
HAL Id: hal-01086709
https://hal.science/hal-01086709v1

Submitted on 1 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DDS/SDN Based Communication System for Efficient
Support of Dynamic Distributed Real-Time Applications

Lionel Bertaux, Akram Hakiri, Samir Medjiah, Pascal Berthou, Slim
Abdellatif

To cite this version:
Lionel Bertaux, Akram Hakiri, Samir Medjiah, Pascal Berthou, Slim Abdellatif. A DDS/SDN Based
Communication System for Efficient Support of Dynamic Distributed Real-Time Applications. 2014
IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications,
Oct 2014, Toulouse, France. pp.77 - 84, �10.1109/DS-RT.2014.18�. �hal-01086709�

https://hal.science/hal-01086709v1
https://hal.archives-ouvertes.fr

A DDS/SDN Based Communication System for

Efficient Support of Dynamic Distributed Real-Time

Applications

Lionel Bertaux a,b, Akram Hakiri a,b, Samir Medjiah a,c, Pascal Berthou a,c, Slim Abdellatif a,d
a CNRS, LAAS, 7 avenue du colonel Roche, F-31400

b Univ de Toulouse, LAAS, F-31400
c Univ de Toulouse, UPS, LAAS, F-31400

d Univ de Toulouse, INSA, LAAS, F-31400

Toulouse, France

{lbertaux, akram.hakiri, medjiah, berthou, slim} @ laas.fr

Abstract — Many distributed real-time applications have

dynamic requirements regarding communication delay and

bandwidth. The Data Distribution Service (DDS) middleware is a

key enabling technology used to support such applications.

Indeed, the publish/subscribe distribution model of DDS with the

ability to assign dynamic QoS (Quality of Service) parameters to

DDS distribution services is able to take into account changes in

the exchanged data flows and in the required QoS. This

variability is taken into account at the middleware level to adjust

some of DDS QoS mechanisms but is rarely propagated to the

network layer to provide dynamic network communication

services that fit the varying DDS distribution service needs.

Usually, an over provisioned network is used, leading to network

resource wastage. This paper addresses this issue and proposes a

communication architecture that combines DDS with a new

emerging class of communication networks named Software

Defined Networks (SDN) to support efficiently dynamic

distributed applications. SDN bring flexibility to the network and

enable the provision of on-demand dynamic network

communication services.

Keywords— Data Distribution Service, Software Defined

Networking, Openflow, Quality of Service, Distributed Simulation

I. INTRODUCTION

Distributed real-time applications are dynamic in nature,

i.e. the data flows that are exchanged and their Quality of

Service (QoS) requirements vary over time. Moreover, some

applications operate in changing environments with

heterogeneous mobile nodes involved that communicate via

wireless communication links. Air traffic management, power

grid control, network games, live simulation, and distributed

interactive simulation fall into this category. For instance, if

we consider the case of distributed interactive simulation for

vehicle driver training with many networked driving

simulators that evolve in a shared virtual world, each

simulator needs to get some state information (position, speed,

etc.) from nearby simulators. The closer the simulator, the

more stringent the required delay to get information is.

Movements of driving simulators (in the virtual world)

introduce dynamicity in the data flows that are

delivered/consumed by each simulator and on the QoS

requirements related to the delivery of these data flows.

The dynamic nature of these applications is one of the

major challenges for the underlying communication system

and in particular for the communication network that adds

other challenges such as scalability and high QoS support.

Indeed, if network resource utilization is a concern, the

network must be flexible enough to be reprogrammed in

accordance with any change in the application. Current

approaches neither address the dynamicity of applications nor

care about resource utilization. They are either based on static

and overprovisioned dedicated networks or overlay networks

(that are difficult to set up on demand and costly), or require

from the application to adapt to network’s performance. The

main reason is that current networks are rather static because

of their complexity, the specificities of each network device,

etc. An emerging class of communication networks named

Software Defined Networks (SDN) have the ability to build

flexible networks whose behavior can be programmed and

reprogrammed on demand and in a fine grained manner. They

are a promising answer to the efficient support of dynamic

distributed real-time applications from a network resource

utilization perspective

The main goal of this work is to propose a communication

system that combines the OMG Data Distribution Service

(DDS) middleware with Software Defined Networks (SDN) to

efficiently support dynamic real-time applications distributed

on non-dedicated network infrastructures. The rationale

behind using DDS and SDN is the following. DDS has been

devised (and successfully used) for high performance

distributed real-time systems. It offers many QoS parameters

that can be used to express the requirements on the data

distribution services needed by the application. Most are

dynamic and can be changed during run-time, enabling DDS

to capture dynamically application QoS requirements. The

Publish/Subscribe model of DDS captures the second facet of

the dynamicity of the application and allows changes in the

data flows that are exchanged by the application’s

components.

