Unified Debugging of Distributed Systems with Recon

Kyu Hyung Lee Nick Sumner Xiangyu Zhang Patrick Eugster
Department of Computer Science, Purdue University, West letifayIN 47907, USA
{kyuhl ee, wnsummer , xyzhang, p}@s. pur due. edu

€ | Executon [D

Original
— '
Queries Instrumentation

Program

Abstract—To scale to today’s complex distributed software
systems, debugging and replaying techniques mostly focus on
single facets of software, e.g., local concurrency, distributed
messaging, or data representation. This forces developers to
tediously combine different technologies such as instruction-
level dynamic tracing, event log analysis, or global state
reconstruction to gradually explain non-trivial defects.

This paper proposes Recon, a debugging system that pro-
vides iterative and interactive homogeneous debugging ser-
vices. As related systems, Recon promotes SQL-like queries
for debugging distributed systems. Unlike other approaches,
however, Recon allows forall system artifacts including nodes,
communication channels, events, or instructions to baniformly
described by relations. Also, an application in Recon originally
runs with a lightweight loggerthat only collects replay logs for |ightweightlogger that collects minimal logs for determinis-
individual nodes. Developers debug a complete program by e renjay of individual nodes. Developers then debug a com-
replaying the execution with fine-grained instrumentationthat . - . .
is capable of exposing instruction-level information. plete program byeplayingthe execution with heavyweight

We illustrate the effectiveness of Recon on programs as instrumentation that is capable of exposing instructievel
diverse as BerkeleyDB, i3/Chord, RandTree, and Pastry. Our information. Like related systems (e.g., [25], [18], [11])
evaluation includes executions in local clusters as well as in Recon supports SQL-like queries for describing system
Amazon EC2 and exhibits an unreported bug in RandTree. artifacts that are of interest. Unlike these systems, Recon

KeywordsSoftware reliability, distributed systems, supports theuniform description by relations oéll system

debugging, replay, instrumentation artifacts, from the highest level to the lowest level, imtihg
nodes, communication channels, messages, event causality
and dependencies, method invocations, instructions, and
dependencies between instructions; also, Recon does not im

As computing infrastructures continue to become morePose a specific programming language, and supports online
powerful and pervasive, software for these systems cogginu analysis as well as replay. Due to resource constraintst mos
to increase in complexity. As a consequence, debuggingelations are populated in a demand-driven way. In other
and replaying techniques are facing increasing scakbilitwords, large tables are not explicitly maintained. Rather,
challenges, in particular for distributed systems. A raltur queries are compiled into program instrumentation that is
response to these challenges is to focus smbsetsof executed during replay to answer the query. Developers
the equation, that is, to focus on an individual abstractioriteratively refine queries based on previous results. Such
such as local concurrency, distributed messaging, or data unified view is highly beneficial because the onus is no
representation. The downside of this approach is that itonger on the developer but on the Recon query system to
fails to capture the oftentimes subtle interactions of thedecide what level of instrumentation to employ to efficigntl
different abstractions. Developers are thus commonlyefbrc collect the queried information.
to manually combine technologies such as instruction level In summary, this paper makes the following contributions:
dynamic tracing, event log analysis, or global state recon- « Debugging of distributed systems based onified

Replaying

Figure 1: Overview of the Recon approach. The original program
executes in a lightweight logger. The replay occurs with heavy-
weight instrumentation for fine-grained inspection.

I. INTRODUCTION

struction to gradually explain non-trivial defects thabss views Recon enables a unified view that overcomes the
the boundaries of individual abstractions. heterogeneous requirements for various technologies
This paper proposes Recon,hamogeneousiebugging in debugging distributed systems. The key idea is to
system that provides iterative and interactive debugging formulate all system artifacts, system wide or node
services through aunified relational view of pervasive local, event level or instruction level, static or temporal

distributed systems. Figure 1 presents an overview of our as relations. Debugging is carried out by writing SQL-
approach. Originally, the distributed application runshwa like queries over any number of such relations.

o Compilation of queries towarious instrumentation lev-
els Due to resource constraints, most relations are
not explicitly maintained by Recon. We describe how
Recon’s query compiler translates queries into event log
filtering components and code instrumentation. Execut-
ing these evaluates queries on demand.

