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Abstract—The distribution of streaming data often changes
over time as conditions change, a phenomenon known as concept
drift. Only a subset of previous experience, collected in similar
conditions, is relevant to learning an accurate classifier for
current data. Learning from irrelevant experience describing a
different concept can degrade performance. A system learning
from streaming data must identify which recent experience is
irrelevant when conditions change and which past experience
is relevant when concepts reoccur, e.g., when weather events or
financial patterns repeat. Existing streaming approaches either
do not consider experience to change in relevance over time and
thus cannot handle concept drift, or only consider the recency of
experience and thus cannot handle recurring concepts, or only
sparsely evaluate relevance and thus fail when concept drift is
missed. To enable learning in changing conditions, we propose
SELeCT, a probabilistic method for continuously evaluating
the relevance of past experience. SELeCT maintains a distinct
internal state for each concept, representing relevant experience
with a unique classifier. We propose a Bayesian algorithm for
estimating state relevance, combining the likelihood of drawing
recent observations from a given state with a transition pattern
prior based on the system’s current state. The current state is con-
tinuously maintained using a Hoeffding bound based algorithm,
which unlike existing methods, guarantees that every observation
is classified using the state estimated as the most relevant,
while also maintaining temporal stability. We find SELeCT is
able to choose experience relevant to ground truth concepts
with recall and precision above 0.9, significantly outperforming
existing methods and close to a theoretical optimum, leading to
significantly higher accuracy and enabling new opportunities for
learning in complex changing conditions.

Index Terms—Data Streams, Recurring Concepts

I. INTRODUCTION

A growing number of systems collect data in real-time,
such as internet-connected sensors or online activity. Learning
from these data streams requires adaptive systems capable of
reacting to change. Consider the data stream classification
task shown in Figure 1 where the air quality level at y is
forecast from air pollution readings captured at W and E.
New observations may arrive at a fast pace in volumes that
may not fit in memory, requiring the distribution of data,
the concept, to be learned incrementally by accumulating
experience over time [1]. The distribution of data is deter-
mined by the context [2], unknown features which effect
classification. For example, wind direction is an unknown
factor determining how pollution affects air quality. While
the wind direction is constant a classifier may accumulate
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Fig. 1: Relevance of experience over concept drift, and the
effect on accuracy over time when accumulating, forgetting
and additionally recalling experience.

experience to learn a forecasting function which is accurate for
the current concept. However, in a streaming setting context
may change over time [2], causing concept drift [3] where
the distribution of incoming data changes. Experience learned
under one concept may not generalize to other concepts, e.g.,
if wind direction changes then the forecasting function learned
by the current classifier may conflict with the new distribution
of data [4]. The task shown in Figure 1 has three distinct
wind directions, with the east and west directions producing
conflicting concepts. The accuracy of a system which only
accumulates experience will degrade when concept drift oc-
curs at point (I). Experience made irrelevant due to concept
drift must be forgotten in order to maintain accuracy. Most
existing methods of learning from streaming data focus on
the two challenges of accumulating experience and forgetting
irrelevant experience [5].

In this work we investigate the additional requirement of
recalling forgotten experience when concepts reoccur, e.g.,
when similar wind conditions appear in multiple discrete
periods across a stream. Recalling relevant experience from
previous occurrences of a concept is required for long-term
accumulation of experience in the presence of concept drift,
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Fig. 2: Standard Adaptive Learning Framework

particularly for handling rare or short-term concepts where
we cannot learn an accurate predictive function over one
occurrence. In these cases recalling experience is difficult
as it requires the conditions where experience is relevant
to be accurately represented, however building such a rep-
resentation across concept drift requires accurately recalling
experience in the first place. Solving these dual problems
requires a temporally stable system, capable of learning a
stable initial representation of each concept. Learning from
streaming data with changing and recurring conditions is an
open research challenge, requiring accumulating experience
over time, forgetting experience made irrelevant by concept
drift, and recalling previous experience made relevant when
concepts reoccur.

Existing streaming approaches fall into three broad cate-
gories, which all face challenges in this setting. Approaches
that do not consider the relevance of experience, or do not
consider changes in relevance over time, (A) in Figure 1,
cannot adapt to concept drift and are not suitable in changing
conditions. Approaches that determine relevance based only
on forgetting irrelevant experience, (B) in Figure 1, encounter
catastrophic forgetting where forgotten experience becomes
relevant in the future, hindering the learning of long-term
or recurring concepts. The final category, adaptive learning
methods, monitor recent observations to determine changes in
relevance over time to recall recurring concepts. However, in
this work we identify a flaw in existing approaches in that the
relevance of past experience is only evaluated sparsely when
current experience is deemed irrelevant. Existing methods
cannot guarantee that each prediction is made using relevant
experience, failing at point (III) in Figure 1 where the most
relevant experience cannot be recalled because current expe-
rience is not considered irrelevant.

In this work, we address these challenges by proposing
a framework for adapting to concept drift able to guarantee
that each prediction uses the experience estimated as most
relevant, producing (C) in Figure 1. Similarly to adaptive
learning, our approach accumulates experience relevant to each
concept into a repository of internal states each represented by
a distinct classifier. By selecting a relevant active state from
the repository to classify and learn from each incoming obser-
vation, experience can be forgotten and recalled dynamically

in response to changing distributions.
In existing methods, the relevance of the active state is

monitored by a concept drift detector [6, 7], producing an
alert when changes in distribution occur, deactivating the
active state to forget irrelevant experience and selecting a new
active state to handle the new concept. A re-identification [8]
procedure queries previously deactivated states to determine if
any are relevant to the new concept, or, if no suitable state is
found, the concept is deemed novel and a new active state is
initialized. In this procedure, the relevance of the active state is
continuously monitored, identifying when relevant experience
becomes irrelevant, however the relevance of inactive states is
only sparsely evaluated when drift is detected, which does not
identify drift where irrelevant experience becomes relevant,
as shown in Figure 2. Additionally, relevance in existing
methods is often a binary signal due to separating detection
and re-identification. We often cannot compare how relevant
experiences are, causing failure cases when concept drift
detection and re-identification conflict.

We propose an alternative approach to determining state
relevance, Streaming Extraction of Likelihoods for Concept
Transitions, (SELeCT), which integrates concept drift detec-
tion and re-identification into a single, probabilistic algorithm
able to continuously evaluate how relevant each state is to
current observations. We propose a Bayesian algorithm to
compute the relevance of a state by combining the likelihood
of drawing recent observations with a prior probability learned
from previous concept transitions. To maintain the temporal
stability of states, an important property for learning each
distinct underlying concept, we propose a continuous selection
algorithm based on the Hoeffding bound, giving a guarantee
within some risk level that the selected state at any point
in the stream has the highest estimated relevance to the
underlying concept displayed in recent observations, even in
noisy conditions. Our evaluation shows that the SELeCT can
choose states that match ground truth concepts with a recall
and precision above 0.9, showing no significant difference
compared to a theoretically optimal selection strategy and sig-
nificantly outperforming existing methods. By more accurately
selecting relevant experience, we show that SELeCT is able
to achieve a classification κ statistic up to 0.15 higher than
existing methods. Our contributions are as follows:



• Our main contribution is proposing the first method of ex-
plicitly accumulating, forgetting and recalling experience
relevant to changing conditions in a continuous, proba-
bilistic manner, enabling us to learn recurring concepts.