To enforce this QoS, end-host and network resources

control is mandatory. For the former, since DDS resides on

end-hosts, it defines a set of mechanisms that implement QoS

aware control and access to host resources. For the latter,

interfaces exposed by the network are needed to manage its

resources according to applications needs. This is exactly the

opportunity brought by SDN.

This paper is organized as follow. In section II, DDS and

SDN concepts are briefly exposed. Then, section III gives a

brief state of the art concerning the concept of Application

Driven Networking. Section IV details some relevant case

studies. Section V explains our proposed architecture. Finally,

section VI concludes this paper.

II. BACKGROUND

A. Data Distribution System (DDS)

The OMG DDS specification defines a standard

architecture for data exchanges in pub/sub systems. DDS

provides a global data store in which publishers and

subscribers respectively write and read data. DDS provides a

flexible and modular structure by decoupling: (1) location, via

anonymous publish-subscribe, (2) redundancy, by allowing

any numbers of readers and writers, (3) time, by providing

asynchronous, time-independent data distribution, (4) message

flow, by providing message-based data-centric connection

management, and (5) platform, by supporting a platform-

independent model that can be mapped to different platform-

specific models, such as C++ running on VxWorks or Java

running on Real-Time Linux.

The DDS architecture consists of two layers. The Data-

Centric Publish Subscribe (DCPS) layer provides efficient,

scalable, predictable, and resource-aware data distribution.

The Data Local Reconstruction Layer (DLRL) provides an

object-oriented facade atop the DCPS so that applications can

access object fields rather than raw data and defines navigable

associations between objects.

Figure 1 depicts the relation between DDS entities;

domains, domain participants, topics, publishers, data writers,

subscribers, and data readers. DCPS layer supports a global

data store (DDS domain) where publishers write and

subscribers read data, respectively. A DDS domain represents

a virtual global data-space; information provided in the

domain are accessible by the applications registered to that

domain.

Figure 1. A View of the Data Distribution Service

DDS is topic-based, allowing strongly-typed data

dissemination. A DDS topic describes the type and structure

of the data, data readers and data writers can respectively

subscribe and publish to specific topics. Publishers manage

one or more data writers and subscribers manage one or more

data readers. Publishers and subscribers can aggregate data

from multiple data writers and readers for efficient

transmission of data across a network. Publishers and

subscribers discover each other automatically and match

whenever they have compatible topics and QoS. DDS can use

multiple topic samples called instances that are differentiated

by their associated unique key. Topics can be configured with

a wide range of DDS QoS capabilities imposed by peers. A

DDS QoS policy can be viewed as a function that returns the

state of the communication since it enables changing some

aspects of the message exchange, such as connection and error

handling.

Moreover, topic samples are exchanged between peers

within the global data space according to a contract

established in the discovery phase. The discovery process is

managed by the Real-Time Publish-Subscribe (RTPS)

protocol. During the discovery process each domain

participant maintains a local database about all the active

DataWriters and DataReaders that are in the same domain.

Additionally, the discovery mechanism known as Simple

Discovery Protocol (SDP) includes two phases: (1) Simple

Participant Discovery which is performed by the Simple

Participant Discovery Protocol (SPDP), where remote domain

participants learn about each other by sending participant

declaration messages (also known as participant DATA sub-

messages) and (2) Endpoint Discovery which is performed by

the Simple Endpoint Discovery Protocol (SEDP), in which

DataWriters and DataReaders exchange information (i.e., such

as QoS, data types, etc.) to match each other by sending

publication/subscription declarations in DATA messages that

we will refer to as publication DATAs and subscription

DATAs.

Figure 2. Overview of the software-defined networking

(SDN)

B. SDN concepts and OpenFlow

Recently, Software-Defined Networking (SDN) [9] has

emerged as a new approach for network programmability and

management, where the centralized control plane logic is

decoupled from the forwarding plane as shown in Figure 2.