« Separation ofightweight loggingand fine-grained re-
play. Most existing logging and replay techniques are

monolithic. That is, they are integrated into one tool that _. _ '
y 9 Figure 2: Triangles represent nodes. Each table denotes a partial

is either lightweight, and hence adequate for produc~|mage of global key distribution. More particularly, keey value

tion runs but not SuffiCie_nﬂy powerful for debuggi'ng, is stored in nodesucc; queries for key values innt vl . should
or relies on expensive infrastructures such as virtuabe relayed to nodsucc.

machines that favor functionality over efficiency. Recon
separates logging from replay to avoid expensive instru
mentation during original executions. More powerful

interaction with other nodes. With our technique, the syste

: . e) .~ _Is originally running with a lightweight logger. Upon the

heavyweight instrumentation is only activated dunngcrash? repI)z/ay logs gare coIIectgd frorg nodgg for d%bugging.
replay. , .) The distributed execution is described by a set@iceptual

. Evaluappn of efficiency a}nd effectiveness. We evgluaterdations that contain information such as values defined or
the efficiency and effectiveness of Reconon a diversgseq at a given execution point, data and control depen-
set of distributed programs and their bugs. The resultyences of a given statement execution, and node interaction
conducted in a local cluster as well as in AmazonThe geveloper can write queries about such relations as
Elastic Compute Cloud (EC2) show that our record-,q,qh the relations were fully populated. In the abovetgras
ing overhead is only about 3% and that instrumenteds,,nqse the failed nodecrashed at execution pointvhen
replay causes a constant factor slowdown, depending 0Qccessing variablé. The simplest way to proceed is to query

the queries. 8 bugs, including a previously unreportedynen 4 was defined by writing the following query.
bug in RandTree, are effectively resolved by querying

various levels of information. SELECT defi ni ti on FROM Data_Dependence
Roadmap. This paper presents Recon in a top-down man- WHERE use = t AND vari abl e = d AND host =n
ner: Section Il uses real examples to illustrate the use of

Recon. Section Ill presents a design overview of Recon’s .
: . .) . . ‘data dependences. Then the executionnofs replayed
architecture. Section IV introduces Recon’s debuggingivie = : .
. .) - with the instrumentation. The query returns an empty table,
Section V presents the separation of logging from instru-_ . " . . R
: . |Hd|cat|ng the pointer was never initialized.
mented replay in Recon. Experimental results are presente i bile Chord-related b h
in Section VI. Section VIl discusses related work. Sec- COnsider a more subtie Chord-related bug [14]. In the
tion VIII concludes with final remarks protocol, keys are distributed to nodes and each node has a
' partial image of the global distribution. In Figure 2, theyke
Il. OVERVIEW BY EXAMPLES domain [0,7] is represented in a ring. Three nodes (triam)gle
In this section, we present an overview of our techniquéhave ids 0, 2, and 5. A key is stored in a node whose id is
through examples. The sample bugs are from a Macedon [2he key va_lue or t_he first clockW|s_e node successor of the
implementation of the Chord [27] distributed hash tablekey value in the ring, e.g., key 6 is stored in node 0. The
protocol. Chord maps a key to a node so that the correspond@bles at each node show the partial images. For example,
ing data item can be stored and maintained in that nodghe first row of the table at node 0 says that it knows keys
Chord has been extensively used in pervasive computing, 2, and 4 are stored at nodes 2, 2, and 5, respectively.
environments [4]. The protocol is able to find the host forFurthermore, keys falling in the range of [1,2), [2,4), and
a key in O(log N) within N nodes, and to handle nodes [4.,0) are relayed to the nodes specified in ¢hec column.
joining and leaving at a cost @(log® N). In these tables, a pair dkey,succ) is a perfect pairif
The Macedon Chord was found to have a number of bugkey=succ. That means the key is stored in the node with
in [14]. Some of them cause failures that are local to thethe key value as its id. For example, (5,5), denoting that key
node, i.e., they do not manifest directly in the interaction5 is stored at node 5, constitutes a perfect pair. According
with other nodes. Let us first consider an uninitialized-to the Chord protocol, upon the joining of a new node with
pointer-dereference bug that crashes the local executiomd z, if « falls into the range ofkey, succ), indicating the
In the beginning, the observable symptom is merely thekey has a new successor that is closer to being perfect, the
crash. The developer may have no idea what caused thmicc entry will be updated ta;, andxz becomes the new host
crash. It may be an incorrect local assignment or faultyof the key. The bug occurs when a pair is perfect; upon the