• We develop: 1) a method of estimating relevance based
on the likelihood of drawing recent observations and a
prior probability encoding learned transition patterns. 2)
A continuous selection algorithm based on the Hoeffd-
ing bound, able to guarantee, even in noisy real-world
conditions, that the experience used for prediction is
the best choice given our estimator, and, crucially, is
temporally stable, enabling us to learn a representation
of each concept. 3) A strategy for merging states with
similar relevance dynamics to reduce memory costs.

• We contribute a novel adaptive learning framework,
SELeCT, enabling near-optimal adaptations to changing
conditions. We evaluate SELeCT in streaming tasks with
recurring concepts using decision tree and neural network
classifiers, demonstrating accuracy up to 43% higher than
existing adaptive learning methods.

II. PROBLEM FORMULATION

We consider the supervised data stream classification prob-
lem, where a sequence of ⟨X, y⟩ observations is received
over time. We consider labels to be immediately available,
however our framework generalizes to the unsupervised setting
if an unsupervised concept representation [8] is used. Each
observation at time t, Ot, occurs in some context, Ht, the set
of all unobserved features which affect y [9]. Each observation
is drawn from the distribution p(X, y|Ht), known as the
concept at time t. As Ht is unobserved, we denote the concept
at t as Ct = pt(X, y).

It is common for Ht to change over time, leading to
observations at different points in a data stream being drawn
from different concepts. A concept drift is a timestep tD
where pt<tD (X, y) ̸= pt>tD (X, y) [10]. A concept drift
can be gradual, occurring over a period of observations, or
abrupt [11]. Assuming that context changes smoothly over
time, concepts are temporally stable, i.e., a data stream can
be viewed as a sequence of segments, each containing obser-
vations drawn from a distinct concept, separated by concept
drift. Concepts can reoccur over the stream, i.e., distinct
segments may share a distribution. Classification in this setting
is difficult, as experience describing one distribution may not
accurately describe a different distribution. A classifier trained
on experience from one concept may inaccurately predict
observations drawn from another. We define experience, or
a classifier trained on this experience, as relevant to a concept
if it accurately describes the distribution of data drawn from
that concept or irrelevant if it does not. To maximize accuracy
we aim to learn each prediction from all relevant previous
experience without irrelevant experience.

Adaptive learning approaches accumulate new experience
as distinct states, Si = ⟨mi, ζi⟩, defined in Definition 1, each
representing a specific concept Ci. At time t, we have access
to a repository R of previously constructed states, and we can

create a new background state B from a window of recent
observations ω. The goal of adaptive learning is to select
the optimal state from R ∪ B to classify each observation.
Definition 2 defines optimal where ζi fully describes Ci and
sim is a perfect measure of distribution similarity. In the real-
world ζi is an approximation so our similarity measures are
estimates, sim′, thus we find the optimal estimated state.

Definition 1: A state Si = ⟨mi, ζi⟩ represents a concept Ci

as a relevant classifier mi, i.e., trained on observations drawn
from Ci, and a concept representation, ζi, summarizing the
distribution Ci.

Definition 2: Given current concept Ci, repository R,
background state B, a distribution similarity measure sim,
estimated as sim′ we define the Optimal state as So =
argmaxSj∈{R∪B} sim(ζj , Ci) and the Optimal Estimated
state as S′

o = argmaxSj∈{R∪B} sim′(ζj , Ci)
An adaptive learning approach aims to, at each t, select the
state St

A which best approximates the optimal state under a
given sim′, St

A = S′t
o ≈ St

o. Identifying the optimal state for
each observation achieves our problem formulation, assum-
ing that experience is relevant to a specific concept. While
learning, selecting the optimal state allows us to accumulate
all experience relevant to each concept into a single state,
containing no irrelevant experience, which we can recall to
optimally predict future observations. Additionally, selecting
optimal states allows the dynamics of St

A to be mined to reveal
the dynamics of the hidden context Ht to, for example, reveal
important features not currently included in X [12].

Existing adaptive learning methods, discussed in Section VI,
select St

A by following the procedure shown in Figure 2.
Initially, an active state SA is constructed to learn from new
observations. A concept drift detector monitors the relevance
of the active state, producing an alert when significant change
is detected in a similarity measure sim′(ζA, ζω), where ζω de-
scribes a window ω of recent observations. An alert indicates
SA is no longer relevant, i.e., should be deactivated and stored
in R, and a new SA should be selected. A re-identification
procedure can query R for previous Si ∈ R which have
become relevant, i.e., show a high sim′(ζi, ζω). If no Si ∈ R is
relevant, we determine the new concept is novel and initialize
a new SA. This approach only evaluates the relevance of
Si ∈ R sparsely, when SA is found to be irrelevant and an
alert is triggered. While efficient, this approach cannot identify
concept drift which presents as an increase in the relevance of
a state in R, rather than a significant decrease in the relevance
of SA, e.g., due to noise or partial changes. Sparse evaluation
cannot be solved by simply running re-identification every
step, as re-identification does not maintain a temporally stable
active state, i.e., SA may change at any t due to noise. This
behaviour does not reflect true change in context, and means
we cannot accumulate experience of each distinct concept.
We require an efficient method of continuously evaluating
relevance that maintains a temporally stable active state.

In Section V, we empirically show that the active state
in existing methods often fails to capture the ground truth
concept, causing accuracy to be degraded. Alternative stream
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Fig. 3: SELeCT Framework

Algorithm 1 SELeCT
In: New observation Ot (Input Xt, Class yt), State repository
R, Background state B, Active state St

A

Out: Label ŷt, Next state St+1
A

1: ŷt ← Classify(St
A, X

t).
2: Train(St

A, y
t)

3: StateProbabilities← []
4: for Si ∈ R ∪B do
5: Kt ← CurrentKnowledge(St

A, O
t)

6: pi ← ComputePrior(Kt, Si)
7: li ← UpdateLikelihood(Ot, Si)
8: StateProbabilities[Si]← pi × li
9: end for

10: St+1
A ← SelectionTest(StateProbabilities, St

A)
11: if St+1

A = B then
12: R← R ∪B, B ← NewState()
13: end if
14: return ŷt, St+1

A

learning approaches, such as dynamic selection and continual
learning discussed in Section VI, cannot explicitly detect
irrelevant experience, or store and recall relevant past expe-
rience. In the next section we propose SELeCT to accurately
identify relevant experience in streaming data with changing
and recurring concepts and show that we achieve classification
performance and context tracking closer to optimal.

