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Abstract — Many distributed real-time applications have 

dynamic requirements regarding communication delay and 

bandwidth. The Data Distribution Service (DDS) middleware is a 

key enabling technology used to support such applications. 

Indeed, the publish/subscribe distribution model of DDS with the 

ability to assign dynamic QoS (Quality of Service) parameters to 

DDS distribution services is able to take into account changes in 

the exchanged data flows and in the required QoS. This 

variability is taken into account at the middleware level to adjust 

some of DDS QoS mechanisms but is rarely propagated to the 

network layer to provide dynamic network communication 

services that fit the varying DDS distribution service needs. 

Usually, an over provisioned network is used, leading to network 

resource wastage. This paper addresses this issue and proposes a 

communication architecture that combines DDS with a new 

emerging class of communication networks named Software 

Defined Networks (SDN) to support efficiently dynamic 

distributed applications. SDN bring flexibility to the network and 

enable the provision of on-demand dynamic network 

communication services. 

Keywords— Data Distribution Service, Software Defined 

Networking, Openflow, Quality of Service, Distributed Simulation 

I. INTRODUCTION  

Distributed real-time applications are dynamic in nature, 

i.e. the data flows that are exchanged and their Quality of 

Service (QoS) requirements vary over time. Moreover, some 

applications operate in changing environments with 

heterogeneous mobile nodes involved that communicate via 

wireless communication links. Air traffic management, power 

grid control, network games, live simulation, and distributed 

interactive simulation fall into this category. For instance, if 

we consider the case of distributed interactive simulation for 

vehicle driver training with many networked driving 

simulators that evolve in a shared virtual world, each 

simulator needs to get some state information (position, speed, 

etc.) from nearby simulators. The closer the simulator, the 

more stringent the required delay to get information is. 

Movements of driving simulators (in the virtual world) 

introduce dynamicity in the data flows that are 

delivered/consumed by each simulator and on the QoS 

requirements related to the delivery of these data flows. 

The dynamic nature of these applications is one of the 

major challenges for the underlying communication system 

and in particular for the communication network that adds 

other challenges such as scalability and high QoS support. 

Indeed, if network resource utilization is a concern, the 

network must be flexible enough to be reprogrammed in 

accordance with any change in the application. Current 

approaches neither address the dynamicity of applications nor 

care about resource utilization. They are either based on static 

and overprovisioned dedicated networks or overlay networks 

(that are difficult to set up on demand and costly), or require 

from the application to adapt to network’s performance. The 

main reason is that current networks are rather static because 

of their complexity, the specificities of each network device, 

etc. An emerging class of communication networks named 

Software Defined Networks (SDN) have the ability to build 

flexible networks whose behavior can be programmed and 

reprogrammed on demand and in a fine grained manner. They 

are a promising answer to the efficient support of dynamic 

distributed real-time applications from a network resource 

utilization perspective 

 

The main goal of this work is to propose a communication 

system that combines the OMG Data Distribution Service 

(DDS) middleware with Software Defined Networks (SDN) to 

efficiently support dynamic real-time applications distributed 

on non-dedicated network infrastructures. The rationale 

behind using DDS and SDN is the following. DDS has been 

devised (and successfully used) for high performance 

distributed real-time systems. It offers many QoS parameters 

that can be used to express the requirements on the data 

distribution services needed by the application. Most are 

dynamic and can be changed during run-time, enabling DDS 

to capture dynamically application QoS requirements. The 

Publish/Subscribe model of DDS captures the second facet of 



the dynamicity of the application and allows changes in the 

data flows that are exchanged by the application’s 

components.  

To enforce this QoS, end-host and network resources 

control is mandatory. For the former, since DDS resides on 

end-hosts, it defines a set of mechanisms that implement QoS 

aware control and access to host resources. For the latter, 

interfaces exposed by the network are needed to manage its 

resources according to applications needs. This is exactly the 

opportunity brought by SDN.  

This paper is organized as follow. In section II, DDS and 

SDN concepts are briefly exposed. Then, section III gives a 

brief state of the art concerning the concept of Application 

Driven Networking. Section IV details some relevant case 

studies. Section V explains our proposed architecture. Finally, 

section VI concludes this paper. 