The query compiler generates instrumentation that callect

joining of any noder, the Macedon implementation updates dynamic binary instrumentation tools likein [17] or Val-
the succ entry tox. grind [20], but at a high cost in terms of runtime overhead.
In Figure 2, the failure occurs if a new node 6 joins. TheFor example, [21] shows the overhead of Pin is up to
table at node 5 is updated by setting thecc of key 5 to 60% for intercepting syscalls. An alternative is to realize
6 due to the fault. Assume the request for key 5 is issuedhe logging and replay functionality in a full-fledged viadu
at node 2. Node 2 relays the request to node 5 accordingnachine that allows intercepting both fine-grained instruc
to its table, which returns 6 as the node that hosts key Hion execution and coarse-grained system calls. However,
The attempt from node 2 to access the key at node 6 returrikis requires that applications run on the virtual machine.
nul |, which is the failure. The programmer observes the Recon, in short, uses the Jockey recording/replaying tool
nul | return at node 2. A local query performed at nodeas a logger at recording time, yet we implemented a replay-
2 reveals that node 6 was returned as the successor by thgy tool which is combined with a dynamic instrumentation
previous request sent to node 5. The programmer now cagol in Pin. Our replay tools also provide guarantees on
write another query to retrieve, at node 5, who defined thejeterministic replay of individual nodes by trapping syste
returned value. The answer to that query reveals that thealls and CPU instructions of application and retrieving
successor was updated to 6 in the method that handles tkgents from the log file without actually passing syscall

joining of new nodes. Note that these queries operate aequests on to the OS. We will discuss our implementation
various levels including communication across nodes. Hown Section V in detail.

to answer them is completely handled by our technique and
hence transparent to the developer.
B. User Interface
I11. DESIGNOVERVIEW

Recon consists of several components, as shown in Recon provides a declarative interface based on SQL
Figure 1. During normal execution, a light-weight logger to the developer. Various levels of system artifacts are
records a minimal application log for deterministic replay €ncoded uniformly into relations. Debugging operations ca
containing non-deterministic effects on the executiorhsas: be composed as queries on one or more such relations.
system calls, CPU instructions, or signals. Recon provide§or example, if the developer is concerned about the local
an SQL-based interface to the user for debugging operation§struction-level status and global network status, reetsin
a query compiler generates program instrumentation that igasily write a join query of a local table and a global table on

executed during replay. conditions about time, etc. Relations are solely concéptua
_ i.e., they are not explicitly populated and stored. Insted
A. Logging and Replay System query compiler translates queries into binary instruntesrma

One unique feature of Recon is the separation of loggingit selected program points to evaluate queries online glurin
and replay to allow forfine-grained replaywith necessary replay. Note that queries can vary between replays, thus
heavyweight instrumentation only upon this replay, whilstsupporting iterative debugging. In the past, SQL interface
only requiringlightweight loggingat runtime. Most existing have been proposed for logging and profiling related applica
logging and replay systems are monolithic, collapsing botHions, such as in [25], [16], [11], [18]. Existing work mostl
the recording and replay capabilities.Idfv recording over- ~ focuses on querying event logs. In other words, an event
headis the target, typical logging and replay architectureslog is collected beforehand and serves as a database; events
(e.g. [9]) change the table for system callsyqcally or are often at a coarse level, otherwise the space consumption
rewriting instructions around syscalls in the executable t would be prohibitive. Some [11], [18] feature online query
redirect them to wrappers. The perturbations imposed on thevaluation. However, they do not support replay and their
application execution are usually very limited. Duringlegp ~ Schema designs are not debugging oriented. For example,
the same interception is performed to read values from th&éhey do not support data and control dependence. In contrast
log file without executing the actual syscalliockey[24] under the hood of a SQL interface, we support iterative
is an example of such a system. Jockey provides lowand interactive debugging through replay and expose aitic
overhead logging and deterministic replaying for intakact €xecution artifacts through various relations.
or distributed programs. Jockey records invocations of non The query language supports standard relational oper-
deterministic system calls and CPU instructions for deterations includingselection projection join, anti join, and
ministic replay. aggregation i.e., the GROUPBY operation. The aggregation

Alas, such OS-level interception is not able to exposeoperation can be useful in finding anomalous behavior. The
fine-grained execution information such as values and desemantics of the query language also largely follow the-stan
pendences of individual instructions necessary for deimggg dard SQL semantics. The precise information that queries
distributed systems. The necessary information is obdainemay work with and how the queries can be effectively
with heavyweightinstruction-level instrumentation through answered are discussed in the following sections.