III. SELECT FRAMEWORK OVERVIEW

SELeCT is an adaptive learning framework based around
collecting a repository of states, each accumulating experience
relevant to a distinct concept, and identifying the optimal state
to handle each observation. The main novelty is that, rather
than a cycle of continuous concept drift detection and sparse
re-identification, SELeCT continuously evaluates the relevance
of all states, enabling us to detect both when the active
state becomes irrelevant and when an inactive state becomes
relevant. A continuous selection method using the Hoeffding
bound solves the temporal stability challenge, guaranteeing
that every active state St

A is the optimal estimated state S′t
o

on recent data, even in noisy conditions. By maintaining
temporally stable active states we match the dynamics of
the underlying concepts and can learn experience relevant to
each distinct concept. SELeCT is an abstract framework, so

each component shown in Figure 3 and Algorithm 1 may be
implemented in different ways. In this section we discuss the
overall algorithm and in the next section we discuss component
implementation.

State Representation SELeCT must accumulate experience
as states, such that we can identify the conditions where
each state is relevant. SELeCT models each state Si as a
pair, ⟨mi, ζi⟩, an incremental classifier [1] mi and concept
representation ζi. Experience can be accumulated by training
mi on new observations drawn from a given concept, and
can be applied by making predictions using mi. The concept
representation ζi defines the distribution each state is relevant
to using a similarity function sim′, e.g., cosine similarity
(Eq. 2). We may calculate sim′ between two representations to
estimate the distance between the distributions they represent,
and thus estimate relevance. Different concept representations
may capture different information about a distribution, for
example, a supervised representation capturing p(y|X) may
be used when labels are available, otherwise an unsupervised
representation capturing only p(X) may be required [8].

A concept representation ζi for a given state Si is learned by
maximizing similarity to observations seen when Si is active.
A background state B is maintained to represent a sliding
window ω of the most recent observations. We discuss details
of the state representation used in our implementation in the
next section. At each time t, SELeCT computes the relevance
of each state Si ∈ R∪B, to select St

A for the next observation
using a probabilistic Bayesian approach.

State Probability To identify the optimal active state, at
each time t, SELeCT computes the probability of each state
Si ∈ R∪B being optimal at the next time step, p(St+1

o = Si),
given current knowledge of the system, Kt. General or domain
specific knowledge describing concept drift characteristics can
be captured in Kt, i.e., transition patterns. Given Kt and the
current observation ⟨Xt, yt⟩, the goal is to compute the prob-
ability p(St+1

o = Si|Kt, ⟨Xt, yt⟩). SELeCT uses a Bayesian
approach to break this into two sub-steps, computing the prior
probability pi of Si being active on the next observation given
current knowledge, pi = p(St+1

o = Si|Kt), and computing the
likelihood li of the current observation being generated from
the concept described by Si, li = p(⟨Xt, yt⟩|St+1 = Si).
Bayes Theorem can combine these into a posterior probability:

p(St+1
o |Kt, ⟨Xt, yt⟩) ∼ p(⟨Xt, yt⟩|St+1)p(St+1

o |Kt) (1)



Continuous Selection Finally, SELeCT uses a continuous
selection test to select the next active state based on the com-
puted posterior probabilities of each state. A simple maximum
a posteriori approach, selecting the state with maximum pos-
terior probability, suffers from issues with temporal stability,
where noise may cause an erroneous transition to, or a failure
to transition away from, a sub-optimal active state. Both cases
make it difficult to learn a distinct state for each concept
as they disrupt our learning of ζA, meaning SA cannot be
accurately recalled in the future. We instead use a hypothesis
test, with the null hypothesis that the current active state had a
higher probability over recent observations than any alternative
state, giving a guarantee, up to some risk level, that the active
state at any given observation is the optimal achievable state
for a given sim′ from the current set of possible states.

Theoretical Analysis: Time and Memory Complexity
While the time complexity of SELeCT depends on the
implementation of each component, we may assume that
components follow standard online learning restrictions of
constant time and memory complexity per observation. In this
case, SELeCT has the same time complexity as the standard
adaptive learning framework. The active state classification
and training steps are O(1) per observation. Computing state
probability can be assumed to be O(1) per observation per
stored state if implemented with a fixed amount of memory.
Across a state repository of size, |R|, SELeCT is then O(|R|)
per observation. Repository size can be fixed to a constant
|R| while retaining performance by implementing standard
adaptive learning memory management techniques [13, 14],
which we omit for simplicity. Under these implementation
assumptions, the SELeCT framework has a constant time
complexity per observation making it suitable for online use.

For comparison, the standard framework replaces the prob-
ability calculation with a drift detection step and runs a re-
identification step if an alert is triggered. Given a d chance of
triggering a drift per observation, the time complexity of the
standard framework is O(d|R|) per observation. This is also
constant time per observation under the same implementation
constraints. SELeCT has the same constant memory complex-
ity as the standard framework given a fixed size repository,
storing |R| states in the repository and one background state,
O(|R|+1). We empirically validate that the time and memory
performance of our implementation of SELeCT is equivalent
to existing methods, discussed in the supplementary materials
available at https://github.com/BenHals/SELeCT.

IV. COMPONENT IMPLEMENTATION

In this section, we propose methods for each component
of the SELeCT framework. SELeCT requires three main
components, a method of representing a concept as a system
state, a method of computing state priors and likelihoods, and
a continuous selection statistical test. All code is available at
https://github.com/BenHals/SELeCT.

System State We base our state representation on the rep-
resentation proposed in FiCSUM [8], where each ζi describes
the distribution of a concept Ci using a vector of meta-features.

Each meta-feature in ζi is the result of a summary function
calculated over a set of observations drawn from Ci, for
example, the mean of X or the variance in y, describing one
aspect of how a concept behaves over time. We use the default
set of meta-feature functions from FiCSUM to represent a
general range of concept behaviours. We use a weighted cosine
distance, with meta-feature weights W calculated as in FiC-
SUM [8], to calculate the similarity between ζ, approximating
the difference between distributions Ci and Cj as

sim′(ζi, ζj) =
Wζi ·Wζj

||Wζi|| · ||Wζj ||
. (2)

To train the active representation ζA, we monitor a slid-
ing window of recent observations, ω, and a lagged sliding
window B. The representation ζB built on B is a stable
representation of the active concept, as long as we have not
detected concept drift since it was captured. We update the
active ζA as the online mean of ζB , captured every |B| steps.

