints. Audsley et al.

noted that precedence constraints can be enforced by suitable choice of task offset and period implicitly

[5]. They have also considered the priority assignment and grouping of precedence-constrained tasks

where tasks are in linear composition [9, 12].

However, anytime algorithms may have differrent kinds of precedence constraints. In particular, they

can be hierarchical [97, 124]. The clustering of tasks with local functions and precedence constraints

mentioned is a powerful concept. For example, hierarchical composition can be thought of as nested
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clustering from the system scheduler’s point of view. If local analysis can be performed without con-

sidering all other tasks in the system, the global analysis problem may be eased significantly (e.g. from

intractable to tractable). Groups of tasks may be better supported by different periodic servers, which

will be further discussed in the multiple servers section (Section 3.5.3).

3.4 Providing Flexibility: Imprecise Computation

There is an intimate relation between the satisficing techniques in RTAI and imprecise computation in

real-time scheduling. Imprecise computation is closely related because it also provides tradeoffs between

quality against time analogous to anytime algorithms.

Conventional real-time system requirements focus on ensuring that a set of tasks will satisfy all its

deadlines, be they periodic or sporadic tasks. Scheduling analysis is done offline, at design-time, in

a static way that guarantees schedulability of systems in runtime. In practise, however, some unpre-

dictable, dynamic situations may occur such as transient overload, tasks overrunning their WCET due to

I/O dynamics, and unavailability of anticipated resources. Imprecise computation is an approximating

approach that can deal with these runtime dynamics where time and resources are not enough for com-

putation before certain deadlines. It provides a well-defined mechanism with which partial results can

be returned when needed, producing a smoother transition as an error handling technique, without which

dynamic failures may lead to catastrophic consequences.

Imprecise computation in real-time systems has been studied by Liu et al. extensively [37, 83, 104,

103]. Computation which allows approximate results has been used in computer systems for many years;

for example numerical approximation. However, there has been no formal notion for performing tradeoff

before. In many situations, one is willing to accept approximate results with inferior quality when the

results of desired quality can not be obtained due to timing constraints or unexpected resource shortage.

This is particularly true in hard real-time systems where unpredictable situations may arise at runtime no

matter how much amount of offline analaysis has been performed.

In the imprecise computation model proposed by Liu et al. [83, 104], a (periodic) task τi is composed

of infinite invocations of jobs ei which in turn consists two subparts - a mandatory part em,i and an

optional part eo,i. Figure 3.1 illustrates the task structure of which mandatory part is executed before the

optional part (precedence constraint).

All mandatory subtasks are critical and have to be guaranteed in the system; whereas optional subtasks,
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Figure 3.1: Structure of an imprecise task.

which are used to refine the results computed in the mandatory part, are skippable. Algorithms are

designed to be monotone (a fair assumption) - that is, the quality of the computation produced by an

algorithm is improved in a non-decreasing manner as more time is given. Monotone algorithms are more

flexible and suitable for analysis. The amount of optional subtask not executed is defined to be the error

ε of a task.

Error functions can be categorized into three different types, namely linear, convex and concave.

Figure 3.2 illustrates the different “shapes” of error functions. When the optional subtask of a task is

executed to completion, the error is said to be zero. Linear error function is defined as:

ε(x) = 1− x

eo,i
(3.11)

where x is the amount of time executed of the optional component.

When all the parameters of all the tasks in a system are known, optimal schedule can be computed

offline at design time. The following results can be used to find schedules for particular optimizations

offline. By using the EDF algorithm, according to rate-monotone policy [80], all the mandatory subtasks

em,i of a task τi are guaranteed schedulable if [37]:

∑
∀i

em,i
Ti
≤ 1 (3.12)

Of course, when all the mandatory subtasks and optional subtasks of all tasks in the system consisting

of solely periodic tasks, when total utilization is below 1 and scheduled by EDF, all tasks will meet their

deadlines and the error will be zero assuming deadline is equal to period (Di = Ti).

If an optional subtask is only scheduled in background and whenever mandatory subtask is ready it is

executed first, the schedulability of any mandatory subtasks will not be compromised. The objective is
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Figure 3.2: Types of error functions.

then to allocate optional subtasks in the schedule to optimize certain defined metrics, such as total error,

average error and maximum error. The following concerns complexity in constructing optimal schedule

offline.

Assume error functions are linear, in the simple case that the total (identical weight) error is to be

minimized, Shih et al. have shown the complexity of finding the optimal schedule isO(n log n) for single

processors [104] and O(n2log2n) in general [102]. When the error functions are convex and weights are

identical, they showed that an optimal schedule can be found in O(n2) time (optional subtasks with

identical execution time) and O(n3) (optional subtasks having arbitrary execution times).

When tasks are allowed to have arbitrary weights, which is more realistic in real world applications,

the problem is more complicated. If minimizing total weighted error is considered, where the problem

can be reduced to a minimum-cost-maximum-flow problem [102], the time complexity isO(n2log3n) on

multiprocessors. Shih et al. [104] later showed a faster algorithm, in O(n2log n), for single processors.

Leung et al. have given the fastest algorithm which runs in O(n log n+kn) time, where k is the number

of different weights [78]. The problem of minimizing the maximum weighted error has been studied by

Ho et al. [58]. They showed an algorithm with time complexity of O(n3log2n) for multiprocessors and

O(n2) for single processors.

When the error functions of some or all tasks are concave or subject to 0/1 constraints, finding optimal

schedule with arbitrary weights is NP-hard in general. Liu [81] noted that performance data showed that

in multiple methods, there is little advantage for anything beyond two versions. Further, two versions

can be adequately represented by imprecise task with 0/1 constraint (i.e., either the optional subtask is

run to completion or completely discarded), where the time for executing the optional part will be the

time difference between the two versions. Unfortunately, Shih et al. [104] showed that the problem
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of scheduling such tasks, and minimizing the total processing time of the discarded optional subtask is

NP-Complete even for a single processor.

Although Aydin et al. [14] showed that scheduling optional subtask in background to mandatory sub-

task is not optimal, however, using the background approach is more robust in the presence of overruns.

In systems where mandatory subtasks are hard real-time it is more reliable - that mandatory parts are

less likely to miss their deadlines rather than scheduling all tasks purely by EDF without discriminating

different tasks.

Shih and Liu [103] proposed an algorithm for scheduling imprecise computation online which is

similar to the slack stealing (Section 3.5) algorithm. The algorithm schedules both offline jobs and online

jobs (whose task’s parameters are only known at run time) with arbitrary release times and deadlines

to minimize total error, in polynomial time, which is applicable only to certain restricted classes of

problems. They also show that there is no optimal online scheduling algorithm for minimizing total error

in the sense that it can always find a valid schedule when one exists.

Baruah and Hickey [16] studied the competitiveness online scheduling algorithms for imprecise com-

putation. The study concerns overloaded systems with firm tasks where guaranteeing mandatory compo-

nents is not a necessary requirement. This relaxation to the execution environment is used for devising a

lower bound on the competitive ratio of scheduling algorithms. An algorithm was shown to behave with

the complexity of the lower bound and they argued that the ratio serves as a good measure for online

scheduling algorithms for overloaded system.

Leung et al. have studied other problems of imprecise computation scheduling, such as mean flow

time and dual criteria optimization; more details can be found in [77].

The imprecise computation model assumes that when the optional component is executed up to com-

pletion, there will be no error produced. There is therefore a bound for execution time of the optional

subtask. Audsley et al. [11] have investigated how to integrate “unbounded” software components into

hard real-time systems, in particular, into the response time analysis [10, 8].

An extended task model is used to represent different types of computation. Rather than using the

“Mandatory-Optional” structure, a “Prologue-Optional-Epilogue” model is employed. More specifically,

a general computation is composed by five components:

I, C1, X,C2, O (3.13)

where I and O stands for task input and output, C1 and C2 for mandatory computation, and X optional
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computation. Milestone method (imprecise computation), sieve function, or multiple versions (methods)

can then be represented with different arrangements of the above parts.

A task τi is represented by 3 different components; the prologue (τpi ), epilogue (τ ei ) and optional (τ oi )

component where:

τpi = I, C1 (3.14)

τpi = C1, O (3.15)

τ oi = X (3.16)

Ignoring the schedulability of optional component (due to the nature of unbounded execution), the

schedulability of mandatory computation (prologue and epilogue subtasks), even with shared resources

which were not concerned before, can be determined by using the response time analysis mentioned

in Section 3.3.2. Having guaranteed the hard components, different scheduling strategies can then be

adopted to allocate resources for optional computation.

The response time test is sufficient but not necessary if τpi and τ ei are considered as a single com-

putation. Since the pair will not be executed at the same time a straight-forward application results in

pessimism. A less pessimistic test has therefore been devised by using the offset analysis performed by

Tindell [117], also in [7]. This model is discussed again in Chapter 4.

However, all the mentioned works above assume the availability of a single measure of utility across

all tasks in a system without concerning how to obtain them. Error functions for describing the utility

of optional computation are relatively simple in imprecise computation. In agent systems, where tasks

are of different utilities and goals, it may not be easy to have a simple utility evaluation function for

comparing all the tasks in a system.

Yen and Natarajan [122] tried to give a utility-based decision-theoretic formalism on imprecise com-

putation in order to provide better justification for its usage in real-time systems. In particular, decision

theory, which allows probability, is applied as an alternative for assigning utility for imprecise tasks. This

work is much more applicable to RTAI applications because it is more commonly used in AI where task’s

utility can be unpredictable and can change constantly. In addition, the authors extended the imprecise

task model to be a hierarchical one which can better accommodate AI tasks such as planning. However,

they mainly addressed the utility problem without giving the corresponding scheduling algorithms.

Burns et al. [25] have proposed a framework for performing value-based scheduling, based on defining

different behavior modes and using theories from measurement theory, and multiple-criteria decision
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making, for value assignment. Generally speaking, the problem of obtaining and defining utility function

in real-time systems which allows tradeoffs remains to be explored. However, researchers are more aware

of the importance of employing theories which are already established in other fields.

Besides providing more flexible scheduling, imprecise computation has also been applied in flexi-

ble resource allocation, QoS management, overload management [123], fault tolerance [13], real-time

database query [120], real-time image and video transmission [63] etc.

As Audsley et al. [7] pointed out, the wide-spread use of imprecise computation will only happen if

they are integrated into standard software engineering methods (see also Section 3.7). Besides, industrial

experience is also important in justifying to what extent imprecise computation is indeed a proper tech-

nique in constructing flexible real-time systems. Nevertheless, formal mechanism that allows tradeoffs

between computation time and quality does provide a natural way for employing complex AI algorithms

in situations where intelligent behaviors are required.

Note that the distinction between anytime algorithms and imprecise computation is still blurred -

some researchers argue each of them can be a generalisation of the other [114] whereas some argue

that anytime algorithm can be represented by imprecise task consisting of solely optional part so that

imprecise computation is a generalization of anytime algorithm [81] - perhaps what is needed is just a

more unified formalism in the future.

An anytime algorithm is more like a soft task and the more time the system can provide the more it

can use to improve result quality - the optional computation is viewed as reward rather than error. Hence

such computation has no clear bound to which, when reached, the computation will produce perfect

result.

Besides, the use of a periodic server has become more common in real-time systems for scheduling

soft aperiodic task (to be discussed next). When scheduling aperiodic imprecise task is concerned, as

anytime algorithm can be modelled as a soft and optional task, enhanced variants of server scheduling

algorithms will be needed. To date this area of research has not yet been investigated.

3.5 Scheduling Soft Aperiodic Tasks with Spare Capacity

Servicing satisficing tasks is analogous to soft aperiodic task scheduling in real-time systems. Soft

tasks can miss their deadlines when necessary whereas anytime algorithm can be stopped if needed.

There is a significant body of literature related to scheduling soft aperiodic tasks in the presence of
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hard tasks. The approach, in general, is to schedule them using spare capacity that is unused by hard

real-time tasks in the system. Various techniques have been developed in real-time systems. As will

be discussed later, some of them may be exploited to facilitate anytime algorithms since their goal is

to utilize available spare capacity to improves system utility. One emphasis among all these methods

is to utilize spare capacity safely - a compulsory requirement which is not concerned by current RTAI

research.

In practical real-time systems both periodic and aperiodic tasks are required. When non-critical aperi-

odic tasks are present in the system, the simplest way is to schedule them only when the processor is idle.

This approach provides no guarantee for the responsiveness at all and thus another approach, known as

Periodic Server, has been proposed. Average response time of aperiodic tasks is used as a primary metric

of measuring system performance.

There are a number of different periodic servers. In general, a server algorithm is characterised by its

period, priority among other tasks, capacity consumption rule and replenishment policy. Depending on

these parameters, servers have different performance, run time complexity, implementation complexity

and memory requirement. A server can be implemented as one of the hard tasks in a system scheduled

by fixed priority algorithms such as RM and dynamic ones such as EDF; the server is referred as fixed

priority and dynamic priority server respectively, depending on the algorithm used.

3.5.1 Background scheduling

Background scheduling is a simple intuitive way to service soft aperiodic tasks. Aperiodic tasks are

only serviced when there are no other hard tasks ready and waiting in the system so the hard tasks will

never be affected.

The advantage is that the implementation is simple. Only two queues are needed for scheduling; one

with higher priority is for periodic tasks and another for aperiodic, which can be implemented by different

algorithms. However, this can be adopted only when the aperiodic activities do not have stringent timing

constraints and the periodic load is not high - the response time of aperiodic requests can be so long that

many of them may miss their deadlines.

Note that the server scheduling algorithms below solve the above problem. However, generally they

are not able to utilize all the spare capacity in the system. A background process is still useful for

reclaiming all remaining resources even in the presence one or multiple periodic servers.
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3.5.2 Fixed Priority Servers

When aperiodic tasks are not critical, we can execute them in background when the processor is not

executing any hard tasks. The main problem is that there is no guarantee of responsiveness. When

aperiodic tasks are critical, it can be incorporated into the rate-monotonic algorithm by the use of a

periodic task, whose function is to service one or more aperiodic tasks. In addition, the scheduler has to

maximize the processor availability for aperiodic tasks and at the same time minimize the response time.

The Polling Server (PS) is used to provide timely response for aperiodic tasks. A periodic task, called

Poller, is used to service aperiodic requests. In particular, the ordering of aperiodic tasks does not depend

on the scheduling algorithm for periodic tasks. If there is no aperiodic requests, the server suspends until

the next period and the time originally allocated for the poller is not preserved for aperiodic execution

but is used by perodic tasks. Server capacity is replenished at its full value every period. The problem

is the incompatibility between the bursty nature of the aperiodic tasks and the periodic nature of the

polling. When the server is ready there may not be aperiodic task to service; when there are aperiodic

tasks the capacity of server may not be enough. Bandwidth preserving algorithms, like the deferrable

server, priority exchange and sporadic server discussed below, are shown to be useful means to resolve

this problem.

Deferrable Server (DS) was proposed by Lehoczky et al. [73, 113] to overcome the limitation in

PS where aperiodic tasks arrives after the polling instant. It preserves the bandwidth allocated to the

aperiodic tasks when there are no aperiodic tasks pending and thus improve average response time of

aperiodic requests with respect to polling server. The algorithm does not incur more overhead than what

the polling server does, with just a simple modification of the replenishment policy. This is an example

of the importance of the server consumption rule and capacity replenishment policy.