State (ST) Data_Dependence (DD)
Field [Type [Description - Control_Dependence ((.:D.) Field [Type [Description
- Field [Type [Description =
host I'NT host id host TNT hostid host ['NT host id
['ocat i on|EXE_PNT |exec. point branch EXE PNT bos Ih o defini tion|[EXE_PNT | definition point
vari abl e [STRI NG |variable I : EXE-PNT ranc : poin At use EXE_PNT | use point
val ue BYTE[] |untyped value ocation — current exec. point vari abl e STRI' NG | variable of dependende
Control_Flow (CF) —
Output (OUT) Fleld [Type | Description Field Commllj?;pagon (C([)Ig/le)scription
Field Type Description host [NT host id -
host [I);\‘I)T [host idIO l ocation P'\(I.IE.—PNT instruction poin :gﬂgegm nt :EQE PNT :gﬂgegéidm
- pc program counter = = b
['ocat i on | EXE_PNT | output point nstance [TNT Stance receiver I'NT receiver |d_
val ue BYTE[] |output value - recv_poi nt |EXE_PNT | receive poin{
file STRI NG | source file nessage BYTE[] [message
[T ne ['NT line number 9 9
Figure 3: Schema for system properties that may be queried.
f2.c
IV. SQL INTERFACE "
. L . . -C 1. if (P
Recon’s logging system collects minimal information for L 2. s(1-) t
L . . CX o= :
deterministic replayat runtime Queries are evaluated by 2.y = x+l. 3. s2;
executing corresponding instrumentation generated by the g- }33_

query compilerat replay This section describes schemas,

. . . . (a) Data dependence
Instrumentation generatlon, and our query compller.

(b) Control dependence.

Figure 4: Data\control dependence examples.
A. Schemas

A set of relations that describe common aspects of disinstruction atl ocati on on host
tributed systems is predefined. These relations incitdée, an execution of the code snippet in Fig. 4(b) takes the
Data_Dependence Control_Dependence Control_Flow, true branch and the host is 0. TH@D table conceptu-
Output, and Communication. The detailed schemas are ally contains two tupleshpst =0, branch=(f 2. ¢, 1, 1),
shown in Figure 3. In particular, typEXE_PNT is used to | ocation=(f2.c, 2, 1)) and kost=0, branch=(f 2. c,
describe an execution point. Intuitively, one can interre 1, 1), | ocati on=(f 2. ¢, 3, 1)). RelationControl_Flow
as a triple §ource file, line nunber,instance)that (CF) associates each execution point with a binary program
pinpoints a specific instance of a source code statémint counter, execution instance, and symbolic information.
our implementation, we use a more precise representation, Besides the above relations describing fine-grained infor-
which will be discussed in the next section. Variables aremation, we also have relations for coarser-grained inferma
represented by their symbolic names. tion. The output of a host is described by thatput (OUT)

Relation State records variable information observed relation. The interaction between hosts is captured by the
within the system. It describes variable values on any hostommunication (COM) relation. This relation observes all
at any point over the duration of the system’s executionmessages sent between hosts along with the hosts involved
Recall that the relation is conceptual and only populatecand when they sent or received the message in question.
on demand, driven by queries. For example, if a variable
value is queried at a specific locatiérfor a noden, only B. Instrumentation Primitives

the execution ofu is replayed, and only the variable value We now discuss how we leverage instrumentation to

at l. is reported. Variables are not necessarily those th_at arﬁopulate the aforementioned relations. The population is
defined or used atleocat i on but rather those that are live. o+ oiied by our query compiler.

The Data_Dependence(DD) relation describes which) . .]]
definition (assignment) of a variable is used at a givenRePresenting Execution PointAs discussed earlier, an ex-
execution point. For example, executing the code snip_ecunon point can be (_:onceptually cor_13|d§red a triple of file
pet in Fig. 4(a) on node O conceptually inserts a tuple?@me, source_cpde line, and execution instance. However,
(host =0, definition=(f1.c, 1, 1), use=(f1.c, 2, 1), this is not suff_|C|entIy accurate because it is common that a
vari abl e=x) in the table, meaning that the use of variable Source code line may be composed of multiple statements

x at the first instance of statement 2 is defined at the firsfnd even different parts of a statement may lead to different
instance of 1 in filegf 1. c. instructions. For example, if a predicate has a conjunctive

Similarly, Control_Dependence (CD) describes the condition, the different clauses may have different exeout
branch point that directly determines whether or not aninstances at runtime. In Recon, we use the instruction
count as the internal representation of an execution point
(EXE_PNT), i.e., the number of executed instructions up to

is executed. Assume

1A statement can get executed multiple times, leading to mangrines.

the point in the same process. This is because replay is Control dependences in thé€D table are detected as
deterministic (we will discuss how we handle concurrency infollows. Immediately after a branch point, the linear cohtr
Section V-A) and thus the same execution point always hafiow from that point is dependent upon the branch point
the same instruction count. While instruction count is notbecause whether or not an instruction is executed is dyrectl
a user-friendly representation, the symbolic informatiam determined by the branch. At the postdominator [8] of
be easily acquired by joining a query with tld#- relation. the branch, i.e, the join point of the branch, execution is
For example, the following query identifies the source codeno longer determined by the branch point. This implies
location that outputs a string+l | o”. that control dependence is organized into nested regions
much like function calls, and similarly, control dependenc
can be efficiently observed throughout an execution by
pushing a branch point onto a stack called t@ntrol
dependence staclkand popping once its postdominator is
encountered [28]. Thus, in the same way that the function
call on the top of the call stack is the currently executed