State Priors We calculate the prior probability of a state
Sj at time t + 1, i.e., the probability p(St+1

o = Sj |Kt),
using a transition matrix based Kt which is informed by a
concept drift detector. Given the active state at the current
time step, St

A, the probability of Sj being the next optimal
state St+1

o is given by the probability p(St+1
o = Sj |St

A, D
t)

of observing a transition from St
A to Sj in current conditions,

i.e., when recent observations are stationary or drifting. We
model current conditions as Dt using a drift detector, setting
Dt=1 in periods where a drift detector detects significant
changes in the likelihood of St

A, or Dt=0 otherwise. We
calculate p(St+1

o = Sj |St
A, D

t) using two transition matrices,
TM1 and TM0 which capture transitions when Dt is 1 or
0 respectively. Each entry TMd

ij represents the number of
transitions seen from St

A=Si to Sj when Dt=d. We calculate
the prior probability for each Sj ∈ R as

p(St+1
o = Sj |St

A = Si, D
t = d) =

TMd
ij∑

Sk∈R TMd
ik

. (3)

We also use three adjustment parameters. Firstly, a mini-
mum prior probability allows unobserved transitions to occur.
Secondly, a ‘backwards transition’ prior of strength b allows
a new state to transition back to the previous state to repair
false positive transitions, implemented by setting TMd

ij = b
when we first observe a transition to state j. Finally, we
track transitions of up to m steps, e.g., if transitions A to
B and B to C have been observed, we assign some prior
probability to the 2-step transition A to C. Probability for
m steps is given by (TMd)m. We calculate the transition
count as max(TMd, (TMd)2, . . . , (TMd)m). The SELeCT
framework enables further information to be incorporated into
Kt, e.g., stream volatility, which has been used to proactively
predict concept drift locations [15], could be used to update
the prior probability of St

A.
State Likelihood We calculate relevance as the likelihood

of drawing a sliding window of recently observed data, ω, from
the concept described by each system state as p(ω|St = Sj).
We describe ω by computing the state representation ζω . A



TABLE I: Performance against Baselines as Mean± Std. The best non-upper bound system in each dataset (row) is bolded.

FiCSUM RCD CPF DWM DYNSE SELeCT LB UB
κ

AQS 0.92±0.04 0.72±0.03 0.92±0.03 0.90±0.01 0.79±0.02 0.94±0.00 0.71±0.03 0.95±0.00
AQT 0.44±0.06 0.39±0.04 0.50±0.03 0.57±0.01 0.47±0.04 0.57±0.05 0.33±0.02 0.61±0.01
AD 0.85±0.03 0.71±0.08 0.87±0.03 0.85±0.03 0.45±0.16 0.85±0.02 0.82±0.04 0.90±0.01
CMC 0.22±0.05 0.16±0.02 0.19±0.03 0.22±0.02 0.19±0.03 0.25±0.03 0.24±0.02 0.27±0.02
STGR 0.98±0.02 0.91±0.07 0.87±0.04 0.92±0.01 0.77±0.01 0.98±0.00 0.93±0.00 0.98±0.00
TREE 0.35±0.10 0.23±0.03 0.27±0.05 0.30±0.05 0.34±0.03 0.50±0.06 0.25±0.03 0.56±0.05
WIND 0.90±0.01 0.70±0.07 0.78±0.02 0.86±0.00 0.58±0.00 0.92±0.01 0.89±0.03 0.94±0.00

C
-F

1

AQS 0.76±0.10 0.29±0.02 0.51±0.07 0.29±0.00 0.29±0.04 0.87±0.06 0.29±0.00 0.97±0.00
AQT 0.63±0.10 0.26±0.04 0.46±0.05 0.29±0.00 0.22±0.03 0.89±0.04 0.29±0.00 0.97±0.00
AD 0.82±0.09 0.32±0.02 0.67±0.09 0.29±0.00 0.45±0.01 0.91±0.03 0.29±0.00 0.88±0.00
CMC 0.73±0.12 0.47±0.07 0.51±0.06 0.67±0.00 0.57±0.05 0.84±0.07 0.67±0.00 0.88±0.00
STGR 0.95±0.06 0.46±0.03 0.60±0.12 0.50±0.00 0.33±0.03 0.98±0.02 0.50±0.00 0.98±0.00
TREE 0.59±0.19 0.31±0.03 0.43±0.03 0.29±0.00 0.27±0.02 0.94±0.06 0.29±0.00 0.98±0.00
WIND 0.98±0.00 0.35±0.04 0.32±0.05 0.40±0.00 0.29±0.02 0.99±0.01 0.40±0.00 0.98±0.00

similarity aj can be calculated between each state represen-
tation ζj for Sj ∈ R and ζω as sim′(ζj , ζω), measuring
the similarity between the experience relevant to Sj and
the distribution generating incoming data. We calculate the
probability of observing a similarity as high as aj under
the null hypothesis that Sj is relevant. While each state Sj

is active, we model the distribution of aj as a Gaussian,
Aj ∼ N(µj , σj) by capturing the mean and standard deviation
of aj as µj and σj . Aj models the distribution of similarity
values we would expect to see if Sj was relevant. We compute
the likelihood of drawing a given aj from Aj , to get the
likelihood of seeing a ω with a similarity to Sj of at least aj ,
if Sj is relevant. Using Equation 1, we combine this likelihood
with the state prior to get the probability p(St+1

o |St, ω) that
each state is relevant.

Continuous Selection To select the the active state for an
incoming observation given p(St+1

o |St, ω), we compare the
probability of St

A against B and all states Si ∈ R. We use
a statistical test to guarantee that the selected St+1

A has the
highest probability over a window of recent timesteps, in order
to maintain temporal stability even in noisy conditions. We
test a window of the w0 most recent posterior probabilities
for the active state, which has mean µ0, against a window
of the w1 most recent probabilities for each alternative state,
which has mean µ1. Similarly to the ADWIN [16] concept drift
detector, we select each window as the set of recent proba-
bilities with no significant change in mean. The difference in
means between the active and alternative states, µ1 − µ0, is
tested against a threshold ϵ to test whether the alternative is
significantly more relevant than the current active state. We
use the Hoeffding bound to select ϵ based on the size of w0

and w1 in order to constrain the false positive and negative
error rate for this test to be a parameter δ [16]. We transition
to the alternative state with the highest µ1 at least ϵ above µ0.
Any conflict between alternative states is resolved in the next
evaluation. If we transition to B, it is added to the repository,
and a new B is initialized to represent ω.

State Merge Over time, the repository can accumulate du-
plicate states representing the same concept [17]. We remove

duplicates by calculating correlations between state probabil-
ities and merge states with a correlation above a threshold
parameter of 0.95 by combining entries in the transition matrix
and removing the state with less training from the repository.