However, DS does not behave like a periodic task. The consumption rule preserving the capacity in

this way can cause what is known as a back-to-back hit, which is illustrated in Figure 3.3. The task set

includes a deferrable server (capacity = 4, period = 8) and a task (WCET = 3, period = 10), together

having total utilization equals 0.7 which is lower than the allowed utilization (about 0.83) using rate-

monotonic policy. However, because the deferrable server preserves its capacity at time 16 and starts

running at time 20, when there is aperiodic request. At time 24 it is again released and preempts task τ1

to service aperiodic tasks. This causes extra interference to task τ1 and it misses its deadline at time 30.

The behavior can not be accounted as usual periodic task’s behavior and the maximum capacity (hav-
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Figure 3.3: A task suffering a Back-to-Back hit when using Deferrable Server.

ing the same set of hard periodic tasks) achievable by DS is smaller than that of a poller. The least upper

bound Ulub of a task set, with n number of tasks plus one deferrable server as the highest priority task,

was shown to be [73]:

Ulub = Us + n

[
(
Us + 2

2Us + 1
)
1
n − 1

]
(3.17)

where Us stands for utilization of DS. As n tends to infinity, the bound converges to:

lim
n→∞

Ulub = Us + ln(
Us + 2

2Us + 1
) (3.18)

Ulub has the minimum value of 0.6518 when Us = 0.186.

Deferrable Server normally runs at high priority; it has to run at the highest priority (shortest period

according to RM) when one wants to analyse the schedulable utilization. There is no known schedula-

ble utilization that assures the schedulability of the system when a deferrable server exists at arbitrary

priority. When aperiodic tasks are firm, an acceptance test can be performed in order to guarantee their

schedulability before they are admitted into the system.

Priority Exchange (PE) server is another technique introduced by Lehoczky et al. [73] for improving

the response time of servicing aperiodic tasks achievable by polling. The PE algorithm also makes

use of a periodic task which differs from DS in how the unused capacity is preserved. If there is no

pending aperiodic task when the server is ready, it exchanges its capacity with the next ready periodic

task with highest priority. When this exchange happens, the periodic task advances its execution and

runs at priority level of the server; while the capacity of server is preserved at the priority level of the

periodic task.

As shown in [73], the schedulability of the periodic task set is unaffected with a PE server. The total
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utilization U of the whole task set with n number of tasks plus a PE server as the highest priority task is:

U = Us + n

[
(

2

Us + 1
)
1
n − 1

]
(3.19)

where Us stands for utilization of PE. As n tends to infinity, the bound converges to:

lim
n→∞

U = Us + ln(
2

Us + 1
) (3.20)

Because total utilization U = Us + Up where Up is the utilization of periodic tasks other than the PE

server, the whole task set is schedulable if:

Us + Up ≤ Us + ln(
2

Us + 1
) (3.21)

So, all tasks other than the PE server is schedulable if:

Up ≤ ln(
2

Us + 1
) (3.22)

Note that the above equation also applies to the polling server because both of them also behave like

a periodic tasks.

Comparing Priority Exchange with Deferrable Server, PE provides better schedulability bound for

periodic task set with a slight drawback in the worst case performance. However, Deferrable Server is

less complex to implement because there is no need to keep track of the priority exchange among tasks.

Sporadic Server (SS), by Sprunt el al. [106], enhances the average response time of aperiodic tasks

without degrading the utilization bound of the periodic task set. Differed from DS and PE server that

capacity replenishment is carried out every server period, SS replenishes its capacity only after it has

been consumed by aperiodic task execution. Let Ts be the period of SS and ta be the time at which SS is

active and start servicing aperiodic tasks. The next replenishment time tr is set to be tr = ta + Ts.

In this way, SS behaves exactly like one or multiple periodic tasks; that is, it can be characterised

by its processor utilization (execution time over period). The schedulability analysis for PE server is

therefore also applicable to SS as well. However, performing schedulability analysis on firm aperiodic

tasks is not easy because server capacity can be fragmented in a lot of small pieces of different size

available at different times based on the replenishment policy. Consequently, one has to keep track of all

the replenishments that will occur until the task deadline.

The bandwidth preserving algorithms mentioned above, when working under high loads, only pro-

vides performance similar to that of a polling server. Slack Stealing provides much better performance
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by using a different approach. Proposed by Lehoczky and Ramos-Thuel [72], rather than servicing aperi-

odic tasks by a periodic task, a passive task called Slack Stealer is used to monitor all the slack available

from periodic tasks. Initial available slack are pre-computed offline and stored in a table for the least

common multiple (LCM) of all tasks’ period. At run time the current slack is computed from the table

with O(n) complexity, with the help of a set of counters to keep track of the slack at each priority level.

The counters are decremented according to which tasks are executing and incremented by the values

stored in the table at the next invocation of tasks.

Unfortunately, the table is of size n x N , n the number of tasks and N the number of tasks in the

hyperperiod. The memory requirement can well be prohibitive for practical use even with a moderate

task set. In addition, the effect of phasing and release-time jitters make this static approach difficult to be

used in practice because pre-computed table will be invalid with only slight variations from the expected

task’s characteristics.

Davis et al. [42] introduced a method called Dynamic Slack Stealing (DSS) for fixed-priority schedul-

ing that calculates slack at run time. Each time an aperiodic task enters into the system, the available

slack at a particular priority level i is computed exactly by identifying the length of the busy period

starting from a particular time t and the priority level i idle period given a particular starting time, again

based on the response time analysis. This is a pseudo-polynomial time procedure (based on the number

of tasks together with their deadlines and period) and is optimal in the sense that, at any given time, it

can determine the maximum contiguous amount of spare capacity which can be used by non-hard tasks.

Although the algorithm is more complex than the static approach at run time it allows handling of pe-

riodic tasks with release jitter or synchronization requirements which are problems in the static method

because it does not depend on a pre-computed table, which, as the authors argued, can be applied to a

wider class of problems.

It was originally thought that the Slack Stealer is optimal because it always advances all available

slack as much as possible. Unfortunately, Tia et al. [116] showed that to minimize the response time

of an aperiodic request, it is sometimes necessary to schedule it at a later time. In fact they proved that

under fixed-priority assignment of periodic tasks, there is no algorithm (including dynamic slack stealer)

that can minimize the response time of every aperiodic task. Furthermore, there does not exist any on-

line algorithm that minimizes the “average response” time of soft aperiodic tasks. A weaker notion of

optimality is thus defined for fixed-priority server scheduling and slack stealing algorithms are shown to

be only optimal in the weak sense.
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One thing that is worth noting is that the sporadic server has been adopted as a scheduling policy in

POSIX (IEEE Std.1003.1d) [1] for its superior performance over the other server scheduling algorithms.

However, Bernat and Burns [19] recently compared different types of server algorithms and showed that

the server parameters selection and therefore the evaluation for sporadic server (SS) against deferrable

server (DS) are not conclusive in previous studies by other authors. In previous analysis [106, 113],

based on maximum possible utilization of the server and the system, SS was thought to outperform DS.

They also showed [19] that by using response time analysis rather than utilization based test [73], a

different technique can be used in assigning server parameters. In particular, they argued that a DS can

be modelled as a sporadic task with release jitter Ji = Ti − Ci. A weakness of utilization based test is

that a same utilization Ui = Ci/Ti can be achieved by various selections of C and T . Previous analysis

assumed a particular value of period (highest priority using RM/DM) and therefore only certain value of

capacity can be obtained. Depends on the task set, a higher utilization, both for DS and SS (which are

almost the same), is in fact achievable by using response time analysis.

Server performance is found to be very sensitive to parameter selection. It was also found that a main

factor that contributes to server performance is the server capacity. The original technique of determining

server parameters, in particular server capacity by means of task utilization, is therefore inadequate.

Further, there is no optimal choice of server parameters that can be statically obtained beforehand

and used subsequently with enough flexibility at runtime in dynamic environments. The best choice

of server parameters is application dependent and parameters selection problem is hence non-trivial.

More advanced techniques, both online and offline, are needed. The multiple server scheduling below

addresses some of the inflexibility found in single server scheduling.

3.5.3 Multiple Servers and Capacity Sharing

Multiple servers with capacity sharing [20] is a generalization of single server scheduling. Multiple

servers can better support aperiodic tasks with different timing constraints. In a dynamic system the

characteristics of aperiodic tasks may vary so much that a single server, often using simple queueing

rule such as FIFO, is inadequate. In particular, there is no mechanism in prioritizing different types of

aperiodic tasks.

The capacity sharing mechanism ensures that when a server has used up its capacity it can share

the capacity unused from other servers. With a simple sharing protocol Bernat and Burns [20] showed

34



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

iR

iD

iyPromotion time:

iY

iτ

Figure 3.4: Promotion time of Dual Priority Scheduling.

that when scheduling tasks with varied loads, computation times and period distribution, multiple server

scheduling outperforms single server scheduling in terms of average missed deadlines under heavy load,

due to the prioritization of jobs in multiple servers. The single server algorithm treats all aperiodic the

same and does not favour tasks with greatly varying deadlines.

As capacity sharing is advantageous in aperiodic tasks with varying deadlines [20], it can be useful

in servicing RTAI tasks. Consider a planning algorithm which monitors a non-deterministic environ-

ment periodically (hard periodic task) and determine the deadline before which the planning must be

performed. It then instantiates another (aperiodic) task to perform the actual planning. If there is only

one single aperiodic server with other jobs waiting, it may not be successfully scheduled with a short

deadline. Multiple servers are more flexible in situations like this.

The authors also noted that the capacity sharing can be restricted to only a subset (cluster) of all

servers [20]. The circumstances for which clustering should be performed are not known. An interesting

direction to look at is the prospect of performing dynamic clustering of servers based on the dynamic

task requirements. Moreover, there is still the question of how multiple servers can be made to support

imprecise computation.

3.5.4 Dual Priority Scheduling

Even with dynamic slack stealing, calculating slack is computationally expensive. Apart from using

approximate method for calculating slack [39], Davis and Wellings presented a superior mechanism

called Dual Priority Scheduling (DPS) [40, 43] to tackle the complexity problem of calculating slack for

servicing soft and optional tasks.

DPS takes a different approach of scheduling aperiodic tasks compared to that of periodic servers and

slack stealer. In DPS, a promotion time is defined for each hard periodic tasks calculated using their
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Figure 3.5: Promotion hierarchy of Dual Priority Scheduling.

maximum response time to allow spare capacity to be advanced as much as possible. Suppose Ri is the

response time of task τi obtained by using response time analysis and ti be the task release time. The

latest promotion time yi is set to yi = ti + (Di −Ri) where Di is the deadline of task τi (Figure 3.4).

Hard tasks execute at either the upper or lower band. Upon release, each hard task runs at lower band

by default. The promotion time of a hard task is set by an offset Yi = Di − Ri from release, the task is

promoted to upper band if by the promotion time it has not finished. If no aperiodic task is pending the

hard task will be executed immediately. Soft aperiodic tasks run at the middle band and they can preempt

any hard tasks at the lower band without jeopardising their schedulability (see Figure 3.5).

Although it is not optimal in the sense of stealing every possible capacity, the performance of dual

priority scheduling is shown to perform better than the Improved Priority Exchange server, and very

close to Slack Stealer. With only O(log n) execution time overhead it is much preferable to slack

stealing [43].

The authors also incorporated release jitter, arbitrary deadlines and resource access protocol (priority

ceiling protocol) into the promotion time calculation. DPS provides an efficient way of providing spare

capacity for scheduling optional and soft task in an earlier time. It is a useful technique for scheduling

and has been adopted in other scheduling contexts. Examples include weakly hard real-time scheduling

[18], real-time multiprocessor scheduling [15] and energy-aware computing [86].

However, servicing imprecise computation with dual-priority priority scheduling results in incom-

patability. Consider a hard task with unbounded optional component where the mandatory subtask is

guaranteed by the response time analysis. Due to the fact that dual-priority scheduling tries to postpone

the computation of hard tasks as late as possible, which takes maximum fixed-priority preemptive inter-

ference into account. The time that is available for executing the unbounded component is restrained.
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In fact, due to the precedence constraint of the mandatory and optional components, it may be more

justified to execute the mandatory components as early as possible, albeit the scheduler may also be

trying to minimize the average response time of aperiodic tasks as well as scheduling as much impre-

cise optional parts as possible . More studies are needed if dual-priority is to be used in scheduling

a very mixed type of computation, where tasks can be defined by any combinations of the following

properties: hard/soft/firm-time, periodic/sporadic/aperiodic, error-minimizing/reward-maximizing and

bounded/unbounded imprecise computation.

3.5.5 Resource Reclaiming

There is another kind of spare resource rather than the unused capacity by non-hard tasks, which

is dynamically available at runtime, due to hard tasks not executing up to their WCET and sporadic

tasks not arriving at maximum possible rate called Gain Time. To utilize such capacity, care must be

taken because if tasks are allowed to execute for this extra time, lower priority tasks may suffer longer

interference not included in the feasibility test carried out.

Gain time can be identified at various stages of task execution. One approach is by examining task

input parameters [111] because it may have significant effect on the execution path of a task and thus its

running time. Another way is to monitor task’s execution by the use of Gain Points [5] or Milestones

[48]. In the milestones method, execution is divided into different stages and if particular stage finishes

before the worst-case time, gain time can be identified.

Bernat et al. proposed a method to utilize gain time by retrospectively rewriting task’s execution

history [17]. With this scheme, any gain time is preserved and re-allocated iteratively for lower priority

tasks in such a way that it will not affect system schedulability. Normally, any gain time that is unused

by other tasks have to be thrown away at next replenishment. By the mechanism of history rewriting (at

the end of task’s period rather than at the time the task finishes), the spare capacity is allocated to the

next lowest task; if there is still capacity left the procedure goes on to the next lowest priority task. It was

also shown that the scheme works well with capacity sharing [20], response time analysis and existing

server scheduling techniques, such as the Deferrable Server algorithm.

Assumed that usually there is no advantage for finishing hard time earlier and their WCET estima-

tion is accurate, this scheme seems not particularly useful for sharing gain time for other hard periodic

tasks. The authors [17] have considered using gain time for facilitating imprecise computation. How-
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ever, in their example, hard tasks and unbounded tasks are arranged to be interleaved so that gain time

can be shared to unbounded tasks immediately. This arrangement imposes restriction on task priority

assignment and the construction of system.

Another issue with slack reclaiming for soft tasks is that the amount of slack reclaimed at a finer scale

may not be very useful for, say, deliberation tasks, which may work at much greater time granularity. It

may turn out that the cost of slack reclaiming for deliberation is not justified in terms of the possible gain

of utility.

Sophisticated gain time reclaiming mechanism may not be useful in terms of scheduling optional tasks

because: 1) in general, there is no utility gain in finishing hard tasks early so methods for reclaiming gain

time for hard tasks are not needed; 2) gain time should be used to facilitate satisficing, and independent

scheduling algorithms can be employed particularly for optional tasks.

For example, the dual priority scheduling naturally provides a notion of resource reclaiming built into

the scheduling mechanism and specialized algorithm can be used in the “middle band” of dual priority

scheduling for deciding how to share the capacity among aperiodic and optional tasks. There is no extra

overhead to reclaim gain time and more importantly, to avoid the problem of considering tradeoffs in gain

time granularity. The scheduling decision is up to the policy defined in the middle band and adaptive

behavior may be achieved by utilizing different algorithms under different situations.