Network programmability is a software approach to

dynamically control, manage, configure or even use a

network. Amongst others, it covers the existence of open

interfaces for device configuration, the capability to design

virtual overlay networks or the opportunity to easily deploy

network functionalities. In an SDN, centralized control uses

the network-wide view of the network to ease management

and configuration of data-path for network services such as

resource allocation or virtual network deployment. Such

networking concept can help migrate legacy networks to

vendor-free platform adaptable to each user needs that could

be seen as a Network as a Service (NaaS).

In Software-Defined Networks (SDNs), control plane is

logically separated from data plane. SDN architectures define

a new entity that centralizes control intelligence of one or

more network elements (basically switches). A protocol is

then defined to communicate between control plane and data

plane. Examples of such protocols are OpenFlow [3] or

ForCES [8].

In an OpenFlow-based SDN architecture, the control entity

is called a controller. The controller offers northbound

interfaces to network applications and southbound interfaces

to communicate with data plane. OpenFlow [3] is one of the

possible southbound protocols. OpenFlow behavior is simple

but it can allow complex configurations: the hardware

processing pipeline from legacy switches is replaced by a

software pipeline based on flow tables. These flow tables are

composed by simple rules to process packets, forward them to

another table and finally send them to an output queue or port.

Flow tables can be built in a proactive or in a reactive way.

With such functionalities, OpenFlow can be used to

implement Quality of Service policies in a switch by

dynamically managing flow differentiation. For example, a

DiffServ-like architecture can be easily deployed in a switch

with several queues per output port and differentiation can be

applied based on various criteria (destination address, sender

address, port numbers, etc.). An important point is that

OpenFlow is not in charge of configuring queues attached to

output ports of a switch. To this end, OpenFlow Configuration

(OF-Config) protocol [4] has been defined based on

NETCONF and manages the “OpenFlow context”:

establishing links between switches and controller, configure

output port in switches, etc. Since version 1.3 and the

introduction of a meter table, OpenFlow is able to monitor

flow rates and perform actions if a predefined limit is

exceeded: drop packets or mark the DSCP field. The drop

policy is efficient but very aggressive and can lead to the

introduction of data bursts for TCP flows [1]. Globally,

OpenFlow QoS capabilities are considered incomplete to

implement an effective QoS architecture and the protocol

needs some external features to be fully functional [2] (e.g.

configuration of outgoing queues in switches).

However, full network configuration is possible by

dynamically installing flow processing rules in switches with

OpenFlow and configuring outgoing queues with another

application. These kind of configurations can be managed by

an application on the northbound interface of a controller, the

latter being performed with OF-Config or a legacy protocol

like SNMP. Another approach to implement QoS with

OpenFlow is to perform flow splitting and to assign specific

routes to given flows. Coupled with an optimization

algorithm, such mechanisms can improve the quality of the

communication in the case of video streaming [5]. Virtual

networks (virtual switches and virtual links) can also be

deployed by “slicing” the OpenFlow network. An intermediate

controller acts as a “proxy” for the real control plane located

above him and provides each controller with a virtual network

(e.g. FlowVisor [6] and more recently OpenVirteX [7]).

III. RELATED WORK

Prior middleware solutions for network QoS management

focus on how to add network QoS services for CORBA-based

communication [10]. A large-scale event notification

infrastructure for topic-based pub/sub applications has been

suggested for peer-to-peer routing overlaid on the Internet

[11]. Those approaches can be deployed only in a single-

domain network, where one administrative domain manages

the whole network. Extending network QoS solutions to the

Internet can result in traffic specified at each end-system being

dropped by the transit network infrastructure of other domains

[12]. For example, authors in [13] have presented a network

communication broker to enable per-class QoS for multimedia

collaborative applications. Even if this network broker

enhanced the QoS allocation by differentiating the traffic

processing at the network edges, it supports neither mobility

service management nor scalability since it adds complicated

interfaces to both applications and middleware for the QoS

notification.

Our prior work [14] on Velox used an MPLS tunneling

mechanism to propagate DDS QoS over an overlay model.