II. BACKGROUND 

A. Data Distribution System (DDS) 

The OMG DDS specification defines a standard 

architecture for data exchanges in pub/sub systems. DDS 

provides a global data store in which publishers and 

subscribers respectively write and read data. DDS provides a 

flexible and modular structure by decoupling: (1) location, via 

anonymous publish-subscribe, (2) redundancy, by allowing 

any numbers of readers and writers, (3) time, by providing 

asynchronous, time-independent data distribution, (4) message 

flow, by providing message-based data-centric connection 

management, and (5) platform, by supporting a platform-

independent model that can be mapped to different platform-

specific models, such as C++ running on VxWorks or Java 

running on Real-Time Linux. 

The DDS architecture consists of two layers. The Data-

Centric Publish Subscribe (DCPS) layer provides efficient, 

scalable, predictable, and resource-aware data distribution. 

The Data Local Reconstruction Layer (DLRL) provides an 

object-oriented facade atop the DCPS so that applications can 

access object fields rather than raw data and defines navigable 

associations between objects. 

Figure 1 depicts the relation between DDS entities; 

domains, domain participants, topics, publishers, data writers, 

subscribers, and data readers. DCPS layer supports a global 

data store (DDS domain) where publishers write and 

subscribers read data, respectively. A DDS domain represents 

a virtual global data-space; information provided in the 

domain are accessible by the applications registered to that 

domain.  

 
Figure 1. A View of the Data Distribution Service 

 

DDS is topic-based, allowing strongly-typed data 

dissemination. A DDS topic describes the type and structure 

of the data, data readers and data writers can respectively 

subscribe and publish to specific topics. Publishers manage 

one or more data writers and subscribers manage one or more 

data readers. Publishers and subscribers can aggregate data 

from multiple data writers and readers for efficient 

transmission of data across a network. Publishers and 

subscribers discover each other automatically and match 

whenever they have compatible topics and QoS.  DDS can use 

multiple topic samples called instances that are differentiated 

by their associated unique key. Topics can be configured with 

a wide range of DDS QoS capabilities imposed by peers. A 

DDS QoS policy can be viewed as a function that returns the 

state of the communication since it enables changing some 

aspects of the message exchange, such as connection and error 

handling.   

Moreover, topic samples are exchanged between peers 

within the global data space according to a contract 

established in the discovery phase.  The discovery process is 

managed by the Real-Time Publish-Subscribe (RTPS) 

protocol. During the discovery process each domain 

participant maintains a local database about all the active 

DataWriters and DataReaders that are in the same domain. 

Additionally, the discovery mechanism known as Simple 

Discovery Protocol (SDP) includes two phases:  (1) Simple 

Participant Discovery which is performed by the Simple 

Participant Discovery Protocol (SPDP), where remote domain 

participants learn about each other by sending participant 

declaration messages (also known as participant DATA sub-

messages) and (2) Endpoint Discovery which is performed by 

the Simple Endpoint Discovery Protocol (SEDP), in which 

DataWriters and DataReaders exchange information (i.e., such 

as QoS, data types, etc.) to match each other by sending 

publication/subscription declarations in DATA messages that 

we will refer to as publication DATAs and subscription 

DATAs. 



 

 

 
Figure 2. Overview of the software-defined networking 

(SDN) 

 

B. SDN concepts and OpenFlow 

Recently, Software-Defined Networking (SDN) [9] has 

emerged as a new approach for network programmability and 

management, where the centralized control plane logic is 

decoupled from the forwarding plane as shown in Figure 2. 

Network programmability is a software approach to 

dynamically control, manage, configure or even use a 

network. Amongst others, it covers the existence of open 

interfaces for device configuration, the capability to design 

virtual overlay networks or the opportunity to easily deploy 

network functionalities. In an SDN, centralized control uses 

the network-wide view of the network to ease management 

and configuration of data-path for network services such as 

resource allocation or virtual network deployment. Such 

networking concept can help migrate legacy networks to 

vendor-free platform adaptable to each user needs that could 

be seen as a Network as a Service (NaaS).  

In Software-Defined Networks (SDNs), control plane is 

logically separated from data plane. SDN architectures define 

a new entity that centralizes control intelligence of one or 

more network elements (basically switches). A protocol is 

then defined to communicate between control plane and data 

plane. Examples of such protocols are OpenFlow [3] or 

ForCES [8]. 