3.6 Multiple Applications and Hierarchical Scheduling

Open system architecture, first proposed by Deng and Liu [46], is a two-level scheduling frame-

work within which different applications can have their own scheduling algorithms, independent of the

scheduling implementation of the underlying system. An application can use the most suitable schedul-

ing policy to itself. Most importantly, schedulability and real-time constraints can be determined locally

within each application, without concerning other applications running on the same system.

Nowadays, complex systems are composed of different applications written independently with pos-

sible arbitrary combination. As mentioned, more recent RTAI research direction has been building RTAI

application as a subsystem or module which is part of other larger systems [53]. The traditional real-time

scheduling such as the RM and EDF algorithms, although proved to be optimal with certain assumptions

on task attributes, can not accommodate all the special needs required by various applications. Subsys-

tems will not all work well with a single scheduling algorithm at the system, each of them may require
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a scheduling algorithm that is most suitable to its task nature and timing constraints. Hence, there has

been a growing attention in studying hierarchical scheduling in the literature.

Two-level scheduling scheme [46, 47, 81] provides temporal isolation to individual applications run-

ning on a same processor where each application can contain arbitrary number and types of tasks.

Schedulability of tasks in individual application can be guaranteed independently by using an infinitesi-

mally fine-grain time slicing method. Of course, “infinitely” small quantum is not possible because the

context switch overhead will become dominant and cause thrashing3. The system scheduler essentially

emulates a “slower” processor for each application. Each application is scheduled by a server with suit-

able bandwidth determined by a function of required budget by the application. The OS scheduler uses

a constant bandwidth server or a total bandwidth server to service each application.

Deng et al. [46, 47] devised sufficient conditions - the correct suitable server budget size and replen-

ishment policy - that must be satisfied when guaranteeing real-time performance of higher-level applica-

tions. Predictable applications are ones that schedule tasks nonpreemptively, in a clock-triggered manner,

or preemptive periodic task set with appropriate modifications in server’s budget and deadlines, whereas

unpredictable applications are those scheduled according to preemptive, priority-driven algorithm and

contain aperiodic tasks and/or periodic tasks with release-time jitters.

Building upon the work of Deng and Liu, Kuo and Li [70] studied the same architecture, but using

fixed-priority scheduling. In the architecture, they used a system scheduler with RM priority assignment

and a sporadic server for each application because constant/total bandwidth server is not compatible with

the RM algorithm. They presented the corresponding schedulability test, based on available and required

utilization, for the cases where individual applications schedule their own tasks based on RM and EDF.

However, there is a restrictive assumption that for each application, its corresponding server’s period has

to be the greatest common divisor (GCD) or a divisor of the GCD of all the tasks in the application.

Using fixed-priority scheduling as the system scheduler, another approach is to use response time

analysis for checking schedulability of applications. As discussed before, response time analysis has

many merits. Saewong et al. [98] showed a response time analysis for two-level systems within which

an application is scheduled by either a deferrable server or a sporadic server. Lipari and Bini [79] have

proposed an alternate formulation of response time analysis by using an availability function representing

the available capacity made by a server. However, as argued in [38], the schedulability is sufficient and
3By which the system is only busy executing context switch routines rather than user tasks.
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not necessary because a pessimistic assumption of the worst-case capacity availability of a server was

used. Lipari and Bini [79] also considered the problem of server parameter selection, such as server

period and capacity, which is, however, only concerning a single server without considering its effects

globally.

Davis and Burns [38], based on the work mentioned above, studied fixed-priority preemptive schedul-

ing as applied at both system level and local application level. A set of applications is scheduled by

fixed-priority preemptive scheduling in the system level; local tasks belong to a single application are

run with a periodic server or deferrable server. A response time schedulability test was presented for

accounting interference that a task may suffer from other applications in the system.

One interesting insight is that, because tasks in an application can only be executed when the server is

released in the base system, periodic server outperforms deferrable server in such hierarchical framework.

When the performance measure is the task schedulability of application rather than aperiodic task’s

responsiveness, harmonic server periods enable some tasks to be bounded to the release time of their

server, for which a simple poller gains advantage.

They also investigated the optimal selection of server parameters and show that there are dependencies

among servers and locally optimal selection does not result in global optimality. That is, it is a holistic

problem where global searching techniques may have to be employed offline for finding the best param-

eters selection. It was also shown that global resource sharing across different applications can not be

easily analysed.

There are also attempts in generalizing hierarchical scheduling. Regehr and Stankovic [90, 91] pro-

posed a more general architecture by which unlimited levels of hierarchy can be constructed with a

main focus on soft real-time guarantee in general purpose operating system (GPOS), called Hierarchical

Loadable Scheduler (HLS). They categorized different scheduling algorithms and the types of real-time

guarantees they can provide, in order to impose restrictions on the scheduler composition hierarchy. For

example, a fixed-priority preemptive scheduler can provide timing guarantee for a time-sharing scheduler

(in GPOS); but not vice versa.

Feng and Mok [50] showed that in guaranteeing tasks’ schedulability, global knowledge of the entire

task set is not necessary in hierarchical scheduling. When the notion of virtual resources with bounded

delay and variation is introduced, there is no need for global task analysis. The main feature of this

work is the abstraction of virtual resource augmented by a notion of the rate of service provided by the
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underlying layer and the specification of the maximum delay suffered. Real-time components can then

be composited in such a way that they only need to consider the virtual resource provided. The advantage

is that feasibility test can be performed locally which is clearly desirable in open dynamic environment

where many properties of tasks are unknown in advanced.

Despite that the work of multi-level hierarchical scheduling have addressed some real-time guarantee

inheritance and scheduler composition problem, the servicing of aperiodic and further, imprecise compu-

tation within a single application in hierarchical systems (even just two-level ones) has not been studied

at any depth. Further investigations are also needed to derive sufficient, and if possible necessary, condi-

tions for guaranteeing applications consisting anytime algorithms and multiple methods because of their

different task nature.

The hierarchical architecture is of great importance for open, adaptive systems. However, there is little

work in the literature on choosing server parameters that are suitable for fulfilling particular application

requirements. As shown by Davis and Burns [38], there are situations where a simple poller outperforms

deferrable server and sporadic server. A more advanced technique for parameter selection should be

developed which takes into account task’s characteristics in different applications. Such technique can

benefit the schedulability of the system globally, especially in situation where parameter adjustments of

existing servers are necessary for accommodating new applications. Interested readers can refer to [29]

and the references therein for more details on hierarchical scheduling in composite systems.

3.7 Practical Issues: Programming Language and System Support

Programming language concerns about the software engineering aspect while operating system re-

gards the operational issues of systems. Yet, they are closely coupled and are both essential to any

successful systems.

When Liu et al. first proposed the imprecise computation work, they used C++ augmented with a set

of language extensions called Flex [67], which is included in a system named Concord, for supporting

milestones method. Concord [82] is a system that provides the programming language primitives and

system support for imprecise computation. Based on a client-server model, it allows the programmer to

specify the intermediate result variables to be recorded and define the error indicators for monitoring the

intermediate result.

A more comprehensive Imprecise Computation Environment (ICE) was developed later by Hull et
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al. [64]. Also based on a client-server architecture, ICE is implemented on top of Real-Time Mach

(RT-Mach). The kernel is significantly modified for adding the NORA online scheduling algorithms

for imprecise computation [103]. In ICE, there are also features for supporting dependability through

incorporating fault-tolerance into the imprecise real-time systems. The server supports a user-directed

checkpointing mechanism for imprecise tasks, where rollback recovery is possible.

Gregory and Lin have proposed two implementation packages for realizing imprecise computation

in a previous version of Ada [55]. Though in the process they identified several problems related to

Ada such as the time-expensive rendezvous, nonpreemptiveness of task model and the potential much

longer delay using the delay statement in Ada. Audsley et al. [7], in investigating how to integrate

unbounded software components into hard real-time systems based on response time analysis, where a

“Prologue-Optional-Epilogue” task structure was proposed, showed the model can be implemented in

Ada 95.

An interesting area to look at will be the real-time scheduling support for common (functional and

logical) languages used in AI, such as Common LISP, Prolog and Progol. They are very popular lan-

guages for constructing planning, searching and learning algorithms [96]. Profiling is a common practice

for measuring the WCET of tasks in actual system; the data is then used to perform offline feasibility

test. A suitable CASE tool for generating algorithm’s performance profile, schedulability verification

and possibly automatic code generation, will be of great prospect.

Stankovic and Rajkumar have presented an extensive review in real-time opearating systems (RTOS)

recently [109]. RTOS has been changing from the traditional small, proprietary kernel to more component-

based and QoS-based kernel, from the traditional requirement of providing hard and soft guarantee to

new paradigms that provide admission control, resource reservation management and reflection. Not

surprisely, to add real-time capabilities into existing systems, various extensions have been applied to

commercial and research type operating systems, such as RT-Unix, RT-Mach, RT-Linux. In particular,

among other open source RTOS, Linux has been used more extensively in real-time research due to its

availability of source code and community support.

In fact in small proprietary kernel, all tasks may be analysed by a simple schedulability test because

the task set is small and all the task parameters are known in such “closed” system. For general purpose

operating system augmented with real-time capabilities, such as RT-Linux, the architecture resembles

the two-level framework shown by Deng and Liu [45]. First, the system is open - new application can be
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added into the system; and second, each application can be supported by a scheduling algorithm that is

most suitable for itself. Real-time systems are becoming more heterogenous with mixed type of real-time

requirements.

Many new scheduling analysis, such as the hierarchical scheduling mentioned earlier, is performed by

theoretical derivation and/or via simulation, without real implementation in a RTOS, due to the efforts

required in constructing a new scheduling algorithm in an OS. Consequently the practical aspects of these

algorithms are not known and they are also generally not available for use in real systems. Increasing

efforts have been witnessed in adding more efficient and flexible scheduling in RTOS. The followings

serve as examples to show the general trend in RTOS but do not claim to be comprehensive.

By using a generic scheduling framework, S.H.a.R.K. (Soft and Hard Real-time Kernel) provides

a dynamically reconfigurable kernel architecture for flexibly constructing, integrating and evaluating

different scheduling algorithms [51]. The kernel itself is fully modular regarding scheduling algorithms

and resource access protocols. Scheduling policy can be isolated from the core of the kernel. New

scheduling algorithm can thus be written without concern of the kernel but the algorithmic scheduling

property. Many well known algorithms, such as RM, EDF, have already been implemented.

Burns and Bernat [24] have proposed a scheduling framework that can be efficiently implemented

in RTOS. The framework supports a mixture of hard and firm tasks and provides low implementation

overhead. In more open environment where task properties are not all known a priori, as the authors

argue, efficient scheduling and admission tests are needed. By using a threshold, value-based acceptance

test, the authors showed the time complexity of scheduling and admitting firm tasks can be kept low

(O(log n)) and are easy to be implemented in real systems.

Another scheduling framework is the FIRST Scheduling Framework (FSF) [3] which stressed on

the scheduling abstraction independent of implementations. Also notwithstanding the low utilization

in traditional hard real-time systems, the framework comprises a set of standard scheduling algorithms

such as table driven, fixed priority and EDF. A main feature of the framework is the specification of

real-time requirement in a service contract, where the QoS is negotiated between applications and the

supporting system. FSF is essentially a set of API so that it can be independent from implementations.

The library provides many different and complex services, from simple budget control to synchronization

primitives, hierarchical scheduling (two-level), reclamation, shared objects and distribution. It has been

implemented in two real-time kernels: S.H.a.R.K. [51] and MaRTE OS [92] where results are shown to
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be satisfactory.

Flexible Real-Time Linux (FRTL) [115] aims to provide support for imprecise computation in Real-

time Linux (RT-Linux), which is a general purpose operating system (Linux) augmented with real-time

capabilities. In its scheduling framework, a task is composed of a sequence of mandatory and optional

components where there executions are separated in two levels. All mandatory tasks are executed in

the base scheduler and are guaranteed using the response time analysis [10, 8, 6] where all optional

components and non-real-time tasks are scheduled using any slack available, identified by the dynamic

slack stealing algorithm by Davis et al. [42] 4.

The framework provides greater freedom than those offered in the previous approach in that it does

not restrict the number of mandatory and optional parts of a task. More importantly, the overhead of the

FRTL implementation, such as interrupt handling, context switch time and systems calls, is evaluated

and included into the response time equation to provide accurate analysis of the whole system. They

showed that FRTL can be efficiently implemented in a regular PC.

Regarding RTAI, Stankovic et al. [112] demonstrated the collective supports, in terms of specification

language, programming language, compiling tools and the kernel, that the Spring OS can provide in

order to support complex real-time applications. In the case study, a manufacturing testbed involving

both real-time systems and AI automated reasoning is concerned. There are two levels of scheduler: the

higher level a scheduler, called the AI planner, is used for making decisions of what order to service and

when to service them; whereas at the lower level scheduler is responsible for real-time scheduling and

the feasibility of servicing particular order.

The study showed that:

• the separation of, and the cooperation between AI reasoning system and real-time systems are

useful and applicable in real world problem;

• the success of RTAI applications depends on extensive support provided by good programming

environments and runtime systems; and

• there are new types of task interdependencies that are not usually present in real-time systems and

the interface between the two systems is essential in resolving potential conflicts.
4Note that a much lower scheduling overhead is possible by using dual-priority scheduling [40, 43].
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3.8 Summary

RTAI applications appear to require most of the existing technologies reviewed above, but clearly they

need to be in a more integrated fashion.

The basic problem of guaranteeing hard periodic tasks in real-time systems has been solved. In par-

ticular, the response time test is flexible and can be extended to satisfy different requirements such as

resource access blocking time, release jitters, offsets, etc [6, 27]. Meeting hard timing constraints will

continue to be the primitive objective in real-time systems.

The imprecise computation provides flexibility and a formal mechanism for performing tradeoffs and

graceful degradation in real-time systems during, for example, transient overload.

The use of periodic servers for scheduling aperiodic tasks has become more common in real-time

systems. Owing to simple queueing policy and assumptions in single server scheduling, aperiodic tasks

with different timing characteristics, which may well be schedulable with other different strategies, can

miss their deadlines. The use of multiple severs and capacity sharing comes into light in this situation.

Due to the similarity of soft tasks and imprecise computation, the work in scheduling soft aperiodic

tasks by making use of unused capacity, especially by means of periodic server, is applicable in facilitat-

ing satisficing techniques. For example, a periodic server may be extended to service both aperiodic and

imprecise computation. The multiple server and dual priority scheduling should also be investigated for

the same rationale.

Current real-time scheduling is moving towards investigating more open and dynamic systems [99],

which coincide with the type of RTAI systems of interest. As more adaptive and flexible scheduling

is demanded, there will be more research on multiple server scheduling and hierarchical scheduling.

However, no single scheduling framework is likely to satisfy all application requirements, especially if

they are unknown in advance. A mechanism by which scheduling algorithms and parameters can be

adjusted dynamically looks to be a promising field of research for supporting deliberative agents.

To sum up, in this chapter related works in real-time systems, from a perspective of what deliberative

agents need, have been reviewed. It is shown that the requirements from RTAI and the inadequacies of

corresponding supports in current real-time scheduling require extended research. In the next chapter,

new results in scheduling theory for imprecise computation based on the P-O-E task model are presented.
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Chapter 4

Fixed Priority Preemptive Scheduling for

Imprecise Computation

Consider the Robocup case study mentioned in Chapter 1 where an anytime planning algorithm1 [44,

69, 125] of which the initial part requires hard guarantee for constructing a minimum acceptable plan.