Velox statically created a logical tunnel between remote DDS

participants to conduct QoS negotiation and resource

reservations. Any time communication failed, the user had to

reconfigure the network manually. Moreover, application

requirements could not change during runtime communication

between participants. To overcome these limitations, we

introduced the NetQSIP framework [15] to enhance prior

research on QoS management at the network layer by

integrating QoS along two key dimensions: (1) the horizontal

direction, i.e., between different adjacent layers in the

application, middleware, and network, and (2) the vertical

direction, i.e., within a particular layer. In particular, our

NetQSIP framework maps application flow requirements into

the DDS layer to allow end-to-end QoS provisioning. Hence,

NetQSIP provides dynamic QoS management and simplifies

resource allocation by using SIP to automate end-to-end QoS

provisioning.

However, both Velox and NetQSIP were integrated on

legacy network devices so their deployment depends on the

internal capabilities of each network fabric, which the

internals differ from vendor to vendor, with no open software

platform to experiment new ideas. These devices have their

control and forwarding logic parts both integrated in

monolithic, closed, and mainframe-like boxes. Consequently,

only a small amount of external interfaces are standardized

(e.g., packet forwarding) but all of their internal flexibility is

hidden.

Likewise, the work presented by [16] outlines an extension

to the IETF REsource Location And Discovery (RELOAD)

protocol [17] for content discovery and DDS messages

transfer over large-scale legacy networks. Although this paper

addressed the discovery scalability issue of DDS, it centers on

a structured P2P overlay architecture in legacy WANs, which

is different from our work described in this paper. The work

described in this paper is based on SDN programmable

networks, where DDS is used atop of the SDN northbound

interface to control network devices and program QoS in

flexible and scalable way.

IV. CASE STUDY

This section intends to give an example of what could be
the benefits of using Software Defined Networking for
Distributed Real-time applications. Requirements for this class
of applications are stringent and some of them will be explored
when using SDN concepts.

However, real-time communication could not be provided
without dedicated network architecture. To make clear the
discussion, we propose to take an example of a multi-site
company network given in Figure 3. A Virtual Private Network
between multiple offices of the same company is considered:
the headquarters (A) are connected to the other offices (B) and
(C) with a Virtual Ethernet Service. Then, business
applications and services are running as if they were deployed
over a classical LAN.

Figure 3. Multi-site network architecture

The network is then essentially composed of switches, few
routers, and middle-box appliances.

This kind of network architecture is simple and easy to
maintain. Links between sites have to be provisioned according
to the distributed applications needs, but also to the generic
communication (telephony, network appliances, etc.).

However, the lack of traffic isolation and the difficulty to
deploy complex quality of service policies in the network are
the counter part of the simplicity. It is then not possible to
ensure the communication requirements of real-time
applications and especially if requirements are stringent and
variable. Overprovisioning is then the only solution, but at a
high cost.

A. Software Defined Networking benefits

Using SDN concepts could knock down the technological
barriers that slowdown the dissemination of real-time
distributed applications. The main idea in this paper is to
combine objects and communication descriptions provided
when using the DDS middleware, especially related to Quality
of Service, and SDN concepts as a flexible solution to
configure the network with dedicated and flexible QoS
solutions.

The benefits are multiple and this article proposes to
explore them following three use cases.

First, generally speaking and without any consideration on
using a middleware, the management of a distributed network
across several entities is complex. Providing an acceptable
level of service to distributed real-time applications, but also
offering enough bandwidth to network appliance is a complex
tradeoff that have to be implemented with a fine-tuned QoS
policy. The problem is hardened when considering the
evolution of the requirements over time: the policy has to be

adapted frequently and consistently. It mainly consists in
collecting the communication requirements from the
applications, defining the new policy, and scripting the control
of network switches with SNMP for instance. This could be a
hard task, as the consistency of the configuration must be
ensured on all devices and at the same time. With a unique
control point (the controller) OpenFlow provides a robust
solution to this task. Application requirements could be
collected within the controller thanks to the centralized
description of the application (DDS configuration file), an
optimal policy could be computed and deployed thanks to the
OpenFlow protocol.

The next use case, extends the previous one related to the
configuration, and addresses the automatic network slicing.
When several applications are coexisting within the same
network, it is sometime relevant to segregate traffics from each
application. Several VPN are then configured to ensure that
bandwidth resources from one application would not be
consumed by another application. OpenFlow provides
solutions for network isolation, called slicing that simplifies
this operation. The switches could monitor network resource
consumption and forwarding decisions could be taken on the
go by the controller.