 

In an OpenFlow-based SDN architecture, the control entity 

is called a controller. The controller offers northbound 

interfaces to network applications and southbound interfaces 

to communicate with data plane. OpenFlow [3] is one of the 

possible southbound protocols. OpenFlow behavior is simple 

but it can allow complex configurations: the hardware 

processing pipeline from legacy switches is replaced by a 

software pipeline based on flow tables. These flow tables are 

composed by simple rules to process packets, forward them to 

another table and finally send them to an output queue or port. 

Flow tables can be built in a proactive or in a reactive way.  

With such functionalities, OpenFlow can be used to 

implement Quality of Service policies in a switch by 

dynamically managing flow differentiation. For example, a 

DiffServ-like architecture can be easily deployed in a switch 

with several queues per output port and differentiation can be 

applied based on various criteria (destination address, sender 

address, port numbers, etc.). An important point is that 

OpenFlow is not in charge of configuring queues attached to 

output ports of a switch. To this end, OpenFlow Configuration 

(OF-Config) protocol [4] has been defined based on 

NETCONF and manages the “OpenFlow context”: 

establishing links between switches and controller, configure 

output port in switches, etc. Since version 1.3 and the 

introduction of a meter table, OpenFlow is able to monitor 

flow rates and perform actions if a predefined limit is 

exceeded: drop packets or mark the DSCP field. The drop 

policy is efficient but very aggressive and can lead to the 

introduction of data bursts for TCP flows [1]. Globally, 

OpenFlow QoS capabilities are considered incomplete to 

implement an effective QoS architecture and the protocol 

needs some external features to be fully functional [2] (e.g. 

configuration of outgoing queues in switches).  

However, full network configuration is possible by 

dynamically installing flow processing rules in switches with 

OpenFlow and configuring outgoing queues with another 

application. These kind of configurations can be managed by 

an application on the northbound interface of a controller, the 

latter being performed with OF-Config or a legacy protocol 

like SNMP. Another approach to implement QoS with 

OpenFlow is to perform flow splitting and to assign specific 

routes to given flows. Coupled with an optimization 

algorithm, such mechanisms can improve the quality of the 

communication in the case of video streaming [5]. Virtual 

networks (virtual switches and virtual links) can also be 

deployed by “slicing” the OpenFlow network. An intermediate 

controller acts as a “proxy” for the real control plane located 

above him and provides each controller with a virtual network 

(e.g. FlowVisor [6] and more recently OpenVirteX [7]). 

III. RELATED WORK 

Prior middleware solutions for network QoS management 

focus on how to add network QoS services for CORBA-based 

communication [10]. A large-scale event notification 

infrastructure for topic-based pub/sub applications has been 

suggested for peer-to-peer routing overlaid on the Internet 

[11]. Those approaches can be deployed only in a single-

domain network, where one administrative domain manages 

the whole network. Extending network QoS solutions to the 

Internet can result in traffic specified at each end-system being 



dropped by the transit network infrastructure of other domains 

[12]. For example, authors in [13] have presented a network 

communication broker to enable per-class QoS for multimedia 

collaborative applications. Even if this network broker 

enhanced the QoS allocation by differentiating the traffic 

processing at the network edges, it supports neither mobility 

service management nor scalability since it adds complicated 

interfaces to both applications and middleware for the QoS 

notification. 

Our prior work [14] on Velox used an MPLS tunneling 

mechanism to propagate DDS QoS over an overlay model. 

Velox statically created a logical tunnel between remote DDS 

participants to conduct QoS negotiation and resource 

reservations. Any time communication failed, the user had to 

reconfigure the network manually. Moreover, application 

requirements could not change during runtime communication 

between participants. To overcome these limitations, we 

introduced the NetQSIP framework [15] to enhance prior 

research on QoS management at the network layer by 

integrating QoS along two key dimensions: (1) the horizontal 

direction, i.e., between different adjacent layers in the 

application, middleware, and network, and (2) the vertical 

direction, i.e., within a particular layer. In particular, our 

NetQSIP framework maps application flow requirements into 

the DDS layer to allow end-to-end QoS provisioning. Hence, 

NetQSIP provides dynamic QoS management and simplifies 

resource allocation by using SIP to automate end-to-end QoS 

provisioning.  