The algorithm then refines the quality of the results whenever there are available resources. At some

point it has to stop to meet its timing requirement where the final result may need to be written back to

a shared memory area, an I/O device or sent over a network (e.g., in a cooperative multi-agent system)

and wait for the corresponding result acknowledgement, which with real-time requirements may require

a particular real-time access protocol for guaranteeing schedulability.

Using the traditional “Mandatory-Optional” task structure [83], the final part of the computation is not

guaranteed and may not finish before its deadline. Moreover, the optional components of the planning

algorithm can be unbounded while the optional part of the original model is however, characterised by

an error function, which assumes that when it is executed to its completion, the task is said to produce

no error. Anytime algorithms in this regard introduce a difficulty for Liu’s model since there is no

clear bound that, if reached, a perfect result will be produced. In addition, the hard part of computation

required after the optional part can not be included in the model.

The “Prologue-Optional-Epilogue” (P-O-E) task model proposed by Audsley el al. [11, 7] is a gen-

eralisation of that of Liu et al as mentioned and can accommodate tasks of such structure. The authors

devised schedulability tests, based on response time analysis with task offsets [8, 117], for guaranteeing
1Analogous to the “milestone method” in imprecise computation.
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schedulability of the prologue and epilogue (mandatory) tasks. However, in examining the proposed

schedulability tests in [11, 7], as shown in later in this chapter, it was found that the procedure may

not calculate the actual worst-case response time due to a flaw in the suggested offset transformation.

The problem was rectified by considering all possible critical instants introduced by the different com-

binations of task’s offsets where the time complexity1 is exponential to the number of imprecise tasks

concerned. Furthermore, it is shown that, under Deadline Monotonic (DM) priority assignment, which

is also assumed in [11, 7], one of the tests is not necessary, resulting in simpler schedulability analysis.

The remainder of this chapter is organised as follows: in the next section the task model of concern

is first defined, where the schedulability analysis from [7] for tasks with offsets is restated. The existing

problem of inaccurate response time calculation is then presented and a solution is proposed. This is

followed by a proof on how the original tests can be simplified when deadline monotonic ordering is

employed.

4.1 Task Model

The task computation model is based on that of [7] (also in the previous chapter), with a slight change

in task notation.

A general computation can be modelled by five components:

I, C1, X,C2, O

where I and O stands for task input and output, C1 and C2 for mandatory computation, and X optional

computation.

Note that the I/O time may depend on the processing speed of the corresponding devices and the

access to the devices can be bounded by using a particular resource access protocol. Milestone methods

(including anytime algorithms), sieve functions, and multiple versions2 can then be represented with

different arrangements from these parts [11, 7].

A set τ = {τ1, τ2, ..., τn} represents all tasks in the system. A task τi is represented by 3 different

components; the prologue (τpi ), epilogue (τ ei ) and optional (τ oi ) component where:

2Also called multiple methods in other contexts.
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τpi = {I, C1},

τ ei = {C2, O},

τ oi = {X}.

This is denoted as the “P-O-E” task structure. An ordinary periodic task is just an imprecise task with-

out the optional and epilogue part. The P-O-E structure is a generalisation of the Mandatory-Optional

structure because the latter can be represented by a P-O-E part without the epilogue part.3

Each task τi has the following parameters:

• worst-case execution time (WCET) Ci, where Cpi is the WCET of τpi , Cei the WCET of τ ei and

Ci = Cpi + Cei ;

• deadline Di. The deadline of task task τi, which also applies to both τpi and τ ei ;

• period Ti. The period of task τi, where τpi and τ ei share the same period length;

• offset Oi. Whenever applicable, the offset of task τi causes the task to be released after the period,

with the length Oi. O
p
i and Oei represent the offsets for both τpi and τ ei from their periods.

Both τpi and τ ei need to finish execution before their deadlines, otherwise the task τi is said to have

missed the deadline. For clarity, if a task is mentioned without direct indication that it is imprecise, it is

assumed to be an ordinary (non-imprecise) task. When we mention the partner task τk of a task τj , if τj

is the prologue then τk is the epilogue from the same imprecise task and vice versa.

A level-i busy period refers the execution duration of a task τi (with priority i) from the instant it is

released to the instant it finishes the execution, during which the system is busy executing τi or higher

priority tasks. The longest busy period of the task is its worst-case response time and the corresponding

release instant will be the critical instant [80]. A schedulability test determines if a task set is schedu-

lable given a priority assignment ordering and is called sufficient if all tasks passing the test are indeed
3The authors acknowledge that the P-O-E structure can also be represented by two end-to-end Mandatory-Optional impre-

cise tasks [49] where any error produced in the first task will not result in any input error to the second - they merely have

a precedence relation, with the optional component of the second task discarded. However, it is the author’s belief that the

P-O-E structure is conceptually more concise and general for a single complete computation. Representing the P-O-E that way

necessarily complicates the required system support and confuses system designers from a system engineering perspective.
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schedulable. It is called necessary if any task sets that fail the test is actually unschedulable. A test is

exact if it is both sufficient and necessary.

4.2 Schedulability Analysis

The primary objective of a real time system is to guarantee all ordinary hard tasks, as well as the

mandatory parts (prologue and epilogue) of imprecise tasks, will meet their deadlines.

In a fixed priority preemptive system, the schedulability of the system can be easily found by using

the response time analysis by completely omitting the optional task. If the epilogue part is immediately

executed once the prologue part is finished, from a scheduling point of view, the two parts can be treated

as one single task.

Assume that the deadline of a task is equal to or smaller than the task’s period, the worst-case response

time Ri of a task τi, as described in the previous chapter, can be stated by:

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj , (4.1)

where hp(i) stands for all higher priority tasks of task τi. The term Bi represents the maximum blocking

time of accessing a shared resource. A bound can be found using a particular resource access protocol,

such as the Priority Ceiling Protocol [101]. In that case Bi represents the maximum execution time of

any lower priority tasks of the task τi.

The equation can be solved by iteratively evaluating the following recurrence relation [8], which can

begin with r0i = 0 or r0i = Ci, the worst-case response time ri of a task τi is found when rn+1
i = rni

or rn+1
i > Di, in that case the task set is unschedulable (see [66] for proof of convergence for task sets

with ≤ 100% processor utilization).

rn+1
i = Ci +Bi +

∑
j∈hp(i)

⌈
rni
Tj

⌉
Cj . (4.2)

4.2.1 Making Use of Task Offset

The above test, however, is ineffective in facilitating optional components since it makes no attempts

to schedule them but just pure schedulability of mandatory tasks. Since there is a precedence relationship

between τpi and τ ei , to make rooms for execution of optional components, an intermediate deadline Si
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Figure 4.1: Intermediate deadline assignment for imprecise task.

can be used to separate the two tasks [7], effectively setting an offset to τ ei relative to the release time of

τpi .

A reasonable intermediate deadline Si (which divides the slack equally for the two tasks) is (see Figure

4.1):

Si =
Di − (Cpi + Cei )

2
+ Cpi . (4.3)

As mentioned, the period of each mandatory task, T pi and T ei , is equal to Ti. The offsets and deadlines

of the tasks are modified as:

Opi = 0,

Oei = Si,

Dp
i = Si,

De
i = Di − Si.

The selection of Si is somewhat arbitrary. However, setting it at an earlier time will make it more

difficult to schedule the prologue task τpi because it now has a shorter deadline. On the other hand,

setting Si to a later time will decrease the deadline of the epilogue task and may affect its priority and

schedulability. More discussions are given on issues of selecting Si in the next chapter.

Applying the equation (4.2) again with the modified deadlines results in a less pessimistic analysis

because the two mandatory tasks of each imprecise task are now treated individually. However, an even

less pessimistic test can be obtained by making use of task offsets.

4.2.2 Task Priority Ordering

Neither Rate Montonic (RM) [80] nor DM [76] ordering is optimal when arbitrary offset is allowed

[117]. Here DM ordering is assumed. According to the modified deadline mentioned above, each task is
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assigned a distinct priority - the smaller the deadline the higher the priority. For tasks with same deadline

value they are each assigned a distinct but adjacent priority.

For the purpose of performing schedulability tests, each imprecise task will be individually repre-

sented by the two mandatory tasks (τpi , τ
e
i ), each being treated as a single ordinary hard task in the tests.

Therefore, if there are n imprecise tasks and m ordinary tasks in the system, there are in total 2n +m

tasks in the schedulability analysis.

Here a shorthand τj is introduced which represents a task with priority level j (every τpi and τ ei is now

represented by a task τj with a distinct priority j), where 1 ≤ j ≤ 2n +m and the lower the index the

higher the actual priority.

4.2.3 Schedulability Analysis with Task Offsets

Consider a task τj . The only tasks that can increase its response time are the higher priority tasks.

When the τpi and τ ei pair both have higher priority, to account for the worst-case, assuming a critical

instant when all tasks are released at time 0, the task in the pair with the greatest computation time is

assumed to be released together with τj at time 0, and the task with lower computation time in the pair

is assumed to be released at an offset from 0.

More specifically, when Cpi < Cei the offsets of them are transformed as follows:

Opi = Ti − Si,

Oei = 0.

When only one of the pair has higher priority than τj , it is assumed that it is released at the same time

with τj . For instance, if τ ei is the only higher priority task in the pair then its offset is reassigned as:

Oei = 0.

The above only accounts for higher priority tasks, the partner task of τj , let’s say τk, also needs to be

considered. If the partner is of lower priority, it obviously cannot affect τj . A less pessimistic analysis

can then be obtained by restating equation (4.2) as:

rn+1
j = Cj +Bj +

∑
x∈hp(j)

⌈
rnj −Ox
Tx

⌉
Cx. (4.4)
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However, if τk is a higher priority task than τj , because it is possible that it can cause other tasks with

intermediate priority to delay their response times, the response time of τj can also be affected indirectly.

According to the previous analysis [7], one must examine two priority level j busy periods. The first

one assumes that τj is released at time 0 and ignoring τk. Another assumes that τk is invoked at time 0

with τj releasing at an offset of Oj . And finally the maximum of the two busy periods is taken.

Let wj denote the length of a priority level j busy period. The length of the first busy period can be

found using the recurrence relation shown below:

wn+1
j = Cj +Bj +

∑
x∈hp(j)∧x6=k

⌈
wnj −Ox

Tx

⌉
Cx. (4.5)

Iterations follow that of equation (4.2). Note that possible interference from τk is excluded and the

response time, rj is equal to the busy period wj .

For calculating the second busy period, set Oj = Ti − Si if τj is the prologue task of process τi, and

Oj = Si otherwise. The busy period wj is found as follows:

wn+1
j =

⌈
wnj −Oj

Tj

⌉
Cj +Bj + Ck +

∑
x∈hp(j)∧x 6=k

⌈
wnj −Ox

Tx

⌉
Cx. (4.6)

In the above equation, the term Ck represents the interference due to one invocation of τk because τk and

τj share the same period. The actual busy period is wj − Oj after the value wj converged, since task τj

is assumed to be released with an offset Oj .

The worst-case response time rj corresponds to the maximum of the two busy periods found in equa-

tion (4.5) and (4.6), when its partner task is having a higher priority. And schedulability can be easily

known by comparing to its deadline Dj .

4.2.4 The Problem with Offset Transformation

The procedure above restates the main results in [7] and now the problems associated with the offset

transformation are presented. In essence, it is argued that, when considering the worst-case interference

of a task from an imprecise task where both prologue and epilogue have higher priorities, merely trans-

forming the one with greater computation time to be released at the same time with the task concerned

is not adequate. That is, the transformation does not resemble the critical instant for the task.

Consider a task τx and an imprecise task τi with prologue τj and epilogue τk where τi has a relatively
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Figure 4.2: Illustration of the offset transformation problem.

short deadline compared to its period (Figure 4.2). With Cj ≤ Ck, perhaps intuitively, τj will suffer

the longest interference when τk is released at the same time with τx. However, following the offset

transformation rule, task τi will have an offset set as Ti−Si, where Si is the intermediate deadline of τi,

as shown in Figure 4.2a.

But τx has a longer busy period, illustrated by Figure 4.2b, in which it suffers both preemption by

τj and τk because its busy period is larger than Si whereas releasing τk with τx, τx will not suffer

interference from τj since its busy period ends before Ti − Si.

This shows that the offset transformation is incorrect that it may be over optimistic. To make things

even worse, in calculating the exact worst-case response time of a task, it is necessary to examine all the

possible combinations of higher priority task offset alignments as suggested in [117] by Tindell, which

has been shown to be intractable in general. In particular, the critical instant can occur at any of the

combinatorial offset alignments of higher priority prologue-epilogue pairs.

In the case of our task model where there are only two tasks (prologue and epilogue) in an offset

relation, for each task there are O(2n) number of the above response time tests to perform, where n
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is the number of higher priority prologue-epilogue pairs (base two because there are two tasks in a

single offset relation) and that a single test requires a pseudo-polynomial time calculation [8]. The time

complexity of the whole procedure is therefore expotential with regard to the number of imprecise tasks.

Note that because calculating the exact response time for a task set with sizeable number of imprecise

tasks can be very computationally expensive, equation (4.2), albeit pessimistic, can always be used as a

sufficient test for verifying schedulability (still with intermediate deadline assignment but without offsets

for tasks).

4.2.5 A Simplified Test Under DM Priority Ordering

Below it is shown that, in calculating the worst-case response time where the partner task is of higher

priority, equation (4.5) alone actually accounts for the worst-case response time of τj by proving the fol-

lowing theorem. That is, the value of equation (4.6) can not exceed that of equation (4.5) if schedulability

is assumed, where DM ordering and the intermediate deadline assignment (Section 4.2.1) are applied.

Theorem 1. If task τj is the prologue or epilogue of an imprecise task τi where τk is the partner task with

higher priority than τj , and their intermediate deadlines and offsets are assigned according to Section

4.2.1 with priorities in DM ordering, the worst-case response time of task τj is the first busy period

ignoring any possible interference from τk.

Proof. The idea is to show that the second busy period can not be greater than the first busy period if the

task τj is to remain schedulable since the first busy period will be greater than Dj if that is the case.

Since τj and τk are in the same imprecise task, according the rules of assigning intermediate deadline

(the shorter the WCET the shorter the deadline), for τk to have a higher priority based on DM, Ck ≤ Cj .

Comparing the equations for calculating the two busy periods, if one ignores the first term
⌈
wn

j −Oj

Tj

⌉
Cj

of equation (4.6),4 the value from equation (4.6) must be less than or equal to that of equation (4.5).

Now the condition where the first term will take effect in the equation is examined. Observe that the

ceiling function can only have value larger than zero when wnj − Oj > 0 since tasks’ deadlines and

subsequently their offsets must be less than period from the assumptions. The resulting value of the first
4Note that the result of the ceiling function of the term could not be negative because Oj ≤ Di ≤ Ti.
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term has the largest value as Cj .

The only circumstance where wnj −Oj > 0 is when the busy period execute up to the offsetOj , which

is also the deadline of τk. For any values of Cj and Ck, the window that is allowed for higher priority

task’s preemption in both tasks, which is Dj −Cj and Dk−Ck respectively, are equal. This fact follows

directly from the intermediate deadline assignment scheme defined in Section 4.2.1.

Therefore, if the busy period of equation (4.6) exceeds Oj , that is Ck plus all the interference of τj

is greather than Oj = Dk, the busy period of equation (4.5) would be greater than Dj . In fact for both

of their busy periods to be equal, Ck = Cj so that the two tasks are having adjacent priorities, and thus

suffering from the same interference.