E)egogvéir;g v\;arlir;%tl)tleessi.nlz?r:eilisal?glrti)gs ininallzwm%%\ﬁonp:r;sesfunction, the control dependence for the current execution
Becguse the instrumentatior? to answer gueyries has to be p?int s observed at the top of the control dependence
. q : Hack. By maintaining this stack during replay with Pin,
the binary level, we have to resolve variables to their ad- .
. control dependences can be detected on the fly. Consider the
dresses. We leverage a tool caltdarfdump[1] to establish

the mappings between symbolic names and addresses. Fe>§ample In Fig. 4(b). Upon executing the branch point atfine

lobal variables, the tool can directly yield their addesss line 1 is pushed onto the control dependence stack. The
9 ' . ectly'y ._following executions of lines 2 and 3 are control dependent
The offset of a local variable in the stack frame of its

. . . o n th ntry on th k, which is line 1. The entr
enclosing function can also be identified by the same tooIEJpo the top entry on the stack, chis fine e entry

) :) . Is popped at the execution of line 5, the postdominator of
At runtime o combined W't.h the_stack base _address Wh'c , indicating that the following executions are no longer
can be acquired from the binary instrumentation tool Pin —_ .
. decided by the branch at 1.
Recon can compute the stack addresses of local variables.
For heap variables, their reference paths are followed t@. Query Compiler
identify their addresses. Note that it must be true that the

f thofah iable starts with a alobal okst Above, we discussed how to detect information defined
reference path of a heap variable starts with a global 0k StaGy, e re|ations in Fig. 3 through instrumentation pringtv
variable, whose address we have already resolved.

However, we cannot afford first populating the relations and
Primitives for Relations. To answer a query on th8tate then answering queries. We rely on thaery compilerto
relation, we first replay the specified host up to the re-collect as little information as possible to answer queries
quested execution point; then we resolve the addresses The compiler takes a query provided by the user, performs
the specified variables and retrieve their values. Foxbd instrumented replay of the relevant hosts using Pin to cplle
and COM relations, as both output emission and messageéhe specific information needed to answer the query, and
sending have to go through system calls, queries can bigen performs the post-processing or aggregation negessar
answered by simple processing of the replay log. Queries db present the results in the format requested by the user.
the CF relation are straightforward to answer as the Pin The compiler front end is a query parser. Because we
infrastructure allows identifying the precise PC (programsupport queries with a grammar structured like SQL, we
counter) of each instruction and its symbolic information. |everage an existing SQL parser [3] to build an abstract syn-
The remaining two relationdDD and CD) require more tax tree representing the query structure. Answering desing
effort. Consider théD relation first. We detect data depen- query then involves replaying precisely the desired subset
dences through a data structure cal#fdhdow memory a of hosts with instrumentation that collects the informatio
small piece of memory allocated inside Pin for each prograntequested in the query. Determining which relations should
variable. This memory can be considered the shadow of thbe populated can be done by looking at the relations refer-
respective variable. Upon the definition of the variable th enced in the query itself. The corresponding instrumentati
| ocat i on that defines the variable is recorded in its shadowprimitives are enabled through command line options of Pin.
memory. Later, when the variable is used, a dependence B primitive can be easily attached to (or detached from) Pin
detected. LeS M (z) be the shadow memory af Consider by providing (removing) the corresponding instrumentatio
the example in Fig. 4(a). When line 1 is executéd/ (z) module name via the command line.
is set to 1. When line 2 is executed, singeis used, a To avoid collecting too much information, it is necessary
dependence is detected between 2 & (z) = 1 on to control the elements or rows of the relations to be
variablexz. We developed an instrumentation module for Pinpopulated. That is, we never want to return results for the
to carry out the detection. entire duration of any given host’s execution, e.g., answer