However, both Velox and NetQSIP were integrated on 

legacy network devices so their deployment depends on the 

internal capabilities of each network fabric, which the 

internals differ from vendor to vendor, with no open software 

platform to experiment new ideas. These devices have their 

control and forwarding logic parts both integrated in 

monolithic, closed, and mainframe-like boxes. Consequently, 

only a small amount of external interfaces are standardized 

(e.g., packet forwarding) but all of their internal flexibility is 

hidden. 

Likewise, the work presented by [16] outlines an extension 

to the IETF REsource Location And Discovery (RELOAD) 

protocol [17] for content discovery and DDS messages 

transfer over large-scale legacy networks. Although this paper 

addressed the discovery scalability issue of DDS, it centers on 

a structured P2P overlay architecture in legacy WANs, which 

is different from our work described in this paper. The work 

described in this paper is based on SDN programmable 

networks, where DDS is used atop of the SDN northbound 

interface to control network devices and program QoS in 

flexible and scalable way.  

IV. CASE STUDY 

This section intends to give an example of what could be 
the benefits of using Software Defined Networking for 
Distributed Real-time applications. Requirements for this class 
of applications are stringent and some of them will be explored 
when using SDN concepts. 

However, real-time communication could not be provided 
without dedicated network architecture. To make clear the 
discussion, we propose to take an example of a multi-site 
company network given in Figure 3. A Virtual Private Network 
between multiple offices of the same company is considered: 
the headquarters (A) are connected to the other offices (B) and 
(C) with a Virtual Ethernet Service. Then, business 
applications and services are running as if they were deployed 
over a classical LAN.  

 

Figure 3. Multi-site network architecture 
 

The network is then essentially composed of switches, few 
routers, and middle-box appliances.  

This kind of network architecture is simple and easy to 
maintain. Links between sites have to be provisioned according 
to the distributed applications needs, but also to the generic 
communication (telephony, network appliances, etc.). 

However, the lack of traffic isolation and the difficulty to 
deploy complex quality of service policies in the network are 
the counter part of the simplicity. It is then not possible to 
ensure the communication requirements of real-time 
applications and especially if requirements are stringent and 
variable. Overprovisioning is then the only solution, but at a 
high cost.  

A. Software Defined Networking benefits 

Using SDN concepts could knock down the technological 
barriers that slowdown the dissemination of real-time 
distributed applications. The main idea in this paper is to 
combine objects and communication descriptions provided 
when using the DDS middleware, especially related to Quality 
of Service, and SDN concepts as a flexible solution to 
configure the network with dedicated and flexible QoS 
solutions.  

The benefits are multiple and this article proposes to 
explore them following three use cases.  

First, generally speaking and without any consideration on 
using a middleware, the management of a distributed network 
across several entities is complex. Providing an acceptable 
level of service to distributed real-time applications, but also 
offering enough bandwidth to network appliance is a complex 
tradeoff that have to be implemented with a fine-tuned QoS 
policy. The problem is hardened when considering the 
evolution of the requirements over time: the policy has to be 



adapted frequently and consistently. It mainly consists in 
collecting the communication requirements from the 
applications, defining the new policy, and scripting the control 
of network switches with SNMP for instance. This could be a 
hard task, as the consistency of the configuration must be 
ensured on all devices and at the same time. With a unique 
control point (the controller) OpenFlow provides a robust 
solution to this task. Application requirements could be 
collected within the controller thanks to the centralized 
description of the application (DDS configuration file), an 
optimal policy could be computed and deployed thanks to the 
OpenFlow protocol.  

The next use case, extends the previous one related to the 
configuration, and addresses the automatic network slicing. 
When several applications are coexisting within the same 
network, it is sometime relevant to segregate traffics from each 
application. Several VPN are then configured to ensure that 
bandwidth resources from one application would not be 
consumed by another application. OpenFlow provides 
solutions for network isolation, called slicing that simplifies 
this operation. The switches could monitor network resource 
consumption and forwarding decisions could be taken on the 
go by the controller.  