It can be concluded that equation (4.5) accounts for the worst-case response time of any task in the

system (equation (4.4) also reduces to equation (4.5) because it has just been proved that a partner task

of higher priority can not interfere another’s schedulability), resulting a simpler test than the previous

one proposed in [7], which is in turn based on Tindell’s analysis of arbitrary offset [117]. The main im-

provement comes from how prologue task and epilogue task are interrelated and the way their deadlines

and offsets are assigned, rendering any deemed interference from the partner task impossible. Please

note that the simplified test does not apply in the enhanced version of scheduling described in the next

chapter. Both the busy periods will need to be examined for each offset combination.

Schedulability of the task system can be easily verified by comparing the response time to the deadline

for all tasks. That is:

∀j ∈ γ : rj ≤ Dj , (4.7)

where γ is the set of all non-imprecise tasks plus all prologue and epilogue tasks in the task system.

If the blocking factor Bi is omitted, and the concerned system only consists of sporadic tasks, the test

is exact because the worst-case can indeed occur. However, in the case of periodic tasks with shared

resources bounded by a blocking factor, the worst-case interference may never occur due to particular

phasing caused by how tasks access resources, making the test sufficient but not necessary.
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4.3 Summary

In this chapter new results in scheduling imprecise computation based on fixed priority preemptive

scheduling have been presented. The previous analysis in scheduling imprecise computation of such

task model [7] is not sufficient in terms of the offset transformation in calculating task’s response time,

for which proposed fixes are provided here. The general method for determining the exact worst-case

response time with offset is exponential in time with the number of imprecise tasks concerned. The tests

were further simplified by proving that under DM priority ordering and the deadline assignment scheme,

the previously proposed test for second busy period is not necessary.

In the next chapter a novel scheduling scheme, based on Dual Priority Scheduling, to maximize the

scheduling of unbounded optional components in the system, along with the required schedulability tests,

is presented.
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Chapter 5

iDPS - imprecise Dual Priority Scheduling

In the previous chapters the P-O-E task model for imprecise computation was introduced along with the

exact schedulability test.

This chapter presents the details of a new scheduling scheme, based on Dual Priority Scheduling,

which shows how the scheduling of optional components can be enhanced while still maintaining system

schedulability. Simulation studies were performed and the results are shown for performance assessment.

Scheduling for aperiodic tasks within the proposed scheduling framework is also discussed.

5.1 iDPS: imprecise Dual Priority Scheduling

In scheduling imprecise computation with the task model concerned, the main objective is to try

servicing as much unbounded optional computation as possible while providing hard guarantees for

mandatory tasks. However, as explained in the previous chapter, optimally scheduling optional tasks

among hard tasks with offsets, in general, is NP-hard [76, 7]. Nonetheless, based on the response time

analysis formulated above, an effective scheduling scheme can be derived with satisfying performance

by utilizing the concepts from Dual Priority Scheduling (DPS) [43] while maintain the required hard

timing guarantees.

DPS, proposed by Davis and Wellings, is characterized by its low overheads and simple implementa-

tion. It has been shown highly efficient for servicing aperiodic tasks. To enable DPS to service imprecise

tasks with the proposed task model, the way it sets the promotion time of different tasks needs to be

modified. The term iDPS is used to refer to the extended version of DPS which is aimed at supporting
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Upper Band (promoted hard tasks)

Middle Band (soft aperiodic and 

optional tasks)

Lower Band (normal hard tasks)

Increasing priority

Figure 5.1: Priority hierarchy of DPS.

imprecise computation.

In DPS, the worst-case execution time of a task is first found by the response time equations, such as

equations 4.5 and refeq4.6 in this case. Note that these equations can easily be extended to accommodate

release jitter and arbitrary deadlines as shown in [43].

There are three priority bands in DPS (Figure 5.1), aperiodic tasks reside in the middle band and any

tasks in a higher band have absolute higher priorities than the ones in a lower band. Hard tasks, when

first released, are set to run in the lower band. They are promoted to the upper band when it is necessary

for them to meet their deadlines. The latest promotion time yi = ti + Yi, where ti is the original release

time and Yi = (Di − Ri) is found by first calculating the worst-case response time Ri of the task τi. In

other words, if τi has not been executing after an interval Yi since its release, it will be promoted at the

instant yi.

The original DPS sets every hard task’s promotion time as late as possible for responsiveness of

aperiodic tasks. In iDPS, the same promotion strategy for non-imprecise hard tasks is retained. However,

to maximize the available time for scheduling optional tasks, it is necessary to schedule the prologue

task as early as possible and the epilogue task as late a time as possible, so that the chance of scheduling

pending optional tasks is maximized.

More specifically, in iDPS the promotion strategy for tasks is modified so that for each prologue task

τpi the promotion time is set to their initial release time ti, which is the beginning of every period of

the task. For each epilogue task τpi and any normal hard tasks τx, a latest promotion time yi is set to

ti + (Di − Ri), as shown in Figure 5.2 (prologue and epilogue represented by Cj and Ck). In such a

way, the interval between prologue and epilogue is effectively enlarged.

Note that the accuracy of WCET, which are assumed to be given, is important - as the epilogue task is

postponed as much as possible, invalid higher WCET may lead to an overrun of tasks and subsequently
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Figure 5.2: Delayed promotion time of epilogue task and ordinary task by iDPS.

missed deadlines. Note, however, that this is rather a problem of inaccurate WCET analysis than a

problem of iDPS, and a safety margin can easily be incorporated if it is deemed necessary.

5.1.1 Schedulability Analysis

According to Bernat and Burns [18], promoting a task at time yi is equal to assigning the effective

release time of the task the time ti + Yi and a deadline Di − Yi, where ti is its original release time.

Note that in applying iDPS, unfortunately, when a task’s offset is changed, the worst-case response time

calculated according to the previous chapter will be no longer valid. In other words, if tasks are promoted

at an offset according to the previous response time value calculated, the actual response time may not be

the same since other tasks may be released at a different time in their execution, effectively changing the

offset relation. In particular if the resulting response time is longer than the previous calculated response

time, releasing a task at that offset will result in tasks missing their deadlines.

Therefore, to apply iDPS, the offset Oi of epilogue τi will need to be re-adjusted as Si + Yi, and the

schedulability tests need to be re-run again for guaranteeing schedulability of the system.

As a solution, this offset re-adjustment and response time re-calculation iteration procedure is per-

formed from the highest priority to the lowest priority epilogue task where the offset of the epilogue is

its response time obtained in the last test, until all epilogue task’s response time value have been fixed

with all tasks schedulable. In case any lower priority task becomes unschedulable with the new offset

value of an epilogue task used in an iteration, a fall back policy is employed where the values used in the

last iteration will be adopted and no new promotion times will be calculated for that task. The iteration

continues with the rest of the lower priority epilogue tasks.
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Each iteration involves the schedulability tests mentioned in the previous chapter and the maximum

number of iterations is bounded by the number of epilogue tasks in the system. Therefore the major

complexity is still imposed by the number of imprecise tasks in the system as in the schedulability tests

with offsets.

Schedulability of all tasks is now verified by comparing the response time to the deadline as:

∀i ∈ γ : Ri ≤ Di −Oi, (5.1)

where Oi = 0 if τi is a prologue task and γ is the set of all tasks in the system.

5.1.2 Effects of iDPS

Now the principle effects that can be expected from applying iDPS are presented. The actual amount

of time that can be used for executing optional component of an imprecise task is a dynamic property

of the system since it is a function of when the prologue finishes execution and when the epilogue is

released. This can be made more quantitative by the following definition considering an imprecise task

τi with prologue τj and epilogue τk:

Definition 1. The interval,Wi, that can be used for executing the optional component of τi is the duration

between the completion of its prologue task and the release time of its epilogue task where the prologue

executes up to its worst-case response time.

The exact increase for Wi by iDPS on τi depends on all the attributes (deadlines, response times, etc.)

of different tasks in the system. Nevertheless, such an increase could be substantial - in fact it could be

as much as or even greater than the original interval. In particular, it is shown that Wi is exactly doubled

in a special case by the following theorem if Cj = Ck.

Lemma 1. If the intermediate deadline is assigned according to Section 4.2.1, the new deadlines of τj

and τk will be set as half of the original deadline Di
2 .

Proof. This directly follows from equation (4.3) when Cj = Ck.
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Theorem 2. If Cj = Ck and the followings concerning τi hold:

• the prologue task executes up to its WCET;

• the prologue task experiences worst-case interference from higher priority tasks and;

• both prologue and epilogue do not access shared resources.1

By applying iDPS, Wi is exactly doubled, that is, increased by 100% compared to the original offset

defined in Chapter 4.

Proof. By lemma 1 it is known that prologue and epilogue have the same deadline, and by DM ordering

their priorities will be adjacent to each other.2 According to equation (4.5, 4.6), both of their worst-case

response times will be the same.

The original Wi is the deadline of prologue minus its worst-case response time, i.e., Dj − Rj , since

the epilogue task is released immediately at Si which stops the execution of the optional task. By using

iDPS, the release time of the epilogue task τk is postponed by an extra durationDk−Rk = Dj−Rj .

At first glance the theorem seems rather restrictive since worst-case rarely happens and that prologue

and epilogue can be expected to have different WCET values. It is provided here as a proof of concept

showing the amount of improvement that can be obtained by exploiting response time information of

tasks in iDPS. In fact, systems do show a similar performance gain in the simulations studied shown

in the next section (when tasks have non equal execution times and are not experiencing worst-case

interference).

In addition, because priority ordering is based on deadlines and that the deadlines of prologue and

epilogue usually do not differ much compared to other tasks in the system (assuming the WCET to

deadline ratio is small, equation (4.3)), their priorities will often stay close, which roughly resembles the

required assumptions (adjacent priorities) and expected gain of the interval length.3

1The proof is also valid when both of them share the same resource bounded by the same blocking factor, and the prologue

experiences the worst-case scenario.
2In cases where other tasks also have the same deadlines, one can always arrange their priority in such a way that they are

adjacent to each other without compromising schedulability.
3Especially for high priority tasks with short deadlines since they suffer less interference.
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Note that any unused guaranteed capacity (slack) will be automatically reclaimed and used in the

middle band of the scheduling framework for enhancing system utility. Note also that the run-time

overhead of iDPS should not be more than that of DPS (proved effective in [43]) since no sophisticated

calculations and mechanism changes are involved.

5.2 Performance Evaluation

This section evaluates how effective the proposed task model and scheduling scheme can solve the

problem of maximizing resource usage. Based on the timing requirements used in the case study pre-

sented in Chapter 1, a set of simulations were performed to model the RoboCup scenario.

There are three versions of the scenario which are of interest:

1. where the 11 agent tasks are represented by normal hard tasks (marked “Traditional” in the figures);

2. where the 11 agent tasks are represented by the P-O-E task model with schedulability verified as

suggested in Chapter 4. Optional components are scheduled whenever no hard task is executing

(marked “P-O-E” in the figures); and

3. where the 11 agent tasks are represented by the P-O-E task model plus that iDPS, as described in

the last section, is applied so that normal hard tasks and epilogue tasks are scheduled as late as

possible for facilitating optional computation (marked “iDPS” in the figures).

The 11 agent tasks are denoted by the set τa; the deadline of each task is equal to the period and

assigned as 10ms. The total utilization of all agent tasks is denoted as Ua =
∑
∀i∈τa

Ci
Ti

. In addition,

there are 10 more normal tasks with randomly generated values of period. The period values span across

a few orders of magnitude (4 - 7 digit figures) in a roughly uniform way where the value of each digit is

chosen randomly (1 - 9 for the most significant digit and 0 - 9 for the rest). This set of tasks mimic the

workload of background system tasks in the case study, denoted as τs, where Us =
∑
∀i∈τs

Ci
Ti

represents

the total utilization of these tasks. Note that the resolution of a simulation tick is one micro-second (µs),

thus the tasks generated represent a reasonable period distribution of a real system.

Note that due to the sizable number of imprecise tasks in the simulations, all response time calculation

is based on the tractable, sufficient (but not exact) test, as defined in Chapter 6. In the chapter it is shown

that the difference between the response time of tasks calculated by the two tests is only minimal while
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Figure 5.3: Performance of different scheduling schemes against varying agent tasks utilization.

the tractable is much faster to calculate. In addition, all mandatory tasks are assumed to not hold any

resources (no blocking). Optional tasks are set to have the same utility so that they are scheduled in a

round robin fashion (when eligible for execution) in the middle band throughout the experiments.

Except for the varying parameter in each experiment, other parameters are held at default values as

follows:

• total utilization of system tasks Us = 0.01 to allow more resources for agent tasks;

• total utilization of agent tasks Ua = 0.8;

• the unused WCET ratio E = 1 − e
C is set to 0, where e is the actual execution time such that all

tasks executed up to their WCET.

Moreover, to evaluate the flexibility of the P-O-E model, the imprecise version of Ua is only set at

20% of the traditional version of Ua. That is, the WCET guaranteed by the system is only 20% of the

WCET value guaranteed for agent tasks without using the P-O-E model, where prologue and epilogue

each shares 10%. Each simulation runs for 10,000,000 ticks and the primary performance metric is the

ratio of the total time used for scheduling agent tasks (including all mandatory and optional computation)

against the total time simulated.

Figure 5.3 shows this ratio against varying value of total utilization for agents (Ua). Each data point

in the figure represents the averaged value calculated over 10 simulations each using a different set of

randomly generated system tasks (τs) with the same set of parameters.
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Figure 5.4: Performance of different scheduling schemes against varying unused WCET ratio.

It can be observed that as Ua increases the total time scheduled for agent tasks (Traditional) also

increases accordingly. This must be true since more capacity is guaranteed for the agent tasks assuming

the whole system is schedulable. The performance of scheduling with the imprecise task model (P-O-E)

and further with iDPS are interesting. They remain steady at about 52% and 99% respectively. This

means that even when their WCET are set at 20% of the agent task utilization without P-O-E, the amount

of optional components scheduled allows them to make use of the spare capacity from the system.

In particular, since the periods of the imprecise agent tasks are in sync, employing the P-O-E task

model makes all epilogue tasks having the same offset S (Section 4.2.1) relative to the prologue tasks.

Therefore the interval between S to the end of the period is not available for scheduling optional tasks.

With increasing value of Ua the performance of “P-O-E” eventually falls below that of the traditional

method. However, scheduling by iDPS remains the best approach of the three. Based on the worst-case

response time information the promotion time of epilogue tasks are set as late as possible. This leads to

almost all of the available capacity assigned to the imprecise tasks representing the 11 agent programs.

Nevertheless, it was assumed that the unused WCET ratio to be 0. This is unrealistic for real systems -

especially for AI algorithms which may have even more variable and longer execution times than typical

algorithms do. Figure 5.4 shows how the performance of the traditional approach changes with varying

unused WCET ratio that is applied to all tasks in the system, while holding Ua = 0.8. It can be seen that

as the value of E increases, the performance of the traditional approach drops accordingly.

Consider how difficult it is to construct AI algorithms at design time so that they can have very pre-

dictable execution times. Besides this issue, even when the system is fully utilized, it may lead to the
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Figure 5.5: Performance of different scheduling schemes against varying system tasks utilization.

system being unable to admit new tasks online for an open real-time system. In contrast, the task model

allows computation of different natures to be separated with much smaller WCET so that new tasks

can be admitted to the system dynamically while the dual priority mechanism in iDPS makes sure any

slack time from unused guaranteed time of hard tasks is reclaimed, and thus maintaining the superior

performance.