V. EVALUATION

Our hypothesis is that by selecting more relevant active
states, SELeCT is able to more accurately accumulate and
apply experience matching the underlying concept of a stream,
enabling increased accuracy. We evaluate this hypothesis in
this section, comparing SELeCT against an optimal reference
and alternative streaming methods, and studying the effect of
each of SELeCT’s components.

Evaluation measures We evaluate two aspects of learning
in changing conditions: classification accuracy using the kappa
statistic, κ, and context tracking performance using the C-F1
measure [8]. C-F1 measures the relevance of the experience
chosen by a system to the ground truth concept at each point in
a stream, encompassing standard measures like drift detection
delay, false alarms, as well as re-identification performance.
For each state s and concept c, we calculate the recall and
precision of timesteps when c is active against the timesteps
where s is active, measuring how much of the experience
accumulated by s describes a c, and how often did the system
identify s as relevant when c was present. C-F1 ranges from
0 to 1, reporting the average F1 score of the best matching
for each c as an overall measure of how well the experience
captured by a system matched underlying concepts.

Datasets We require datasets with known ground truth
concepts to measure the use of relevant experience. We use
four real-world datasets [18] with known concepts. The Aedes
(AQS, AQT) datasets classify insect characteristics, with six
different temperature ranges as concepts. Arabic-Digets (AD)
classifies a speaker based on speech patterns, with six differ-
ent digits as concepts. CMC classifies a survey result, with
two age ranges as concepts. We use three synthetic datasets
to investigate specific settings where SELeCT is beneficial,
STAGGER (STGR) and RandomTree (TREE) are benchmarks
from previous literature, and we provide a new synthetic data



TABLE II: Performance varying drift width, noise and transition noise. Mean ± Std, best non upper bound method is bolded.

D
at

a Drift Width Noise Transition Noise
Classifer 0 500 2500 0.00 0.10 0.25 0.00 0.10 0.25

κ

T
R

E
E Upper 0.63±0.04 0.62±0.04 0.56±0.04 0.63±0.04 0.53±0.04 0.40±0.03 0.63±0.04 0.63±0.05 0.63±0.05

FiCSUM 0.37±0.11 0.40±0.11 0.26±0.05 0.37±0.11 0.32±0.10 0.25±0.07 0.37±0.11 0.41±0.11 0.41±0.11
SELeCT 0.55±0.06 0.53±0.07 0.45±0.05 0.55±0.07 0.45±0.08 0.35±0.04 0.55±0.07 0.55±0.06 0.54±0.07

A
Q

S Upper 0.95±0.00 0.95±0.00 0.90±0.01 0.95±0.00 0.84±0.00 0.70±0.00 0.95±0.00 0.95±0.00 0.95±0.00
FiCSUM 0.93±0.05 0.90±0.05 0.76±0.06 0.93±0.05 0.76±0.08 0.59±0.07 0.93±0.05 0.94±0.02 0.93±0.06
SELeCT 0.94±0.01 0.93±0.01 0.87±0.02 0.94±0.00 0.82±0.05 0.68±0.02 0.94±0.00 0.94±0.01 0.94±0.01

C
-F

1 T
R

E
E Upper 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00

FiCSUM 0.59±0.19 0.64±0.18 0.40±0.11 0.59±0.19 0.60±0.20 0.62±0.19 0.59±0.19 0.61±0.19 0.59±0.17
SELeCT 0.95±0.04 0.93±0.05 0.87±0.04 0.94±0.05 0.93±0.12 0.94±0.04 0.94±0.05 0.94±0.06 0.93±0.08

A
Q

S Upper 0.97±0.00 0.97±0.00 0.97±0.00 0.97±0.00 0.97±0.00 0.97±0.00 0.97±0.00 0.97±0.00 0.97±0.00
FiCSUM 0.78±0.09 0.72±0.09 0.56±0.09 0.78±0.09 0.73±0.10 0.72±0.10 0.78±0.09 0.79±0.06 0.78±0.08
SELeCT 0.88±0.05 0.85±0.05 0.74±0.05 0.88±0.07 0.86±0.08 0.86±0.05 0.88±0.07 0.87±0.06 0.88±0.05

generator, WIND, based on a simulated air quality prediction
task. For all datasets we construct streaming datasets by
repeating each concept in the dataset three times in an order
generated using an underlying transition pattern, which is
varied as described in the following experiments, to explore
different scenarios. We evaluate abrupt and gradual concept
drift, and report the mean±standard deviation over 45 seeds.

Experiment Setup We implement SELeCT using Hoeffd-
ing Tree [1] and ADWIN [16] as the base classifier and drift
detector, using default parameters in Scikit-Multiflow [19]. We
also study a neural network base classifier, implemented in
PyTorch. We use the default state representation proposed in
FiCSUM, making FiCSUM a comparable standard framework
baseline. Parameters for SELeCT were chosen using a linear
sensitivity analysis on the AD and CMC datasets. Datasets and
parameters are described in supplementary material.

A. Performance evaluation

We first evaluate SELeCT against existing methods. Table I
shows the κ and C-F1 of SELeCT against FiCSUM, CPF,
DWM and DYNSE described in Section VI. We discuss the
selection of baselines in the supplementary. UB reports the
performance of a Hoeffding Tree classifier with perfect re-
identification and drift detection with a fixed delay of 100
observations to represent the performance upper bound, i.e.,
selecting the optimal state for each observation. LB reports
the performance of a non-adaptive Hoeffding Tree classifier to
represent the lower bound of adaptive learning performance.

SELeCT achieves a C-F1 at least 80% of the upper bound.
In a Nemenyi significance test, shown in the supplementary
material, SELeCT C-F1 performance is not significantly lower
than the upper bound, and outperforms all competitors. SE-
LeCT achieves a C-F1 of 0.94 in TREE, 63% higher than FiC-
SUM’s 0.59. This result validates our hypothesis that SELeCT
can select the optimal achievable state. SEleCT achieves a
higher κ value than all baselines, except CPF in AD. SELeCT
achieves a κ of 0.50 in TREE, 43% higher than FiCSUM’s
0.35, indicating that selecting the optimal estimated state does
provide increased classification performance. We observe that
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Fig. 4: Performance at increasing complexity.

higher C-F1 does not always translate into significant accuracy
improvements, which we explore in the next experiment.

Concept Complexity Experiment In some datasets, re-
calling relevant experience does not substantially increase
accuracy compared to collecting new experience, e.g., if
concepts are simple to learn. We hypothesize that the better
active state selection shown by SELeCT may not translate into
significantly higher classification performance in these cases.
Evidence for this comes from the small difference between
LB and UB in some datasets, indicating that even perfect
adaptive learning does not improve classification performance.
This experiment investigates this effect, reporting the perfor-
mance of SELeCT against baselines under increasing concept
complexity. Using the TREE dataset, where p(y|X) for each
concept is given by a randomly generated decision tree, we
can increase the depth of these trees to create more complex
distributions which take longer to learn. Figure 4 shows that
as complexity increases, the classification performance of all
methods falls. However, SELeCT retains a performance closer
to UB, especially when adaptive learning is more beneficial,
i.e., there is a larger gap between UB and LB.