Finally, the last use case takes benefit from DDS smart
capabilities for data diffusion. Commonly, broadcasting is
massively used over a LAN to maintain the consistence of the
distributed application. However, considering a virtual
Ethernet service over private leased line it could be inefficient
and costly when resources are scarce. DDS offers a filtering
mechanism that only propagates data to the concerned
subscribers instead of broadcasting. However, this mechanism
is useless over a classical Ethernet network as there is no way
to filter data. It is possible to implement a dynamic filtering
mechanism with OpenFlow that reduce the traffic between
interconnected switches at its minimal value.

B. Discussion

The combination of DDS middleware capabilities with the
OpenFlow SDN concepts is promising. However, this is not
possible without an appropriate architecture that defines the
role and the place of the different entities. The next section is
devoted to the architecture definition.

V. PROPOSED ARCHITECTURE

This section presents the details of the network

architecture required to deploy enhanced QoS mechanisms for

DDS over SDN-enabled networks.

A. Targeted QoS parameters

The network quality of service can be described through

multiple parameters related to different aspects of the data

transmission such as:

- Transmission errors (bit error rate, packet error rate,

packet loss, FEC level, etc.)

- Transmission delay (end-to-end delay, jitter, queuing

delay, first packet arrival, etc.)

- Transmission throughput (bandwidth, packet success,

etc.)

Through DDS, applications can specify their QoS

requirements by the mean of various QoS parameters. Indeed,

DDS allows the specification of the following QoS policies:

Table 1. QoS Parameters in DDS

Volatility - Durability

- History

- Reader data lifecycle

- Writer data lifecycle

- Lifespan

Infrastructure - Entity factory

- Resource limits

Delivery - Reliability

- Time based filter

- Deadline

- Content filters

User QoS - User data

- Topic data

- Group data

Presentation - Partition

- Presentation

- Destination order

Redundancy - Ownership

- Ownership strength

- Liveliness

Transport - Latency budget

- Transport priority

In the DDS middleware, these QoS parameters are handled

in different ways and at different layers of the communication

stack. For example the “History” parameter related to

“Volatility” is handled at the highest layer (sub-application

layer). Whereas, other parameters such as “Latency” or

“Transport priority” can be handled at the network layer or

below.

On the other side, QoS management is implemented within

OpenFlow. QoS management is handled via 3 techniques: (a)

per-port queue management, (b) per-flow priority, and (c)

queue and flow statistics. The QoS management in OpenFlow

has been progressively introduced through the consecutive

versions. OpenFlow v1.0 brought the specification of the

minimum rate for a port queue, while OpenFlow v1.2 brought

the specification of the maximum rate for a port queue and the

specification of priorities among flows. Finally, OpenFlow

v1.3 brought Meter tables for statistics purposes.

In order to enhance DDS applications running on top of

SDN-enabled networks, it is important to translate all the DDS

QoS parameters into L2/L3 policies that can be implemented

in the network.

B. QoS parameters capture

Before translating the DDS QoS parameters into L2/L3

policies, it is important to capture all the relevant parameters

in the most seamless way for the running applications. To this

end, we can envision two different approaches, both requiring

no modification in high level application:

(1) Middleware-independent QoS parameters capture:

QoS parameters can be captured using the DDS monitoring

service. With the monitoring service, the SDN controller

subscribes to a discovery DDS topic and thus, takes part of

the DDS domain. It then notifies QoS parameters of any

running DDS-based application. This approach is

transparent to the application. However, it requires the

controller to be part of the DDS domain and thus, it must run

the DDS middleware.

A more seamless way would be to capture the QoS

parameters specification by monitoring the traffic among the

DDS entities within the network. This is very challenging

and may be less efficient since it involves the reverse

engineering of the DDS protocols (signaling, data, etc.).

(2) Middleware-dependent QoS parameters capture:

In this approach, the DDS middleware should be augmented

with a new SDN module. As illustrated in Figure 4, this

module will communicates with the Network Application

which is running on top of the SDN controller in order to

provide it with all the relevant QoS information to optimize

and/or reconfigure the underlying L2/L3 network topology.