This ability is also evidenced in Figure 5.5 which shows how the performance of iDPS varies as the

system is increasingly utilized by system tasks, where Ua is held at 40% of the overall system workload.

It can be seen that iDPS adapts to the changes in available resource dynamically and again outperforms

the other approaches.

Moreover, there is yet another important advantage of using iDPS. That is, imprecise computations

such as anytime algorithms tend to give very good results in a very short time but improve result quality

slowly as time progresses [44, 124, 125]. By delaying the execution of epilogue task and non-imprecise

tasks more optional components will get executed earlier, thus providing the desired result earlier, which

could be important in, for example, real-time agent systems that have to operate under dynamic environ-

ments.

5.3 Scheduling Aperiodic Tasks

As mentioned, DPS was originally proposed as a way to efficiently schedule aperiodic tasks [43]. If

aperiodic tasks are soft without need for hard guarantees, they may be added to the middle band where
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Figure 5.6: Extending iDPS for aperiodic tasks scheduling.

optional tasks reside. Note also that iDPS is a flexible framework where many levels can exist. In systems

where the aperiodic workload has higher utility than other optional tasks, or average responsiveness of

aperiodic tasks is important, one can introduce an extra priority band into the scheduling hierarchy in

such a way that any ready aperiodic tasks will preempt all the optional task executions. Figure 5.6 shows

an example priority hierarchy.

Some aperiodic tasks may be firm tasks, requiring to be completed before some deadline or their utility

becomes zero. However, Davis and Wellings [43] showed that the time complexity of exactly calculating

the available slack in DPS, up to an arbitrary time instant, is pseudo-polynomial. Calculations depend

on task periods and deadlines of hard tasks and may prove to be impractical when online acceptance of

aperiodic tasks is required.

An alternate method is to make use of a periodic server, as described in Chapter 3, within the iDPS

framework. Previous analysis of periodic servers depends on utilization test, which often assumes the

server operates at high priority only for deriving the analytical schedulability test [73, 113]. In serving

aperiodic tasks by periodic servers, however, Bernat and Burns [20] found that a large server capacity

is actually the main contributing factor for task’s responsiveness. For example, a periodic server can

have a long period and low priority but with a relatively large capacity. In particular, they showed that a

Deferrable Server can be modelled as a sporadic task with release jitter, which can be analysed using the

response time analysis. Hence it could be incorporated into iDPS.

The use of multiple servers [20] may also be of use for firm aperiodic tasks of very different timing

properties. Single periodic servers assumes a simple queue scheme and therefore may cause urgent

aperiodic tasks to miss deadlines. If the load of firm aperiodic tasks is known a priori, extra servers can
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be used to match the timing requirements with designated server parameters (period, capacity, etc.).

5.4 Summary

In this chapter new results in scheduling imprecise computation based on fixed priority preemptive

scheduling were presented for improving the scheduling of optional components based on an extended

version of DPS [43], called iDPS. The improvement can be substantial as illustrated by the simulations

conducted. Suggestions on how aperiodic tasks can be scheduled in the framework were also provided.

In the next chapter a more tractable, sufficient but not exact, version of the schedulability test is

presented.
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Chapter 6

A Tractable Schedulability Test for

Imprecise Computation

In Chapters 4 and 5, schedulability test for imprecise computation of “Prologue-Optional-Epilogue”

task structure based on fixed priority real-time scheduling was developed where a particular scheduling

scheme, named “imprecise Dual Priority Scheduling” (iDPS), was shown to perform significantly better

than a previous approach as shown in the previous chapter [7].

The time complexity of the schedulability tests developed previously, however, are exponential with

regard to the number of imprecise tasks in the system. The tests involve the testing of all the possible

combinatorial combinations of offset alignments (released at the same time) of different offset transac-

tions. For each offset alignment combination, a whole schedulability test needs to be performed and the

maximum value of all resulting busy periods is taken as the worst-case response time. Unfortunately, the

tests become computationally prohibitive with even a moderate number of imprecise tasks.

Tindell devised a tractable offset test for tasks with any offset relations using a different approach

[117]. In essence, the idea is that, rather than performing a whole test for each offset combination, one

can examine the interference caused by using all different offset relations and take the maximum of them

during each iteration of the calculation of the worst-case response time. Employing this approach a

tractable schedulability test, which is a special case of Tindell’s analysis, is developed. The time com-

plexity of calculating the busy period for each task is reduced from the original O(2n) to O(2n), where

n is the number of higher priority imprecise tasks in the system - a critical difference as n increases.
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In this chapter the exact schedulability test required for the task model concerned, described in the

two previous chapters, is re-visited first. The details of the tractable test derivation are then presented,

followed by a set of extensive simulations for performance evaluation. The simulations are conducted

with a wide range of different parameters, including the number of imprecise and non-imprecise tasks in

the system, system utilization and utilization skew of tasks. The results are discussed in detail before the

concluding remarks.

6.1 Exact Schedulability Test

In the original schedulability analysis by Audsley et al. [11, 7] for the P-O-E task model, two busy

period intervals need to be examined to determine the worst-case response time, since a partner task of

a task τi with higher priority can cause other tasks with intermediate priorities to finish later, effectively

causing interference to τi itself. It was shown in Chapter 4 that the second busy period is actually not

required for verifying schedulability when tasks are in the deadline monotonic (DM) order where the

offset of each epilogue Cpi equals the intermediate deadline Si of the imprecise task, defined as:

Si =
Di − (Cpi + Cei )

2
+ Cpi . (6.1)

Treating every prologue and epilogue as normal tasks, the number of tasks during schedulability test

is now 2n +m, where m is the number of normal tasks while n is the number of imprecise tasks in the

system. Indexed by j, the busy period of every task τj in the system can be calculated as:

wn+1
j = Cj +Bj +

∑
x∈hp(j)∧x 6=k

⌈
wnj −Ox

Tx

⌉
Cx, (6.2)

where τk is the partner task of τj , which belongs to an imprecise task.

However, to enlarge the available interval between prologue and epilogue during which more optional

components can be scheduled, Dual Priority Scheduling [43] has been applied to normal tasks and epi-

logue tasks as described in the previous chapter. Since the offset of epilogue task is changed (not in

DM ordering) due to the effort of promoting epilogue tasks as late as possible, the second busy period

equation, stated below, is needed for the re-evaluation of task’s schedulability:

wn+1
j =

⌈
wnj −Oj

Tj

⌉
Cj +Bj + Ck +

∑
x∈hp(j)∧x 6=k

⌈
wnj −Ox

Tx

⌉
Cx. (6.3)

The actual busy period is wj − Oj after the value wj converged, since task τj is assumed to be released
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with an offset Oj relative to its partner task. At the end the first and second busy periods are compared

and the larger value is used as the actual worst-case response time.

However, to account for the exact worst-case response time of a task, it is necessary to examine all

the possible combinations of higher priority task offset alignments, which has been shown intractable in

general [117]. In particular, the critical instant can occur at any of the combinatorial offset alignments of

higher priority prologue-epilogue pairs.

In the case of our task model where there are two tasks (prologue and epilogue) in an offset relation,

for each task there will be O(2n) number of the above response time test to perform, where n is the

number of higher priority prologue-epilogue pairs (base two because there are two tasks in a single

offset relation) and that a single test requires a pseudo-polynomial time calculation [8] in the worst-case.

6.2 Tractable Offset Test

Tindell devised a tractable offset test for tasks with any offset relations using a different approach

[117]. In essence, the idea is that, rather than performing a whole test for each offset combination, One

can examine the interference caused by using different offsets within a given transaction1 and take the

maximum of them during each iteration of the calculation of the busy period w. The time complexity of

this procedure is reduced from O(mn) to O(nm), where m is the number of tasks in transactions and n

is the number of transactions.

In the P-O-E task model there are only two tasks in one transaction - the prologue and epilogue tasks,

where the offset is assigned by defining an intermediate deadline between the two tasks. One can apply

the analysis of Tindell to our task model and define it more formally as below.

Ignoring the blocking term, equation (6.2) can be rewritten as:

wn+1
j = Cj +

∑
t∈trans−trans(j)

max
x∈hp(j)∩tasks(t)

(It(x)) (6.4)

where

It(x) =
∑

y∈hp(j)∩tasks(t)

⌈
wnj −O′y

Ty

⌉
Cy. (6.5)

trans refers to the set of all transactions (all imprecise tasks) and trans(j) returns the particular

transaction where task τj is in, whereas tasks(t) represents all the tasks in the transaction t. In equation

1A transaction consists if a set of tasks sharing the same period and having an offset relation to the beginning of it.
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(6.5) O′y refers to the relative offset of task τy to the release of task τx, therefore in equation (6.4) each

offset combination in the same transaction will be tested and the maximum value will be taken, during

each iterative calculation of w.

The second busy period equation is needed when iDPS is applied for the re-evaluation of the system

schedulability when the offset of epilogue task is changed. The equation can be obtained in a similar

fashion:

wn+1
j =

⌈
wnj −Oj

Tj

⌉
Cj + Ck +

∑
t∈trans−trans(j)

max
x∈hp(j)∩tasks(t)

(It(x)) (6.6)

where

It(x) =
∑

y∈hp(j)∩tasks(t)

⌈
wnj −O′y

Ty

⌉
Cy. (6.7)

The time complexity of the test for each task is reduced from the original O(2n) to O(2n), where n is

the number of higher priority prologue-epilogue pairs (transactions) of the task. Note the time complexity

for verifying the schedulability of the whole system is still pseudo-polynomial [8] with regard to the

number of tasks in the system.

6.3 Performance Evaluation

In the simulations conducted by Tindell [117], with large numbers of randomly generated task sets,

the response time of the lowest priority task is calculated by the exact test is compared to that from the

tractable test. It was observed that the tractable test performed very close to the exact test.

Since our task model is a special case in the sense that there are only 2 tasks in every transaction with

offset relations, it will be interesting to compare the performance of the tractable test derived here to the

previous result. However, in addition to system utilization, one would like to understand the performance

of the test under a wider range of task parameters including varying numbers of imprecise tasks, numbers

of normal tasks and skewness of utilization distribution among tasks.

In all the simulations, DM priority ordering is assumed. Given the utilization of the system u, a task τi

(including all prologue, epilogue and normal tasks) is randomly generated with period values spanning

across a few orders of magnitude (4 - 7 digit figures) in a roughly uniform way where the value of each

digit is chosen randomly (1 - 9 for the most significant digit and 0 - 9 for the rest). Deadlines are chosen

to be at about 90% of the period value with small variations such that Ci ≤ Di ≤ Ti..
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Figure 6.1: Tractable test performance against varying system utilization.

Note that the resolution of a simulation tick is one micro-second (µs), thus the tasks generated rep-

resent a reasonable period distribution of a real system. All mandatory tasks are executed up to their

WCET and do not hold any resources (no blocking). Once a period is generated, the WCET C of the

task is then calculated to provide the desired system utilization. Further, one of the normal tasks will be

generated with the skew parameter s as:

C = s ∗ u, (6.8)

where the WCET of remaining tasks are defined as:

C = (1− s) ∗ u. (6.9)

Except the varying parameter in each experiment, all the other parameters were held at default values

as follows:

• system utilization u = 0.5;

• number of imprecise tasks n = 5;

• number of normal tasks m = 20;

• utilization skew s = 1/(2n+m) such that all tasks equally share u;

The primary performance metric is the average task response time difference F of a task set, which is

defined as:

F =
2n+m∑
i=1

Rti −Rei
Rei

, (6.10)
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Figure 6.2: Explanation of greater response time difference in tractable test with offset recalculation.

where Rti is the worst-case response time of task τi calculated by the tractable test and Rei the one

obtained by the exact test. Since there are two versions of F of interest, Fo denotes the average task re-

sponse time difference obtained by the tractable test (equation 6.4), and, Fdps as the F from the tractable

test with offset recalculation, obtained by the maximum value from equation (6.4) and (6.6).

Figure 6.1 shows the values of Fo and Fdps against varying system utilization. For statistical signifi-

cance, each data point in the graph represents the average F over 100 randomly generated task sets.

It can be seen that the response time difference of the original tractable test, Fo, is negligibly small and

very steady, which is about 0.0017% on average. The other line in the figure shows Fdps with varying

system utilization. Although it seems relatively higher than Fo, note that the actual value is still very

small (averaged 0.014%). The difference between the two versions can be explained by the fact that, in

the original version without offset recalculation, the offset of an imprecise task τi was set according to

the intermediate deadline Si by equation (4.3), which evenly divides the available slack for scheduling

prologue and epilogue (shown respectively by τj and τk in Figure 6.2a).

However, with the offset recalculation the effective offset of the epilogue is changed to a new value,

Si + (Dk − Rk), as shown in Figure 6.2b. With this new offset relation, the distance between prologue

and epilogue is shortened which means that a lower priority task can suffer a longer interference from the

two tasks (Figure 6.2c). This will increase the chances where unnecessary interference can accumulate in

the tractable test since in each iterative calculation the maximum value of the two busy periods resulted

from the two different starting offset is taken.
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Figure 6.3: Tractable test performance against varying number of imprecise tasks.

The slight upward trend of both Fo and Fdps with increasing utilization can be understood by realizing

that higher utilization implies the WCET to period ratio of all the tasks is higher. Therefore longer

interference by tasks can prolong the busy period even more, hence the result.

Figure 6.3 shows the averagedFo andFdps over 100 randomly generated task sets with varying number

of imprecise tasks. It can be observed that with increasing number of imprecise tasks the performance

tends to degrade. This again can be explained similarly by the likelihood of unnecessary interference

accumulation argument above, since with more imprecise tasks the number of iterations that need to be

performed also increases. Note that because the exact test easily becomes intractable it has been difficult

to compare the performance of the two tests with higher number of imprecise tasks.

Figure 6.4 shows the averaged Fo and Fdps over 100 randomly generated task sets with varying uti-

lization skew level. The utilization skew seems to correlate well with response time difference for Fo

while not showing a clear association with the performance of Fdps.

Two factors may both affect the performance here: 1) as more utilization is assigned to the skewed

task, the WCET to period ratio of other tasks will decrease. Hence in general the interference of higher

priority tasks on a particular task will be lowered also, thereby decreasing the likelihood of accumulating

unnecessary interference in the tractable test; 2) on the other hand, as more utilization is assigned to the

skewed task, if this happens to be a high priority task it will exert more interference on lower priority

ones, thus lengthening the resulting busy period. Therefore the actual influence from skewness can not

be predicted directly for Fdps, while the first factor appears dominant in the performance of Fo.
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Figure 6.4: Tractable test performance against varying utilization skew.

It is interesting to see if the number of non-imprecise tasks in a system also makes a difference in

performance. Figure 6.5 again shows the averaged Fo and Fdps over 100 randomly generated task sets,

this time with varying number of normal tasks.

The lines appear to be decreasing with increasing number of normal tasks. This makes sense because

the greatest contributing factor of the response time difference is how likely unnecessary interference

can accumulate during the calculation of the response time equation, which is affected mainly by system

utilization and the number of imprecise tasks as shown. Holding the difference ratio more or less the

same, as more normal tasks are added to the system, the same ratio has to be divided by more tasks for

obtaining the averaged response time difference, thus the smaller values depicted in Figure 6.5.

The simulations of the tractable test, when compared to that performed by Tindell, appear to perform

better. One way to explain this is that there are only 2 tasks in an offset relation in each transaction

where in Tindell’s simulations 1-6 tasks are generated in 1-6 offset transactions randomly, presenting

a more varied offset relations among tasks. As such, during the iterative calculation of the response

time equation, it is easier for more unnecessary interference to take effect due to increased different

combinations of task offset relations, therefore causing a longer busy period.