Gradual Drift and Noise Experiments In this experiment,
we investigate gradual drift and noise, two cases where we



hypothesize the standard framework may fail. We test against
FiCSUM as a baseline. Under gradual drift, concept drift oc-
curs over a long period which may be missed by drift detection
in the standard framework. Under noise, drift detection may
also be less sensitive, as changes due to drift are obscured
by changes due to noise. Table II reports performance at
increasing concept drift width and with increasing amounts
of uniform class noise, on two representative datasets. Both
scenarios show a failure case for the standard framework,
with the performance of FiCSUM dropping significantly, while
SELeCT succeeds in maintaining performance close to the
upper bound.

B. Component Evaluation

Table I shows an ablation study comparing the reference
SELeCT implementation against variants.

Prior Probability Our prior probability component assumes
that concept transitions follow an underlying transition pattern.
We evaluate robustness to this assumption in Table II, which
shows performance with increasing noise levels in underlying
concept transitions. SELeCT shows no substantial changes in
performance relative to the upper bound. These results indicate
that our prior probability component is robust to the true
underlying distribution of concepts. Table III shows that a
variant of SELeCT, Sp, using an uninformative, uniform prior,
is outperformed by our implementation, indicating our prior
component is beneficial.

Continuous Selection To test the effect of continuous
selection, Table III shows the performance of a variant of SE-
LeCT, SMAP , using a näive MAP selection procedure which
selects the most probable state at each step rather than using
our Hoeffding bound test. SELeCT outperforms this variant,
indicating our continuous selection component is beneficial
and validating our hypothesis that using the Hoeffding bound
to select active states can improve performance. Crucially,
we observe a significantly lower C-F1, indicating temporal
instability in the selection of active states.

State Merging Table III shows that a variant of SELeCT,
Sm, which does not merge states achieves lower performance,
especially in C-F1, indicating that by removing redundant
representations we can better model underlying context.

C. Continual Learning Comparison

We evaluate SELeCT against CNDPM [20], an expansion
based neural network continual learning method able to al-
locate new parameters to accumulate experience from new
tasks. CNDPM can identify which task is relevant to each
observation, but does not consider task relevance to change
over time, i.e., cannot forget irrelevant tasks or recall different
tasks for the same input. CNDPM includes a prior probability
based on the number of observations drawn from each task.
In a streaming setting, we find this prior undervalues new
concepts relative to existing concepts, making them tempo-
rally unstable and difficult to learn. We study two variants
of CNDPM, with and without the prior, as CNDPMp and
CNDPMnp. To control for the effect of using a neural network

rather than a Hoeffding tree, we study variants of SELeCT
and the upper bound classifier, denoted Scndpm and UBcndpm

respectively, which use the CNDPM base neural network to
learn each state. We use the same default hyper-parameters
for all networks. Due to the reduced efficiency of the neural
network compared to the base Hoeffding tree, we performed
20 runs of each experiment rather than 45. Table III reports
the mean and standard deviation.

We observe that in both SELeCT and UB the neural
network base classifier reduces performance, however, in both
cases, an adaptive learning approach is still able to learn,
highlighting the generality of our framework. We observe that
removing the prior increases the performance of CNDPM in
most cases, however in all cases performs significantly worse
than SELeCT, even using the same base classifier. This result
verifies our hypothesis that existing methods cannot adequately
handle changes and recurrences in the relevance of experience
over time, leading to degraded performance in a streaming
environment. In contrast, SELeCT is, in many cases, within
one standard deviation of an upper-bound system.

VI. RELATED WORK

Our problem formulation shares similarities to dynamic
classifier selection [21, 22] and continual learning [5]. Dy-
namic selection considers the joint distribution of data to
be partitioned on X into regions of competence specialized
in handling distinct inputs [23, 24], i.e., given a region,
X , relevant experience describes p(y|X). Here context Ht

determines the region data is drawn from, p(X|Ht), but the
relevance of experience within a region, p(y|X), is constant,
i.e., forgetting is not required as real concept drift [10] is not
considered. DYNSE [22] considers concept drift, estimating
recent experience as more relevant to handle gradual change
in p(y|X) over time, but not recurrences.

The aim of Continual learning is to learn new tasks without
forgetting information relevant to past tasks [5]. A major
research focus is avoiding catastrophic forgetting. Many con-
tinual learning approaches are not practical for streaming tasks
as they assume that a task ID encoding relevant experience
is known for each observation. Recent task-free continual
learning approaches [20] can identify experience relevant to
a task. However, similarly to dynamic selection, continual
learning determines the relevance of past experience to X ,
rather than to the current concept. While the distributions of
observations, p(X), is considered to change over time as ob-
servations arrive from different tasks, each specific observation
is associated with the same task over the entire stream, i.e.,
p(y|X) is constant. In contrast, under real concept drift p(y|X)
changes over time, i.e., a particular observation is associated
with different concepts at different points in time and must
be predicted using different experience. Some recent methods
update experience over time [20, 25], implicitly forgetting
experience to adapt to gradual concept drift. However, no
existing continual learning methods can explicitly identify
irrelevant experience or store and recall relevant experience
to learn recurring concepts. In Section V, we find that current



TABLE III: Ablation Study, reporting mean± std. Best non upper-bound method bolded for each set of runs.

45 Runs 20 Runs
SELeCT Sp SMAP Sm SELeCT S∗

cndpm CNDPM∗
np CNDPM∗

p UB UB∗
cndpm

κ

AQS 0.94±0.00 0.94±0.00 0.91±0.06 0.94±0.00 0.94±0.00 0.66±0.15 0.20±0.20 0.11±0.07 0.95±0.00 0.91±0.01
AQT 0.57±0.05 0.55±0.06 0.44±0.11 0.56±0.04 0.53±0.07 0.47±0.08 0.30±0.23 0.03±0.01 0.61±0.01 0.60±0.00
AD 0.85±0.02 0.85±0.02 0.81±0.05 0.85±0.02 0.86±0.01 0.68±0.11 0.57±0.12 0.56±0.18 0.90±0.01 0.89±0.02
CMC 0.25±0.03 0.23±0.04 0.23±0.05 0.25±0.03 0.24±0.03 0.17±0.05 0.04±0.03 0.10±0.04 0.27±0.02 0.26±0.02
STGR 0.98±0.00 0.98±0.01 0.92±0.08 0.98±0.00 0.98±0.00 0.87±0.09 0.13±0.07 0.47±0.12 0.98±0.00 0.95±0.00
TREE 0.50±0.06 0.49±0.06 0.41±0.11 0.50±0.06 0.51±0.06 0.31±0.05 0.23±0.07 0.10±0.02 0.58±0.03 0.38±0.02
WIND 0.92±0.01 0.92±0.01 0.89±0.03 0.92±0.01 0.92±0.01 0.54±0.05 -0.00±0.00 0.00±0.00 0.94±0.00 0.62±0.00