SELECT file, line,instance FROMCF
I NNER JO N OUT
ON CF.l ocation = OUT.l ocati on
WHERE OUT .val ue=“Hel | 0”

a query like 'SELECT * FROM CF WHERE host =0", as it ority, and the results from an output query will be collected
entails recording the entire control flow trace of a processfirst in a join operation. Communication between nodes is
Hence, we only want to observe the relations at specificot a rare event, but it does not happen at every instruction
times or intervals. This is ensured through two differentacross all hosts, SBOM has the next highest priority. The
aspects of the systemM\HERE clause filtering andj oi n CD, DD, andCF relations all contain a bounded number
operations. First, let us consider simple queries overglesin elements at every instruction executed within the system, s
relation. In this case, the filters over which elements ghoul they are all larger relations thadOM and should only be
be recorded are explicitly provided by the user in the formevaluated afterward in order to winnow their results. Ripal
of the WHERE clause. Note that we require thelERE clause State has a theoretically unbounded number of elements for
to restrict at least one more field other than the host icevery instruction executed on every host, so it clearly has
when querying thé&tate DD, or CD relations because these the lowest priority when joining. In the event that the sife o
relations reflect execution properties that may be viewed aa result set still exceeds a maximum limit, we simply stop
continuous over the entire execution, yielding an intibleta data collection and return the partial result set. The uaer c
quantity of information. then refine the query further.

When performing a join operation, or more specifically
an inner join, results from a query over one relation are
combined with results from another relation based on some This section describes the separation of logging from

V. REPLAY WITH INSTRUMENTATION

common attributes. For example, replay in Recon and the implementation of its replay system.
Low overhead is important during logging execution. In

SELECT use FROMDD contrast, replay is often conducted during the debugging

I'NNER JO N,CQM . phase, in which overhead is not a major concern and more
ON DD.definition = COM.recv_poi nt functionality is highly desirable. Hence, we separate Reco

is a query that collects the execution points for all uses ofnto two subsystems. One is the logging tool that is very
variables defined at the reception of a message. Conceptlightweight for normal runs; the other is the replayer built
ally, it requires retrieving thdD and COM relations and 0N @ powerful dynamic instrumentation infrastructure.

then finding pairs of results that satisfy the join predicate Achieving such a separation is, however, far from trivial.
as specified byoN. In practice, however, implementing the Ideally, we could have combined existing industrial stténg
query this way would be intractab]e, requiring not 0n|y thetOOlS such as JOCkey to record an execution and Pin for
exp]icit Capture of both a|ready |arge re|ation5, but alzme dynamic instrumentation. Unfortunately, the nature ara th
filtering over their Cartesian product. To deal with this, we complexity of the tools don't allow this to happen straight-
pipeline the data collection of the relations used withiniaj forwardly as we explain in the following.

operation, such that the concrete results from one relation Jockey runs in user space. When an application is run
are exp||c|t|y used in the collection of another. For exmp| on Jockey, Jockey calls an initialization method before the
in the above join operation, the query o\@®M, returning ~ application gains control, in which Jockey scans through
all recv_poi nt s observed in the system, can be executedhe binary, including the libraries loaded by the applioati
immediately. If that query is executed first, and the resultdooking for any syscall sites. Those syscalls are redicecte
from that query are used as the basis for restricting theyquerto Jockey by overwriting the instructions at the syscadsit
over DD, then finding a solution to the join can become In contrast, the dynamic instrumentation engine Pin takes
practical because the number of communication events 8 binary. During execution, before executing any new (never

expected to be tractable in practice. instrumented) code regions, it calls a provided instrument
function. This function instruments the given code regions
Precedence| Relations and returns a new code region that contains both the original
(High) 1 | Output semantics and the instrumentation semantics that expose
g ggmgg”gﬁt'on execution details. Pin executes the instrumented codesidst
Low) 4 State of the original code. The instrumented code region is also

copied to a new code space and thus it can be reused without
calling the instrumentor again during the same execution.
To generalize the above observation, we thus roughlyNote that such instrumentation is dynamic, meaning that it
use the expected approximate size of the implicit relation®ccurs during execution of the program.
to prioritize which information should be collected first. Simple aggregation of the two tools can occur in two
The priorities are given in Table |. For example, output isways: one isJockey+Pin+application meaning that both
expected to be a relatively rare occurrence on any particulaPin and the application run on top of Jockey; the other is
node in the system, so evaluating queries on Gheput Pin+Jockey+application Alas, neither works. In the former
relation is often directly feasible. Thus, it has the highes case, Jockey gains control first and the subject program of

Table I: Relation precedence in joins.