Note that the metric employed throughout the experiments provides a more general assessment of the

test than the metric used in [117], which compares the response time difference produced by the tractable

test for the lowest priority task in the system. One may think that the metric in use may introduce an

averaging effect so that the tractable test for our task model seems to perform better. However, this

is not true. It has been observed from the experimental data that the average response time difference
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Figure 6.5: Tractable test performance against varying number of non-imprecise tasks.

of a whole task set can be greater than the response time difference of the lowest priority task in many

occasions, meaning that it does not always suffer the worst unnecessary interference accumulation during

the tractable test calculations for different offset relations.

Note also that, using the tractable test, the available interval for scheduling optional components of

an imprecise task can be shorterned due to the fact that the latest promotion time of an epilogue task is

pushed earlier, caused by a more pessimistic worst-case response time calculated by the tractable test.

However, it is emphasized that the difference is extremely small - for example, even with iDPS offset

recalculation the maximum observed value of Fdps in the 1000 randomly generated task sets in Figure

6.3 was only 0.089%. In addition, the tractable test may well be the only means for calculating response

time when performing the exact response time test is computationally infeasible.

6.4 Summary

The exact real-time schedulability test for imprecise computation of the “Prologue-Optional-Epilogue”

structure is computationally prohibitive when there are a large number of imprecise tasks present in the

system. This motivates a more practical approach for verifying system schedulability. Based on Tindell’s

analysis, a tractable test for the P-O-E task model is derived. Simulations show that the test performs

extremely well under a wide range of different conditions. It is therefore a suitable substitute when the

exact test becomes intractable. The result provides a more practical approach for schedulability analysis

for imprecise computation of the task model concerned. In the next chapter the problem of assigning

priority for tasks for maximizing system utility is considered.
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Chapter 7

Optimal Priority Ordering for Imprecise

Computation - A Utility-Based Approach

In fixed priority preemptive scheduling, task priority is static and assumed to be unchanged throughout

a system’s lifespan. The assignment of task priority in a hard real-time system has only one objective,

which is to guarantee that all the tasks in the system are schedulable with their assigned priorities, thereby

meeting their respective deadlines. However, real-time AI applications require a more adaptive resource

management in the system [44, 125]. This means that only satisfying system schedulability will be

inadequate in supporting such applications.

For example, in the context of Dual Priority Scheduling for imprecise computation (iDPS) presented

in Chapter 5 [83, 7], a higher priority prologue task will finish its execution earlier (suffering less possible

interference from higher priority tasks) and a higher priority epilogue task will have a later promotion

time, which leads to a larger interval in which an optional component can be scheduled. Therefore, it

will be more reasonable to assign higher priority to imprecise tasks whose optional components have

higher values to the system.

Although assigning priorities based on tasks’ deadlines is usually a general rule for optimal schedul-

ing, Audsley [4] showed that if arbitrary offsets are allowed, neither rate monotonic priority ordering

(RMPO) nor deadline monotonic priority ordering (DMPO) is optimal. He devised an optimal priority

ordering algorithm which integrates with a feasibility test in determining task priority. The algorithm is

guaranteed to find a feasible ordering whenever one exists. Although it is applicable to our task model

(allowing offsets), however, the algorithm only concerns schedulability while the maximization of sys-
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tem utility based on the importance of tasks has not been considered.

Aguilar-Soto and Bernat [2] presented an optimal priority assignment algorithm which finds a priority

ordering for a task set maximizing a given quality of service (QoS) measure that can be associated with

task’s priority. The algorithm, unfortunately, assumes the optimality of DMPO in determining priorities

and is associated with an inefficient schedulability testing procedure, which are both unsuitable for the

task model concerned here.

These previous works therefore motivate the development of an efficient algorithm that can find opti-

mal priority orderings based on a task’s utility. The rest of this chapter is organized as follows: first the

priority ordering algorithm of Audsley is revisited in the next section before looking at the algorithm by

Aguilar-Soto and Bernat. The details of their algorithms and the reason why they are not suitable for our

scheduling framework are discussed. A new utility-based priority ordering algorithm is then presented,

with proofs of correctness and optimality. This is followed by a set of simulations examining the perfor-

mance of the proposed algorithms. The use of a tractable schedulability test in the UBPO algorithm is

also studied and evaluated before the work is summarised.

7.1 Audsley’s Algorithm

The priority ordering algorithm devised by Audsley [4] addressed the problem of assigning priorities

to tasks with arbitrary start time (offsets). When offset is allowed, neither RMPO nor DMPO is optimal

in assigning task’s priorities. That is, there could be other priority orderings which are feasible but that

RMPO and DMPO are infeasible. In such situation, in the worst-case, one has to examine all the N !

priority orderings for a system with N tasks. Audsley’s algorithm reduces such complexity by proving

the following theorem:

Theorem 3. Audsley [5]. If process p is assigned the lowest priority and is feasible, then, if a feasible

priority ordering exists for the complete task set, an ordering exists with process p assigned the lowest

priority.

The algorithm assigns priority using a bottom-up approach from the lowest priority to the highest,

since once a task has been chosen for the lowest priority level, the theorem still holds for the rest of the
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task set - the same procedure can therefore be applied iteratively to a smaller and smaller set of tasks.

This priority ordering algorithm is optimal with respect to any scheduling test as long as task worst-case

response time are monotonically non-increasing with higher task priority; hence it can also be used with

the schedulability tests derived in previous chapters for imprecise computation of P-O-E task structure.

However, the original algorithm only assumes arbitrary ordering of tasks before running. That is,

there is no attempt to associate higher priority with more important tasks. Observe that more than one

feasible priority ordering may exist, to maximize the utility of scheduling optional components within

the framework of iDPS, the objective is therefore to find a priority ordering which, in maintaining the

schedulability of a system, maximizes the interval between the prologue and epilogue tasks.

In terms of fixed priority scheduling, it can be achieved by assigning higher priorities to imprecise

tasks whose optional component has higher value than others, since the higher the priority the earlier

prologue tasks can finish their execution and the later the promotion time can be set for epilogue tasks;

the time interval for potential optional task execution is thus enlarged.

7.2 Aguilar-Soto and Bernat’s Algorithm

Aguilar-Soto and Bernat [2] presented an optimal algorithm, named “D&I”, which finds a priority

ordering from a task set maximizing a QoS measure associated with task priority. In particular, the

algorithm finds a schedulable priority ordering which has the minimum lexicographical distance from

the most desired ordering, which is determined by a task importance function.

The algorithm employs a branch and bound mechanism, where priority ordering is modelled as a tree

searching problem. From highest to lowest priority, at each iteration it tries to assign a priority to a task

(an entry point leading to a subtree of possible orderings), where lower priorities tasks are ordered in

the DMPO fashion. If any task becomes unschedulable that subtree is abandoned and another task is

selected for the concerned priority.

Although it also takesO((N2+N)/2) steps to find the ordering like Audsley’s algorithm, in each step

where a priority level is tested, each lower priority task has to be verified to be schedulable. In contrast,

each step of Audsley’s algorithm only involves testing the response time of the task concerned.

In addition, the algorithm assumes that when testing a priority for a task, all the lower priority tasks

are ordered according to DMPO. However, as mentioned DMPO is not optimal for tasks with offsets. In

other words, if the lower priority tasks ordered in DMPO is not schedulable, there may be other orderings
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which can make the task set schedulable. This renders the branch and bound mechanism used in the

algorithm non-optimal and backtracking is now required. That is, if M is the number of lower priority

tasks whose priorities have not been determined in each iteration, in the worst-case it is necessary to

examine all M ! extra orderings rather than the original M orderings, which is clearly inefficient.

7.3 Utility-Based Priority Ordering Algorithm

Inspired by the bottom-up approach of Audsley’s algorithm, it is modified here for assigning priorities

to tasks by taking into account task utility. It is shown that the UBPO algorithm (Figure 7.1) also

minimizes lexicographical distance like the D&I algorithm of Aguilar-Soto and Bernat when a different

measure is used. In particular, the algorithm tries to assign the lowest possible priority to a task with low

important at any given time, where an optimal priority ordering sequence is one whose tasks are ordered

from lowest priority to the highest priority, left to right, where lower priority is assigned to tasks with

lower importance based on a given task preference function.

The definition for our version of lexicographical distance of priority ordering sequence is given

below and similar notations are used as defined in [2]. In particular, a task system is denoted by

τ = {τ1, τ2, ..., τN}, representing all tasks in the system, where N includes the total number of non-

imprecise and imprecise tasks each represented by a pair of prologue and epilogue tasks.

If an order relation ≺ (“precede to”) is defined over the task set, a sequence S = 〈τ1τ2...τN 〉 can be

obtained such that for any task position j < k in the sequence τj ≺ τk. The ordering relation is generic

and any such relation that produces a total ordering over the task set can be employed as desired; in

this context it may be referred to as a “less important than” relation. The set Ŝ represents the set of all

possible N ! sequences for a system with N tasks. Further, SD is denoted as the input sequence which

is most desired by an order relation, and SF referring to the final priority ordering sequence found by an

algorithm.

The ordering defines priority preference also: if τj ≺ τk, a lower priority is assigned to τj . For

simplicity, priorities are assigned from left to right in a priority ordering sequence - clearly if such

sequence is equivalent to the sequence defined by the ordering the most desirable priority ordering is

obtained for all tasks.

However, since such a sequence may not be schedulable, the objective is then to find a sequence that

is as close to the desired sequence as possible. Aguilar-Soto and Bernat [2] defined the comparison of
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int Optimal_Priority_Ordering(Task[] TaskSet) {�
    int Schedulable;�
    for (int K=N; K>1; K--) {�
        Schedulable = 0;�
        for (int J=K-1; J>0; J--) {�
            if (Schedulability_Test(TaskSet, K)) {�
                Schedulable = 1;�
                break;�
            }�
            Swap(TaskSet, K, J);�
        }�
        if (!Schedulable)�
            return(UNSCHEDULABLE);�
    }�
    return(SCHEDULABLE);�
}�

Figure 7.1: The utility-based priority ordering (UBPO) algorithm.

any two sequences in Ŝ as follows: if α, β ∈ Ŝ, α is said to be more important than β if comparing

each element α[i] with β[i], where i = 1...N starting from the leftmost to rightmost of two sequences,

the first difference is in the kth task and α[k] ≺ β[k]. The more important sequence is said to be

lexicographically smaller. However, since the order relation used is “less important than” rather than

“more important than”, the less important sequence will be lexicographically smaller.

With the ordering relation, a function I : Ŝ → [0, 1, ..., N ! − 1] can be defined mapping all possible

priority orderings to a unique number, where I(S) = 0 if S is the most desired sequence defined by

the relation. The lexicographical distance of two sequences α, β ∈ Ŝ can therefore be obtained by

I(α)− I(β).

For example, let τ = {a, b, c} and the desired ordering SD = 〈bac〉 (b the lowest importance), the

lexicographical distance of the sequences are listed below:

I(〈bac〉) = 0

I(〈bca〉) = 1

I(〈abc〉) = 2

I(〈acb〉) = 3

I(〈cba〉) = 4

I(〈cab〉) = 5
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Figure 7.1 shows the utility-based priority ordering (UBPO) algorithm, in which the original bottom-

up approach by Audsley is adopted. Given a desired task set sequence ordered based on task’s utility

(a task importance ordering) as input, where high priority is assigned to task with higher utility, the

algorithm finds a priority ordering that is both schedulable and lexicographically closest to the desired

input ordering, if a feasible ordering does exist.

The outer loop in Optimal Priority Ordering() serves to fix the next lowest priority K for a task

(from left to right of a priority sequence as K decreases), where the inner loop iteratively swaps the

next lowest priority task candidate to priority K and test its schedulability. In particular, if a task is

not schedulable with the assigned priority, the inner loop swaps its position with the next candidate task

indexed by J , until a schedulable task can be found.

After a task is found to be schedulable with an assigned priority, the iteration goes on to find the task

for the next lowest priority until when K = 1 where there is only one task remaining and it is assigned

the highest priority. Note that for simplicity purpose of the algorithm, without loss of generality, it is

assumed that any task is schedulable when it is assigned the highest priority in the system so that there

is no need to perform schedulability test on that task.

Theorem 4. In fixed priority preemptive scheduling, the UBPO algorithm, using an exact feasibility test

for determining task schedulability, is optimal in the sense that if there exists a feasible priority ordering

it is guaranteed that the algorithm will find it.

Proof. This optimality is inherited from Audsley’s algorithm, based on the properties of fixed priority

scheduling and response time test (Theorem 3) [4]. The original algorithm assumes the selection order of

tasks in fixing priority can be arbitrary, the only difference between the two is that the UBPO algorithm

makes use of a particular input ordering and task selection order.

Note that whether or not the algorithm can find a feasible ordering whenever one exists depends on

the schedulability test employed. If a sufficient but not exact test is used, some orderings may be feasible

but can not be found by the algorithm because it is a decision of the schedulability test. Since the

schedulability test derived in Chapter 4 for imprecise computation is exact, the UBPO algorithm is also

optimal in the sense that if there exists a priority ordering that makes a system schedulable it will find

one.
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Theorem 5. In fixed priority preemptive scheduling, the UBPO algorithm, using an exact feasibility

test for determining task schedulability, is optimal in the sense that if a schedulable priority ordering is

found, the lexicographical distance to the desired input ordering will be minimized among the set of all

feasible orderings.

Proof. It is first shown that, in each iteration, the swapping operation does not affect the importance

ordering relation in the subsequence representing tasks whose priorities have not been determined. Then

it is shown that fixing a priority of a task with such swapping method will produce a task sequence

having a smaller lexicographical distance from the optimal ordering among other feasible sequences.

Since such property still holds true when the procedure is performed on smaller and smaller task subsets,

the theorem is proved.

Intuitively, for the whole task set to be schedulable, each task has to be assigned a distinct priority

with which it can meet its deadline. Starting from lowest priority, the algorithm tries to find the task with

lowest importance that can be assigned the lowest priority. Since there must be one task to be assigned

with a given priority for satisfying overall system schedulability, when a task is found schedulable with

a priority it is the best task to be at that priority. The procedure can be performed iteratively on the

remaining tasks in the same way. The effect is that the final priority ordering, when found, if any, has

the minimum lexicographical order among all other schedulable orderings, relative to the desired task

ordering.

More formally, consider a priority ordering sequence S = 〈τ1τ2...τN 〉 with N tasks, which can be

written as S = 〈ψwφ〉, where φ is a subsequence denoting tasks whose priorities have not been deter-

mined and less than K, w the task under schedulability testing for determining priority (priority level K

in the UBPO algorithm), and ψ the tasks with their priorities assigned. A desired ordering relation D is

assumed to be given over τ so that SD is the optimal ordering sequence.

For example, let a sequence S be 〈abcd〉 and SD = 〈badc〉. After b is found schedulable with

the lowest priority and the schedulability of a in 〈badc〉 is being checked, the whole sequence can be

represented by 〈ψwφ〉, where 〈ψ〉 = 〈b〉, w = a and 〈φ〉 = 〈dc〉.

Lemma 2. The position swapping operation of a task in the subsequence 〈φ〉 with w retains the input

task ordering relation in 〈φ〉.
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Proof. Consider fixing a priority at level K, where size of 〈φ〉 is K − 1, w is the task concerned. There

are two cases to consider:

Case 1) w is schedulable at priority level K. If w is schedulable, no swapping has been performed

and 〈φ〉 has not been changed. Since the original input sequence is ordered by their importance, the

importance ordering relation is retained.