Figure 4. DDS QoS parameters capture to L2/L3 flows

orchestration

C. L2/L3 flows orchestration

In a SDN, L2/L3 policies can be applied by passing high

level rules to the controller that can distribute and apply them

to data plane. Available functionalities and configurations

depend on the protocol used to communicate with switches

and configure them. With OpenFlow, a controller is able to

program the processing pipeline in switches by populating

successive flow tables. Several functionalities can thus be

deployed by performing specific L2/L3 treatment:

 Basic L2/L3 routing:

o L2/L3 header treatment,

o Queuing in adequate outgoing queue/port.

 Flow splitting:

o Path selection depending on flow,

o Possible dynamic load balancing.

 Multicast with RP-point:

o Data-duplication in defined switches,

o Multiple points of duplication.

 Adaptive sending rates:

o Limit rate on specific flows/ports.

o Drop / Redirect / Alert if overtaking rate.

Furthermore, a network managed via OpenFlow can be

“sliced” to create virtual networks. It is thus possible to deploy

virtual switches and links with a topology adapted to current

state and active DDS flows: point-to-point, mesh, tree, etc.

Figure 5. Network application in charge of configuration.

D. Network ressources allocation

In our design, we chose to build an application located on top

of the controller NorthBound interface, since it is more

compliant with SDN standards than deploying an extension to

a controller (see Figure 5). Globally, this application is

responsible for translating DDS QoS constraints into

forwarding rules that can be implemented in network

switches. It is composed by 4 logical blocks: a DDS

information handler, a network monitor, a planner and a

command executor. Interactions and behavior of theses logical

blocks are summarized in Figure 6. The DDS handler is

connected to DDS domain and uses RTPS to collect data on

DDS flows (required bandwidth, delay tolerance, data

generation model ...). The network monitor element uses the

SDN controller NorthBound API to gather information on the

underlying network (topology, capacity ...) and measurements

on active flows (rate, counter ...). Based on monitoring data

from previous elements, the planner computes the optimal set

of network resources that is needed to support DDS flows with

their required QoS. Optimization may induce splitting point-

to-multi-point flows at RP-points (Rendezvous point),

adapting DDS publishing rates to subscriber needs by shaping

network flow rate or load balancing flows over different paths

while preserving delay requirements. The last element is in

charge of applying the network configuration built by the

planner in the real world either via the controller NB-API for

OpenFlow related rules or via OF-Config for switch

configuration (Ex: configuring queues attached to outgoing

ports).

Figure 6. Network services allocation algorithm.

In order to check the technical feasibility of our solution,

we considered of the OpenFlow controller Floodlight [18].

Based on the REST communication architecture, the NB-API

of Floodlight allows an application to capture information

from the network and to set up various rules in the data plane

(see Table 2). These requests are specific to the use of

OpenFlow and take into account the possibilities of this South

Bound protocol. They can help designing high level

functionalities needed by our proposition:

 Build network topology based on known switches and

links with accurate information such as port speed (i.e.

path bandwidth),

 Monitor network events by periodically checking

available links and switches,

 Monitor network flows by periodically checking traffic

counters,

 Reserve resources on a path between subscriber and

publisher by adding a static flow,

 Establish a dedicated network for data flows of specific

topics by adding a virtual network.

These functionalities are executed by the Network Monitor

and the Executor modules of our Network Services Allocator

(Figure 5) to achieve their respective goals: obtain status and

statistics from the network and control the data-forwarding

elements of the network.

Table 2. Examples from the Floodlight Northbound-API

Description REST

Method

Possible Options

List traffic counters GET Per controller / per switch

List all switches GET

List all links GET Internal / External domain

Add a static flow POST Arguments and output

Add virtual network PUT ID and possible Gateway

VI. CONCLUSION

In the near future, software defined components will be a

predominant part in communication networks thanks to the

growing use of virtualization (resources or network). The

design presented in this paper shows how SDN computer

networks can be used to provide dynamic customized network

services to dynamic DDS applications with efficient network

resource utilization. The feasibility of this solution has been

demonstrated through the description of its components along

with their functionalities and how they can be implemented.