Jockey is Pin instead of the application, which is itself thethread in addition to the stack in user space. Pin does
subject of Pin. Recall that Pin instruments the application not interfere with thread scheduling. Context switches and
the fly during execution, and only the instrumented versiorsynchronizations are managed by pthreads independently.

gets executed. The instrumented version does not existat th The differences between the two threading models make
beginning, and hence its syscalls are not visible to Jockeyeplaying Jockey logs inside Pin challenging. The problem
In fact, Jockey will search for syscalls in Pin and patchstems from Pin not being aware of threads created through
them. Thus, during Pin execution, all those syscalls will bethe user level fakethreads. As a result, thread specificespac

undesirably redirected to Jockey. is not allocated inside Pin, leading to various problems.
Inversely, if Jockey and the application run on top of Pin, — _

Jockey first intercepts all the syscalls_of the applicatitime Thread TlApphca“";hrea a2 2t interc;’,‘cisleep 0

patches by Jockey and then the logging/replay code becom|;. sieep(); 11. read(); ||22. ...

part of the application. When the patched application ex- |2. 12. ... 23. ft_switch();

ecutes inside Pin, Pin will try to instrument the patches Fakethread library 2‘51 intercept_rea a0 ¢

and the Jockey code along with the application code. Suck|31. ft_switch() { 26. read fromlog;

instrumentation is not only undesirable but often desivect |32+ wich theuser thread contextsi |27, g¢_switeh();

because Jockey patches and code are at a very low leve| } ’ }

Also, both tools reserve an overlapping virtual space regio

for their own purposes, which causes intricate conflicts. Figure 5: Example for fakethreads in Pin.

Finally, the threading models of the tools are incompatible

As a result, even after solving the compatibility problem,

the integration would still fail on threading programs. Consider an example in Fig. 5, in which fakethreads
Our solution is to avoid using Jockey for replay. Instead,are used. The application has two thread4, and T2.

we implement the replay functionality inside Pin. The itdig Their respective calls tsl eep() and read() lead to

is that since Pin can potentially trap each instruction inblocking syscalls. Th&in box shows the functions (inside

the application, we can easily trap all the syscalls in thePin) that intercept the two syscalls, which in turn call the

application. In particular, we implement an event log parse fakethread context switch function. THeakethread box

that can parse the logs generated by Jockey. Then we trap &lhows the context switch function inside the fakethread

the syscalls of the application inside Pin. Upon the executi library. Upon a syscall from the application, Pin traps the

of a syscall, we retrieve the corresponding event from the lo call and dispatches the call to the right handler inside Pin,

through the parser. Note that Pin allows us to compose an€l.g.,i ntercept _read() for theread() call in T2. The

attach multiple instrumentation modules exposing varioushandler first reads the event from the log file. If the syscall

aspects of application execution. We still benefit from theis blocking, the fakethread context switch is called.

low logging overhead by using Jockey to generate logs. Fig. 6 shows a sample execution that executégo the

blocking syscallsl eep() at line 1, then execute$2 to

the blocking callread() at line 11, and finally switches
Jockey supports multithreaded applications using its emback toT1, ending with a segmentation fault. The reason is

ulation library calledf aket hr ead to allow maximal con- the invisibility of fakethreads inside Pin. The stacks show

trol over recording thread execution. Fakethread support ibeneath the trace inside Fig. 6 explain the problem. Fig. 6(a

composed as a library that can be linked with threadedhows the stacks after line 32 and before the context switch.

applications, providing the same interfacepasr eads. It Upon the switch, the user stack is changed froth to

is completely inside user space and threads are opaque to thi@. The problem lies in the trap afead() by Pin. Since

kernel, which is different from pthreads. Fakethread adlow Pin does not know that there are two threads, it uses the

one thread to execute at a time. A thread is never preemptedame internal stack such that the activation record of the

Instead, it runs continuously until a blocking syscall,lsas i ntercept _read() invocation is pushed on top of that

a blocking read or write, or until it fails to acquire a lock. of i ntercept _sl eep() (from T1), as shown in (b). As a

In such cases, fakethread performs a (user space) contexdsult, in (c), when the fakethread scheduler switches back

switch to the next ready thread. Jockey records all threatb T1, the user stack is correctly recovered but not the Pin

creation, join, termination, and context switch events. stack. In particular, the return at line 33 would direct the
In contrast, Pin’s threading model is basedpomr eads. control flow toi nt ercept _read() while it should return

It relies on the kernel to manage threads. In particular, théo i nt er cept _sl eep() .

existence of a user thread is relayed to Pin by the kernel Our solution is to use real pthreads during replay so that

so that Pin can allocate space dedicated to the thread. Suétin is aware of the user threads. In particular, we create

space maintains thread local information related to amalys pthreads during replay at places where the log indicatds tha

modules attached to Pin, e.g., a stack inside Pin for théakethreads were created during the original run; pthread

B. Achieving Separation in Recon

A. Handling Threading

T1 Pin T1 T2 Pin T2 T1

Trace: [[| [[Nl [N |
21 23 31 32 11 25 26 27 31 32 3 (SEGFAULT)