Finally, the last use case takes benefit from DDS smart 
capabilities for data diffusion. Commonly, broadcasting is 
massively used over a LAN to maintain the consistence of the 
distributed application. However, considering a virtual 
Ethernet service over private leased line it could be inefficient 
and costly when resources are scarce. DDS offers a filtering 
mechanism that only propagates data to the concerned 
subscribers instead of broadcasting. However, this mechanism 
is useless over a classical Ethernet network as there is no way 
to filter data. It is possible to implement a dynamic filtering 
mechanism with OpenFlow that reduce the traffic between 
interconnected switches at its minimal value.  

B. Discussion 

The combination of DDS middleware capabilities with the 
OpenFlow SDN concepts is promising. However, this is not 
possible without an appropriate architecture that defines the 
role and the place of the different entities. The next section is 
devoted to the architecture definition.  

V. PROPOSED ARCHITECTURE 

This section presents the details of the network 

architecture required to deploy enhanced QoS mechanisms for 

DDS over SDN-enabled networks. 

A. Targeted QoS parameters 

The network quality of service can be described through 

multiple parameters related to different aspects of the data 

transmission such as: 

- Transmission errors (bit error rate, packet error rate, 

packet loss, FEC level, etc.) 

- Transmission delay (end-to-end delay, jitter, queuing 

delay, first packet arrival, etc.) 

- Transmission throughput (bandwidth, packet success, 

etc.) 

Through DDS, applications can specify their QoS 

requirements by the mean of various QoS parameters. Indeed, 

DDS allows the specification of the following QoS policies: 

 

Table 1. QoS Parameters in DDS 

Volatility - Durability 

- History 

- Reader data lifecycle 

- Writer data lifecycle 

- Lifespan  

Infrastructure - Entity factory 

- Resource limits 

Delivery - Reliability 

- Time based filter 

- Deadline 

- Content filters 

User QoS - User data 

- Topic data 

- Group data 

Presentation - Partition 

- Presentation 

- Destination order 

Redundancy - Ownership 

- Ownership strength 

- Liveliness 

Transport - Latency budget 

- Transport priority 

 

In the DDS middleware, these QoS parameters are handled 

in different ways and at different layers of the communication 

stack. For example the “History” parameter related to 

“Volatility” is handled at the highest layer (sub-application 

layer). Whereas, other parameters such as “Latency” or 

“Transport priority” can be handled at the network layer or 

below. 

On the other side, QoS management is implemented within 

OpenFlow. QoS management is handled via 3 techniques: (a) 

per-port queue management, (b) per-flow priority, and (c) 

queue and flow statistics. The QoS management in OpenFlow 

has been progressively introduced through the consecutive 

versions. OpenFlow v1.0 brought the specification of the 

minimum rate for a port queue, while OpenFlow v1.2 brought 

the specification of the maximum rate for a port queue and the 

specification of priorities among flows. Finally, OpenFlow 

v1.3 brought Meter tables for statistics purposes. 

In order to enhance DDS applications running on top of 

SDN-enabled networks, it is important to translate all the DDS 

QoS parameters into L2/L3 policies that can be implemented 

in the network.  

B. QoS parameters capture 

Before translating the DDS QoS parameters into L2/L3 

policies, it is important to capture all the relevant parameters 

in the most seamless way for the running applications. To this 

end, we can envision two different approaches, both requiring 

no modification in high level application: 

 

 

 



(1) Middleware-independent QoS parameters capture: 

QoS parameters can be captured using the DDS monitoring 

service. With the monitoring service, the SDN controller 

subscribes to a discovery DDS topic and thus, takes part of 

the DDS domain. It then notifies QoS parameters of any 

running DDS-based application. This approach is 

transparent to the application. However, it requires the 

controller to be part of the DDS domain and thus, it must run 

the DDS middleware. 

A more seamless way would be to capture the QoS 

parameters specification by monitoring the traffic among the 

DDS entities within the network. This is very challenging 

and may be less efficient since it involves the reverse 

engineering of the DDS protocols (signaling, data, etc.). 

 

(2) Middleware-dependent QoS parameters capture: 

In this approach, the DDS middleware should be augmented 

with a new SDN module. As illustrated in Figure 4, this 

module will communicates with the Network Application 

which is running on top of the SDN controller in order to 

provide it with all the relevant QoS information to optimize 

and/or reconfigure the underlying L2/L3 network topology.  