ACKNOWLEDGEMENTS

This work was partially funded by the French National

Research Agency (ANR) and the French Defense Agency

(DGA) under the project ANR DGA ADN (ANR-13-ASTR-

0024)

REFERENCES

[1] Mohan, P.M.; Divakaran, D.M.; Gurusamy, M., "Performance

study of TCP flows with QoS-supported OpenFlow in data center

networks," Networks (ICON), 2013 19th IEEE International

Conference on , vol., no., pp.1,6, 11-13 Dec. 2013

[2] Sonkoly, B.; Gulyas, A.; Nemeth, F.; Czentye, J.; Kurucz, K.;

Novak, B.; Vaszkun, G., "On QoS Support to Ofelia and

OpenFlow," Software Defined Networking (EWSDN), 2012

European Workshop on , vol., no., pp.109,113, 25-26 Oct. 2012

[3] Open Networking Foundation, OpenFlow Switch Specification –

version 1.4.0 (Wire Protocol 0x05), October 2013.

[4] Open Networking Foundation, OF-CONFIG 1.2 – OpenFlow

Management and Configuration Protocol, 2014.

[5] Egilmez, H.E.; Civanlar, S.; Tekalp, A.M., "An Optimization

Framework for QoS-Enabled Adaptive Video Streaming Over

OpenFlow Networks," Multimedia, IEEE Transactions on ,

vol.15, no.3, pp.710,715, April 2013

[6] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller,

Martin Casado, Nick McKeown, and Guru Parulkar. 2010. Can

the production network be the testbed?. In Proceedings of the 9th

USENIX conference on Operating systems design and

implementation (OSDI'10). USENIX Association, Berkeley, CA,

USA, 1-6.

[7] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka

Koshibe, William Snow, Guru Parulkar, “OpenVirteX: A

Network Hypervisor,” in Open Networking Summit, March

2014.

[8] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,

R. Gopal, and J. Halpern. Forwarding and Control Element

Separation (ForCES) Protocol Specification. RFC 5810

(Proposed Standard), March 2010.

[9] Hyojoon Kim and N Feamster. Improving network management

with software defined networking. IEEE Communications

Magazine 51(2), 2013, pages 114-119

[10] Dasarathy, Balakrishnan, Gadgil, Shrirang, Vaidyanathan, Ravi,

et al. Adaptive network QoS in layer-3/layer-2 networks as a

middleware service for mission-critical applications. Journal of

Systems and Software, 2007, vol. 80, no 7, p. 972-983.

[11] Rowtron, Antony, Kermarrec, Anne-Marie, Castro, Miguel, et al.

SCRIBE: The design of a large-scale event notification

infrastructure. In: Networked group communication. Springer

Berlin Heidelberg, 2001. p. 30-43.

[12] Balasubramanian, Jaiganesh, Tambe, Sumant, Dasarathy,

Balakrishnan, et al. Netqope: A model-driven network qos

provisioning engine for distributed real-time and embedded

systems. In: Real-Time and Embedded Technology and

Applications Symposium, 2008. RTAS'08. IEEE. IEEE, 2008. p.

113-122.

[13] Zhang, C and Sadjadi and S. Masoud and Sun Weixiang and

Rangaswami Raju and Deng Yi, A user-centric network

communication broker for multimedia collaborative computing,

IEEE, CollaborateCom, 2006

[14] Hakiri, Akram, Berthou, Pascal, Gokhale, Aniruddha, et al.

Supporting end-to-end quality of service properties in OMG data

distribution service publish/subscribe middleware over wide area

networks. Journal of Systems and Software, 2013, vol. 86, no 10,

p. 2574-2593.

[15] Akram Hakiri, Pascal Berthou, Aniruddha Gokhale, Douglas

Schmidt and Thierry Gayraud, “Supporting SIP-based End-to-

End Data Distribution Service QoS in WANs”. Journal of

Systems Software, 2014.

[16] Jose M. Lopez-Vega and Gonzalo Camarillo and Javier

Povedano-Molina and Juan M. Lopez-Soler, RELOAD extension

for data discovery and transfer in data-centric publish-subscribe

environments, Journal of Computer Standars and Interfaces, Vol

(36), num (1), pp 110 - 121, 2013

[17] C. Jennings and B. Lowekamp and E. Rescorla and S. Baset and

H. Schulzrinne, REsource LOcation And Discovery (RELOAD)

Base Protocol, IETF, RFC 6940,jan, 2014

[18] Floodlight Controller, http://docs.projectfloodlight.org/

display/floodlightcontroller/The+Controller, July 2014.