Case 2) w is not schedulable with priority levelK. If w is not schedulable, the first task to be swapped

to the position K is S[K − 1] (note the sequence is indexed by K decreasingly from left to right), let’s

call it τs. If τs is schedulable at K, 〈φ〉 is clearly in accordance with the ordering relation since task

S[K − 1] certainly has a lower utility than the rest in 〈φ〉.

If τs is not schedulable at priority level K, observe how it is swapped with S[K − 2] as indexed by J

now (as in the algorithm). The task S[K − 1] and S[K − 2] are in the same ordering as in the original

sequence where they were at S[K] and S[K − 1] - only the task that is of interest is swapped to position

K while maintaining the ordering relation in 〈φ〉.

When a task’s priority is fixed, considering the next task w indexed by K is just another instance of

the same decision and swapping procedure mentioned above (Case 1 and 2). Since in each iteration the

swapping operation does not concern the tasks in 〈ψ〉 whose priorities have been fixed, it is easy to see

that the lemma holds true as the algorithm carries on fixing priorities from level K − 1 to 2, after which

the algorithm stops when the size of 〈φ〉 equals 1.

Lemma 3. After a task w is found feasible and its priority fixed, the resulting subsequence 〈wφ〉, ignor-

ing 〈ψ〉, has the smallest lexicographical ordering among all other feasible orderings of 〈wφ〉.

Proof. By Lemma 2 it is known that for any task selected from 〈φ〉 which is schedulable at priority level

K, 〈φ〉 retains the order relation according to the given importance function.

Since the swapping operation only swaps a task with the next lowest utility when one is found not

schedulable, task w must be the first feasible task with the lowest utility and 〈wφ〉 must have the lexico-

graphically smallest order among all possible ones.

Assume one final feasible sequence is found by the algorithm, let’s call it SF . If one traverses from

the final step of the algorithm to the initial one, the last subsequence of φ contains the highest assigned

priority task at SF [N ] (with priority 1, the highest in the algorithm), it is guaranteed by the above lemmas

that by assigning the task SF [N − 1] (the task w) with its priority the lexicographical distance of 〈wφ〉
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will be minimized. Similarly, when the sequence φ is enlarged to include the next task SF [N − 1], it is

also guaranteed by the above lemmas that by assigning the task SF [N − 2] (the new w) its priority the

lexicographical distance of the sequence 〈wφ〉 will be minimized. The same argument goes on and the

lemmas still hold true for the remaining tasks when the lexicographical comparison considers the next

task to the left, until all tasks are included.

As mentioned, similar to the original algorithm, the algorithm takes O((N2 + N)/2) steps where

each step only involves performing a schedulability test for one single task, whereas the D&I algorithm

requires testing the schedulability of all the lower priority tasks plus the task concerned. The basic (not

exact for our task model, but sufficient) response time test [9] for all tasks requires pseudo-polynomial

time which depends on the number of tasks in the system. The exact test developed for the P-O-E task

model has a complexity of O(2N ) time while the tractable sufficient test requires O(2N) for a single

task.

7.4 Performance Evaluation

In this section the performance of the D&I and UBPO algorithms is first examined before examin-

ing the utility gain, via simulations, from adopting a utility-based approach for assigning priorities to

imprecise tasks with higher values.

The primary metric for measuring performance is the total number of exact response time tests, defined

as Equations (4.5) and (4.6) for a particular task the algorithms perform in finding the optimal priority

ordering. Note that a test is also performed for the task with the highest priority in the system (assumed

to be automatically schedulable in the previous section). Further, TUBPO is denoted as the number of

response time tests (a busy period calculation) performed by the UBPO algorithm, and, TD&I as the

number of tests used in the D&I algorithm.

As mentioned, the D&I algorithm is not optimal for tasks with offsets because when a priority is tested

for a task, the lower priority tasks of which can not be ordered in DMPO with absolute certainty that it is

optimal. In other words, if any of the lower priority tasks is not schedulable, there may be other priority

orderings for them that are schedulable. Without this optimality, the algorithm will interpret that the

priority being tested for the current task is not feasible, and switch to the next task with highest utility

among the lower priority tasks.
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Figure 7.2: Tractable test performance against varying system utilization.

However, since DMPO is generally a good scheduling heuristic and that the focus is in the performance

of the two algorithms, it is only when the final priority orderings found by the two are equal are their

performance being compared. This evaluation will be valuable because if task offsets are not allowed

then the D&I algorithm is still optimal.

Given the utilization of a task system u, a task τi (including all prologue, epilogue and normal tasks)

is randomly generated with period values spanning across a few orders of magnitude (4 - 7 digit figures)

in a roughly uniform way where the value of each digit is chosen randomly (1 - 9 for the most significant

digit and 0 - 9 for the rest). Deadlines are chosen to be at about 90% of the period value with small

variations such that Ci ≤ Di ≤ Ti.

Note that the resolution of a simulation tick is one micro-second (µs), thus the tasks generated rep-

resent a reasonable period distribution of a real system. All mandatory tasks are executed up to their

WCET and they do not hold any resources (no blocking). Once a period is generated, the WCET C of

the task is then calculated to provide the desired system utilization. Further, one of the normal tasks will

be generated with the skew parameter s as:

C = s ∗ u, (7.1)

where the WCET of remaining tasks are defined as:

C = (1− s) ∗ u. (7.2)

Except the varying parameter in each experiment, all the other parameters are held at default values

86



0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8

Number of Imprecise Tasks

N
u
m

b
e
r 

o
f 
T
e
s
ts

 P
e
rf

o
rm

e
d UBPO

D&I

Average Number of Swapping

Figure 7.3: Tractable test performance against varying system utilization.

as follows:

• system utilization u = 0.5;

• number of imprecise tasks n = 5;

• number of normal tasks m = 10;

• utilization skew s = 1/(2n+m) such that all tasks equally share u;

Figure 7.2 shows the values of TUBPO and TD&I against varying number of system utilization. For

statistical significance, each data point in the graph represents the average TUBPO and TD&I over 100

randomly generated task sets with the same set of parameters. A reference line is provided indicating the

average number of swapping operations actually performed per task set.

It can be seen that the the number of response time test performed by UBPO, TUBPO, is relatively

small and hardly increases as the system becomes more utilized. The value is larger than the number of

swapping because at least one testing needs to be done to confirm a valid priority for a task. In fact a few

of the task sets generated do not require any priority swapping at all; they are all schedulable with the

desired priority ordering.

The same task sets used for UBPO were also used by D&I for producing its performance metric.

The number of tests performed increases very steadily upward with higher system utilization, due to the

increased likelihood a task may become unschedulable (more interference from other tasks). It can also
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be seen that there is a big difference in performance between the two algorithms.

Figure 7.3 shows the values of TUBPO and TD&I against varying number of imprecise tasks. The

line of TD&I shows a more rapid decline in performance (note the scale of y-axis) than in the previous

experiment as more imprecise tasks are added into the system. This can be understood by realizing that

even in the best case scenario for a system of 20 tasks, UBPO only requiresN = 20 tests to be performed

while D&I will require (N2+N)/2 = 210 tests - a decisive difference. As more tasks are present in the

system, it becomes harder to schedule tasks in their desirable positions. This results in more swapping

operations required to be performed (note the slight increase in the reference line) and correspondingly

the performance deteriorates very quickly with the D&I approach. This is further compounded by the

fact that since the exact test runs in exponential time with regard to the number of imprecise tasks, only

a handful number of imprecise tasks can be tested (also see next section).

Note that although the two algorithms minimize lexicographical distance in different directions, it

is hard to justify which is better. This is because even being lexicographically smaller, the average

difference of task position to their relative optimal position may actually be higher. There is no simple

means in differentiating which ordering direction is better. That is, deciding if trying to assign higher

priorities to more important tasks is better than trying to assign lower priorities to less important tasks.

Note again that only UBPO can work with tasks with offsets, which are required in the task model of

iDPS.

In addition, only in 3 out of the 903 generated task sets (thus these 3 task sets are not used) it was

observed that the orderings obtained from the two algorithms being different, which is a very small ratio

(0.003%). It is also interesting to note that, if the two orderings obtained by the two algorithms are equal,

the total number of task priority swappings that are required in finding the optimal ordering by the two

algorithms are exactly the same - even though the tasks and the order in which that they are swapped are

totally different.

7.5 Employment of Tractable Schedulability Test

The exact test for imprecise computation is computationally prohibitive when there are large number

of imprecise tasks present in the system. This motivates a more efficient approach for verifying system

schedulability and a tractable test for the task model concerned has been derived in the previous chapter.

Although the test performs extremely well in the response time difference produced compared to
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Figure 7.4: Exact and tractable UBPO performance against varying system utilization.

that of the exact test, nevertheless, the UBPO algorithm tries to assign task priorities based on task

importance. Since DMPO is no longer employed, tasks are likely to suffer longer interference from other

tasks due to the fact that a more urgent task (with shorter deadline) may have to wait for other tasks

which have higher utility.

If this happens when the UBPO algorithm uses the tractable test for checking schedulability, the

resulting priority ordering may be different from that produced using the exact test. This is because a

task may be deemed unschedulable with an assigned priority while it actually is schedulable.

It will be interesting to see how the tractable test affects the results when different parameters are

used. The Manhattan distance as a measure is defined as the sum of the absolute distance of each task

to its relative position in the optimal priority ordering sequence. More formally, the Manhattan distance

function is a function M : Ŝ → {0, 1, 2, ...} such that:

M(S) =
∑
∀i∈τ
|Pri(S, i)− Pri(SD, i)|, (7.3)

where Pri(S, i) returns the priority position of a particular task τi in the priority sequence S so that

M(SD) = 0.

For example, with τ = {a, b, c} and a desired ordering SD = 〈bac〉, the Manhattan distance of all the

possible sequences are listed below:
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Figure 7.5: Exact and tractable UBPO performance against varying number of imprecise tasks.

M(〈bac〉) = 0

M(〈bca〉) = 2

M(〈abc〉) = 2

M(〈acb〉) = 3

M(〈cba〉) = 4

M(〈cab〉) = 4

The metric for measuring the performance of the algorithms is the average Manhattan distance per

task in a task set defined as:

AM =M/N, (7.4)

where N is the number of tasks in the system. Further AMe is denoted to be the average Manhattan

distance per task of the UBPO algorithm performed with the exact test, while AMt one produced with

the tractable test. The parameter settings are similar to the first set of experiments documented in the last

section.

Figure 7.4 shows the values of AMe and AMt against varying number of system utilization. For

statistical significance, each data point in the graph is averaged over 100 randomly generated task sets

with the same set of parameters.

It can be observed that as the utilization increases the average Manhattan distance per task also in-
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creases, which implies it is harder to obtain an ordering which is as close to the optimal ordering as

possible as the system load increases. It can also be seen that the tractable test is tracking the perfor-

mance of the exact test rather closely.

Figure 7.5 shows the values of AMe and AMt against varying number of imprecise tasks. The figure

shows that there seems to be no direct correspondence between the performance and the control param-

eter, since the performance gets worse and then better twice alternatively as more imprecise tasks are

present in the system. However, the performance of the tractable test shows great promise (note the scale

of the y-axis) in both sets of simulations, with only 0.15 difference in the average Manhattan distance

per task set on average. It can be therefore concluded that the tractable test can be safely employed with

only little penalty in performance in most cases.

7.6 Summary

The deadline monotonic priority ordering is not optimal for schedulability when offsets are allowed in

the task model. Further, when schedulability is satisfied the maximization of system utility by scheduling

more important optional components becomes important. This motivates a priority ordering algorithm

based on utility, called UBPO. The algorithm is optimal in the sense that it can find any feasible ordering

whenever one exists, plus that the lexicographical distance to the optimal ordering (lowest to highest, left

to right) is minimized.

Simulations show that the UBPO algorithm is in general much more efficient than the algorithms

previously available, where most of the time the final priority orderings found are the same as found by

the other optimal algorithm. Where there is a large number of imprecise tasks the tractable schedulability

test may have to be introduced in determining task priorities. Experimental data shows that the average

Manhattan distance penalty for a large number of randomly generated task sets is only 0.15 on average,

proving the usability of the tractable test.

91



Chapter 8

Conclusion

Supporting real-time AI applications is a challenging problem. By using a simplified case study based

on a genuine real-time AI application in the RoboCup competition, the difficulties in developing such

programs which can make the best use of system resources are demonstrated. Current approaches, with

the restrictions that arise from their task model, scheduling and system support, are insufficient.

In this thesis new results in scheduling imprecise computation based on fixed priority preemptive

scheduling (FPPS) were proposed. These include a more general task model for leveraging the problem

of algorithm design in addition to the exact schedulability test required to guarantee the mandatory

computation, as presented in Chapters 4.

In improving the scheduling of optional components an extended version of dual priority scheduling,

called iDPS, for scheduling imprecise computation of the P-O-E structure was presented in Chapter 5.

The improvement can be substantial as illustrated by the simulations conducted. In addition, topics with

aperiodic tasks scheduling were also discussed.

Since the exact schedulability test can be computationally expensive when the number of imprecise

tasks in the system increases, a more tractable, sufficient but not exact, schedulability test was proposed

in Chapter 6.

In Chapter 7, the problem of priority ordering based on task utility in the context of iDPS have also

been addressed. An optimal algorithm based on one by Audsley was shown to have an extra desirable

property in finding the task priorities that are optimal in lexicographical order.

The works presented in this thesis add to the already comprehensive set of theories, scheduling algo-
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rithms, and tools based on FPPS, providing a mature technology where real-time AI applications can be

suitably supported. It is hoped that, with the basis in FPPS, it can be incorporated into existing real-time

operating systems in the near future so that a more general use of imprecise computing can be promoted.

8.1 Future Works

There are a few directions worth investigating. One is the calculation and application of task promo-

tion time; in weakly hard real-time systems [21], two different promotion times may be set for weakly-

hard tasks where more time for scheduling optional components can be obtained if a later promotion time

is used. Yet when the task is required to meet its timing requirements, a particular promotion selection

strategy based on the work by Bernat and Burns [18] may be employed.

Feng and Liu [49] worked on scheduling imprecise tasks with end-to-end timing constraints which

allows tasks to have precedence constraints and input errors to tasks. A natural extension to our work

will be to allow composite or even hierarchical imprecise tasks [124, 126] where the input quality of a

task depends on the output quality of others. Where utilities of optional components of imprecise tasks

are characterized by more sophisticated functions, another extension is to allow applications to achieve

decision-theoretical control by manipulating their utilities. In this case more advanced scheduling strate-

gies may need to be employed in the scheduling framework. Experimental evaluations using real anytime

algorithms with realistic performance profiles will also be valuable.

Recently Davis and Burns [38] formulated the response time analysis for hierarchical scheduling

which is a more realistic model of actual systems. A useful future work will be to modify the response

time equations in a similar fashion to that by the author for hierarchical imprecise computation. Finally,

as with all real-time scheduling problems, the use of multi-core platforms introduces a number of inter-

esting challenges [41]. For example, with the P-O-E model, the prologue component could be executed

on the processor attached to the input device, the epilogue component could be executed on the processor

attached to the output device, and the optional component executed anywhere on any processor of the

platform. Scheduling imprecise tasks on such systems will be a worthy direction to investigate.
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