C
-F

1

AQS 0.87±0.06 0.87±0.04 0.79±0.10 0.86±0.06 0.85±0.06 0.77±0.11 0.28±0.00 0.29±0.00 0.97±0.00 0.97±0.00
AQT 0.89±0.04 0.87±0.07 0.71±0.12 0.88±0.04 0.88±0.03 0.89±0.07 0.28±0.01 0.29±0.00 0.97±0.00 0.97±0.00
AD 0.91±0.03 0.89±0.04 0.85±0.07 0.88±0.03 0.91±0.01 0.88±0.03 0.28±0.01 0.29±0.00 0.88±0.00 0.88±0.00
CMC 0.84±0.07 0.76±0.11 0.82±0.09 0.80±0.07 0.83±0.08 0.84±0.08 0.62±0.01 0.67±0.00 0.88±0.00 0.88±0.00
STGR 0.98±0.02 0.98±0.02 0.87±0.13 0.97±0.02 0.98±0.01 0.92±0.09 0.37±0.03 0.51±0.03 0.98±0.00 0.98±0.00
TREE 0.94±0.06 0.94±0.06 0.78±0.17 0.93±0.05 0.94±0.07 0.96±0.02 0.26±0.01 0.29±0.00 0.98±0.00 0.98±0.00
WIND 0.99±0.01 0.98±0.02 0.95±0.07 0.97±0.01 0.99±0.01 0.99±0.01 0.40±0.00 0.40±0.00 0.98±0.00 0.98±0.00

continual learning methods struggle to learn in a streaming
setting with recurring concepts. We note that our setting is
different from modeling recurrent change points [26].

The adaptive learning framework described in Section II
has been used in many approaches, usually with new methods
of representing the active state and monitoring changes in
its relevance. RCD [27], uses an accuracy based similarity
measure to monitor the relevance of the active state contin-
uously, while a distribution similarity test is used during re-
identification to evaluate the relevance of stored states. JIT [28]
and CPF [29] monitor the active state using error rate and
feature distribution, while relevance for re-identification is
based on hypothesis testing and classifier equivalence [2].
GraphPool [17] additionally uses a concept transition matrix
when evaluating the relevance of stored states. [30] and [31]
use a similar transition matrix approach to identify recurring
concepts. FiCSUM [8] uses a vector similarity measure to
monitor the active state continuously and sparsely evaluate
stored states. [2] propose using a secondary meta-learning
classifier trained to predict state relevance. DWM [32] and
ARF [33] use an ensemble active state, using error rate to
monitor the relevance of each member [34, 35], but have
no mechanism to recall forgotten experience once a given
classifier is dropped from the ensemble.

VII. CONCLUSION

Adaptive learning provides a framework for data stream
classification in the presence of concept drift by identifying
and reusing previous experience relevant to current conditions.
However, existing methods encounter common failure cases
where sub-optimal experience is selected due to sparse and
binary evaluation, hindering our ability to learn from streaming
data in changing conditions. We propose SELeCT, a proba-
bilistic framework that is able to avoid these failure cases by
continuously evaluating the relevance of all states to select
the optimal state for each observation. Our evaluation shows
the relevance of the experience chosen by SELeCT to ground
truth concepts is comparable to a perfect knowledge baseline,
and up to 60% higher than five baseline methods, enabling
us to learn in new scenarios featuring complex changing and

recurring conditions. Experiments varying data complexity,
noise, and drift width show more accurate identification of
relevant experience allows SELeCT to achieve a κ statistic up
to 43% higher than alternative systems.
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[10] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,”
ACM Computing Surveys, vol. 46, no. 4, pp. 1–37, 2014.

[11] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and
F. Petitjean, “Characterizing concept drift,” Data Mining
and Knowledge Discovery, vol. 30, no. 4, pp. 964–994,
2016.

[12] H. Borchani, A. M. Martı́nez, A. R. Masegosa,
H. Langseth, T. D. Nielsen, A. Salmerón, A. Fernández,
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Supplementary: A Probabilistic Framework for
Adapting to Changing and Recurring Concepts in

Data Streams
Anon

TABLE I: Dataset Characteristics

Dataset Context size # features # contexts Dataset Length

AQT 4000 25 6 72000
AQS 4000 25 6 72000
AD 880 10 10 15840
CMC 736 8 2 4416

TREE 5000 10 6 90000
STGR 5000 3 3 90000
WIND 5000 16 6 90000

I. DATASETS

We use four real-world datasets with identified contexts
from [? ].

• Aedes-Culex - AQT: Contains 25 features measuring the
flight patterns of male and female mosquitoes, with a
class label describing two different species. Context is
given by six temperature ranges, modified in an exper-
imental setting to form six concepts to change flight
patterns [? ].

• Aedes-Culex - AQS: Same as AQT using the sex of
mosquito as a class label

• Arabic Digits (AD): Contains 10 features measuring
speech patterns of speakers saying Arabic digits aloud,
with speaker gender as class labels. Contexts are the digit
being spoken.

• CMC: Contains 8 features measuring responses to a
survey on contraceptive use in Indonesia, with a binary
yes or no answer. Two age ranges designate contexts.

We use three synthetic datasets, code to recreate each is
provided.

• Stagger (STGR) [? ]: Implemented in Scikit-Multiflow [?
], simulates objects with three categorical features, each
with an accept or reject label. Concepts are three labeling
functions which define acceptance. Concepts may con-
flict.

• RandomTree (TREE) [? ]: Implemented in FiCSUM [?
], generates samples from a decision tree. Concepts
use distinct trees, leading to different join probabilities.
Sampling is done using a p(X) with a random mean,
variance, skew and kurtosis for each concept. Labels are
balanced. We define a complexity measure based on tree
height. A complexity = d has a min height of d, and
max height of d+ 2. Increasing d generates deeper trees

with more complex p(X, y), increasing the number of
observations required to learn. We use d = 3, except
for the experiment where complexity was varied. Code
for our implementation is available in supplementary
material.