 
Figure 4. DDS QoS parameters capture to L2/L3 flows 

orchestration 
 

C. L2/L3 flows orchestration 

In a SDN, L2/L3 policies can be applied by passing high 

level rules to the controller that can distribute and apply them 

to data plane. Available functionalities and configurations 

depend on the protocol used to communicate with switches 

and configure them. With OpenFlow, a controller is able to 

program the processing pipeline in switches by populating 

successive flow tables. Several functionalities can thus be 

deployed by performing specific L2/L3 treatment:  

 Basic L2/L3 routing: 

o L2/L3 header treatment, 

o Queuing in adequate outgoing queue/port. 

 Flow splitting: 

o Path selection depending on flow, 

o Possible dynamic load balancing. 

 Multicast with RP-point: 

o Data-duplication in defined switches, 

o Multiple points of duplication. 

 Adaptive sending rates: 

o Limit rate on specific flows/ports. 

o Drop / Redirect / Alert if overtaking rate. 

 

Furthermore, a network managed via OpenFlow can be 

“sliced” to create virtual networks. It is thus possible to deploy 

virtual switches and links with a topology adapted to current 

state and active DDS flows: point-to-point, mesh, tree, etc. 

 

 
Figure 5. Network application in charge of configuration. 

 

D. Network ressources allocation 

In our design, we chose to build an application located on top 

of the controller NorthBound interface, since it is more 

compliant with SDN standards than deploying an extension to 

a controller (see Figure 5). Globally, this application is 

responsible for translating DDS QoS constraints into 

forwarding rules that can be implemented in network 

switches. It is composed by 4 logical blocks: a DDS 

information handler, a network monitor, a planner and a 

command executor. Interactions and behavior of theses logical 

blocks are summarized in Figure 6. The DDS handler is 

connected to DDS domain and uses RTPS to collect data on 

DDS flows (required bandwidth, delay tolerance, data 

generation model ...). The network monitor element uses the 

SDN controller NorthBound API to gather information on the 

underlying network (topology, capacity ...) and measurements 

on active flows (rate, counter ...). Based on monitoring data 

from previous elements, the planner computes the optimal set 

of network resources that is needed to support DDS flows with 

their required QoS. Optimization may induce splitting point-

to-multi-point flows at RP-points (Rendezvous point), 

adapting DDS publishing rates to subscriber needs by shaping 

network flow rate or load balancing flows over different paths 

while preserving delay requirements. The last element is in 

charge of applying the network configuration built by the 



planner in the real world either via the controller NB-API for 

OpenFlow related rules or via OF-Config for switch 

configuration (Ex: configuring queues attached to outgoing 

ports).  

 

 
Figure 6. Network services allocation algorithm. 

 

 

In order to check the technical feasibility of our solution, 

we considered of the OpenFlow controller Floodlight [18]. 

Based on the REST communication architecture, the NB-API 

of Floodlight allows an application to capture information 

from the network and to set up various rules in the data plane 

(see Table 2). These requests are specific to the use of 

OpenFlow and take into account the possibilities of this South 

Bound protocol. They can help designing high level 

functionalities needed by our proposition: 

 Build network topology based on known switches and 

links with accurate information such as port speed (i.e. 

path bandwidth), 

 Monitor network events by periodically checking 

available links and switches, 

 Monitor network flows by periodically checking traffic 

counters, 

 Reserve resources on a path between subscriber and 

publisher by adding a static flow, 

 Establish a dedicated network for data flows of specific 

topics by adding a virtual network. 

These functionalities are executed by the Network Monitor 

and the Executor modules of our Network Services Allocator 

(Figure 5) to achieve their respective goals: obtain status and 

statistics from the network and control the data-forwarding 

elements of the network. 

 

Table 2. Examples from the Floodlight Northbound-API 

Description REST 

Method 

Possible Options 

List traffic counters GET Per controller / per switch 

List all switches GET  

List all links GET Internal / External domain 

Add a static flow POST Arguments and output 

Add virtual network PUT ID and possible Gateway 

 

VI. CONCLUSION  

In the near future, software defined components will be a 

predominant part in communication networks thanks to the 

growing use of virtualization (resources or network). The 

design presented in this paper shows how SDN computer 

networks can be used to provide dynamic customized network 

services to dynamic DDS applications with efficient network 

resource utilization. The feasibility of this solution has been 

demonstrated through the description of its components along 

with their functionalities and how they can be implemented.  
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