• WIND: We propose a new air quality classification data
generator able to generate synthetic data with concept
drift in both p(X) and p(y|X). WIND simulates a
circular set of sensors with a central target sensor. Labels
are the quantized air quality of the target, features are
current and previous readings from surrounding sensors.
Spatio-temporal dynamics of pollution generation and
transmission are simulated differently for each concept by
placing n pollution sources and setting wind speed and
direction which dictates pollution movement and disper-
sal. Each concept specifies n, their placement (upwind
of the target), the strength of generation, variance in
generation, rate of generation, and a wind speed and
direction. Changes in concept can be abrupt, i.e., a new
factory has turned on, or gradual, a slow change in
wind direction. Code for this synthetic data generator is
available open source.

Streams are generated by combing observations drawn from
each concept in each data source in varying configurations. We
repeat each of the |C| concepts, capped at 6, r = 3 times for
a maximum of 18 concept drifts and 90,000 observations. The
value 3 was chosen as it is large enough to capture recurring
concepts in each stream, but small enough that the runtime
of each test is not too large, allowing many tests to be run
efficiently. We test SELeCTs performance against r, finding
that SELeCTs performance improves as r increases. The order
of concepts was based on a random transition matrix based on
a circular order to ensure that all concepts are reachable from
all other concepts. For each concept ci, a transition probability
of pf was assigned to each of the f ∈ [1, 2, . . . , F ] shuffled
concepts following ci, with p a probability decay parameter
and F the number of forward connections. A transition noise
parameter tn introduces random transitions to any concept.
We set p = 0.7, f = 3 and tn = 0 for most experiments,
to create reasonably complex transition patterns. We evaluate
sensitivity to transition noise to measure robustness to the
transition pattern.
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II. BASELINES

We test against FiCSUM, a recent state-of-the-art method
using the previous standard adaptive learning framework, and
two alternatives: RCD, CPF. We test DYNSE [? ] as a dynamic
classification method, DWM [? ] as an ensemble method,
and CNDPM as a recent state-of-the-art task-free continual
learning method. Finally, we compare to LB and UB as
theoretically minimal and optimal adaptive learning baselines.

• RCD [? ]: Default implementation in MOA [? ] (Java).
Default parameters: KNN statistical test for relevance,
Hoeffding Tree base classifier (for comparison to SE-
LeCT), default EDDM drift detector (required).

• CPF [? ]: Default implementation in MOA (Java). Default
parameters: Hoeffding Tree base classifier.

• FiCSUM [? ]: Default implementation in Scikit-
Multiflow [? ] (Python). We use the same values for
shared parameters for the FiCSUM baseline and SELeCT.
Default parameters: Hoeffding Tree base classifier, AD-
WIN drift detector, default meta-information measures
(without IMF, MI and PACF as suggested by authors),
default weighted cosine distance similarity measure, de-
fault Fisher score feature weighting.

• DYNSE [? ]: Default implementation in MOA (Java).
Default parameters from the paper: default KNORA
Eliminate strategy. For C-F1 we consider the active state
to be the state selected for each batch.

• DWM [? ]: Default implementation in scikit-multiflow
(Python). Default parameters. For C-F1 we consider the
active state to be static to represent the single ensemble.

• CNDPM [? ]: Default implementaion in Pytorch
(Python). Default parameters: MLP architecture with 1/4
sized layers to better learn the smaller number of features
in our datasets (shared with SELeCT and UB variants).
Active state is considered the identified task. We compare
to a variant with prior set to 1 for all tasks.

• LB: A single scikit-multiflow Hoeffding Tree is run with
no adaptation, representing the lower bound of adaptive
learning performance.

• UB: System with a scikit-multiflow Hoeffding Tree base
classifier and perfect information on ground truth con-
cepts with a static 100 observation delay (no delay is
not possible in any real system, so this was chosen as a
realistic setting). Adapts to recurring concepts by reusing
the last classifier and new concepts by initializing a new
Hoeffding tree. Achieves the upper bound for adaptive
learning given the Hoeffding Tree base classifier and a
100 delay.

III. EXPERIMENT SETUP

All experiments were repeated 45 times, using the numeric
seeds 1 to 45 to seed the Numpy random number generator,
using Numpy version 1.20. All systems are evaluated on the
same datasets.

Environment All experiments were conducted on an AMD
Ryzen Threadripper PRO 3995WX CPU with 64 cores running

at 2.70 GHz, with 256 Gb of RAM. Each process was assigned
to a single virtual core to ensure consistent running time.
Experiments were run using Python version 3.7 or Java version
16. The Scikit-Multiflow framework version used was 0.5.3,
and the MOA framework version was 2020.07.1.

Source Code All source code is available at
https://bit.ly/3gqSKL5. This includes source code for
SELeCT, as well as evaluation and dataset creation scripts,
including the WIND data generator. All instructions to run
SELeCT as well as demo scripts recreating results and
visualizing the proposed WIND dataset are given.

Time & Memory We evaluate the time and memory of each
system, finding SELeCT has equivalent runtime and half the
memory use of FiCSUM, taking an average over all datasets of
1406s and 96MB compared to FiCSUMs 1452s and 176MB.
Full results are shown in the source code repository.

IV. PARAMETER SELECTION

Our SELeCT implementation inherits parameters from the
FiCSUM concept representation ζ and ADWIN drift detection,
and also requires new parameters, as described in the main
paper. We do not see substantial differences in optimal param-
eters across the datasets tested (CMC and AD), thus propose a
set of general default parameters. We use these parameters for
all experiments in the paper, and do not tune them to specific
datasets.

We selected default parameters using linear searches on the
CMC dataset, validated on the AD dataset. For each parameter
a valid range was selected and 20 evenly spaced values were
tested for accuracy and C-F1 on CMC. The value with the
highest harmonic mean of accuracy and C-F1 was selected.
Table II lists all parameters in our implementation, values
tested and final value. The risk parameters describe the risk
level for the Hoeffding bound test and window selection in
the continuous selection method, and the state grace period
is a number of observations to pause selection when a new
state in initialized to allow its representation to stabilize. Min
state likelihood is a small value to avoid 0 value likelihoods
collapsing probabilities. Prior parameters were described in
the implementation. The merge correlation sets the threshold
before states are merged, we set this to a high value to
keep merging conservative, to avoid merging representations
of different concepts.

V. SIGNIFICANCE TESTING
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Fig. 1: Critical difference: κ-statistic across systems



TABLE II: SELeCT implementation parameter values

Parameter Component Range Value

Outside Components

Sensitivity ADWIN Default 0.05
Window size ζ Default 100
Buffer Ratio ζ Default 0.2

Our Components

Hoeffding bound risk Selection 0.05 - 0.9 0.75
Min state likelihood Likelihood 0.0001 - 0.01 0.005
B prior multiplier Prior 0.05 - 1.0 0.4
Min prior Prior 0.05 - 1.0 0.7
Multihop prior multiplier Prior 0.05 - 1.0 0.7
Prev state prior Prior 0 -500 50
Merge correlation Merge 0.05 - 1.0 0.95
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Fig. 2: Critical difference: C-F1 across systems