1
User Stack (T1) Pin Stack User Stack (T2) Pin Stack User Stack (T1) Pin Stack

Stack: 1 sleep ‘21 intercept_sleep‘ ‘11 read ‘ 21 intercept_sleep 1 sleep 21 intercept_sleep
31 ft_switch 25 intercept read 31 ft_switch || 25 intercept_read
(a) After 32in T1 (b) After 27 in Pin (c) Before 33in T1
Figure 6: Fakethreads are problematic. The highlighted Pin stacks cause thenproble
.. . . . 12 M Original
joins and exits also strictly follow the log. The challengesl B Record

in forcing the pthread scheduler to respect the schedule spe K Replay
ified by the fakethread log. More specifically, fakethreamgs a !
not preemptive, but pthreads’ default scheduling policy is Bos
preemptive, e.g., a thread’s time slice may expire, such tha <

undesirable context switches may occur. Furthermore, theSose
pthread scheduler is external to Pin; thus forcing a context &

<

03
switch between two specific threads is not straightforward. £04
We use a global pthread lock to enforce the recorded =
schedule. More specifically, a thread has to own the global °2 ® N ® 008
lock to start or resume its execution. A thread yields thé& loc . O 00 O: '
only when the fakethread log indicates a context switch. BerkeleyDB 13/Chord Pasty RandTree AVERAGE
Hence, a pthread originated context switch during replay Figure 7: Logging/replay overhead.

does not lead to the execution of a different thread if the
log does not say so. as a driver for multicast and randomly generated streaming

data to measure overhead of RandTree and Pastry. All times
VI. EVALUATION are normalized against the original execution ti®eginal
To establish the practicality of Recon, we examined theMarks the unmodified runtime of the original program.
runtime overhead it incurs for logging and replay. We alsoRecorddenotes the logging time. It was measured from the
evaluated Recon on several real world bugs, including onétarting time of the first action of the system to the finishing

0A®

unreported bug, from four distributed applications. time of the last actionReplaydenotes the most significant
overhead for replaying aingle nodein the system. Replay
A. Efficiency time is normalized against the original time for that same

We first examined the runtime overhead incurred fornode. Note that our system allows multiple node replay,
both the logging that occurs in original runs and for thecontrolled by the query compiler.
instrumented replays in the debugging phase. Overhead was Observe first that the logging overhead is both consistent
measured on a set of four distributed programs includingnd tolerable. The maximum overhead is only 4%, for Pastry,
BerkeleyDB, i3/Chord, Pastry, and RandTree. BerkeleyDBand all other cases have 3% overhead, which is tolerable
is a popular open-source database engine that provides ddet realistic runs. For replay, the overhead results appear
replication capability to enable a group of processes teurprising at first. Indeed, the time taken for replay is
service the workload. The Pastry and RandTree implemersignificantly less than the original rurand only 8% of the
tations are those from the Mace infrastructure [12]. Altdes original run on average. This results from the time saved by
were performed on an Intel dual core 1.66GHz machineemulating all system calls during replay. When no waiting
with 3GB memory. Individual nodes in the network were time is incurred during replayed system calls, the overall
executed in independent virtual machines, each runningxecution is, in fact, much faster than the original.
Linux 2.6.11.We also measured the logging overhead of We also vary the size of our deployment to observe
BerkeleyDB on a real distributed environment, Amazonoverhead changes for BerkeleyDB. We use the same input
EC2. Each node had 2.66GHz CPU with 1.7GB memory. and vary the number of nodes from 1 to 8. We executed

Let us first consider the runtime overhead during loggingthe same set of experiments on both the local machine
and uninstrumented replay (on Pin), as presented in Fig. &and Amazon EC2 cluster. Note that the same set of data
Here we deploy 4 nodes for all benchmarks. We use thés replicated to all nodes in the system. The results are
insertion of 10,000 key/value pairs as the input to Berkepresented in Table Il. Observe that the logging overhead
leyDB. For I3/Chord, we use the test suite provided by 13.is high for one node but less for other settings. The reason
We use theapprmacedon tool, included in the Mace release, is that the communication delay masks some overhead when

of nodes | exec. time (s) | logging overhead | log size P . . .
Cocal T EC2 T TLocal | EC? both the application binary and libraries. We separateethes
1 180.5 | 2558 | 7.19% | 2.88% | 6.79 MB two options because instrumenting libraries may not be
2 41441 396.33 | 3.14% | 0.54% | 9.13 MB necessary for all programs. BerkeleyDB builds some of its
4 512.0 | 212.74 | 3.19% | 1.11% | 12.28 MB ; ; ; ;
= =917 13154 T 3.04% | L05% 1 17.07 MB own libraries as well, so those are included inBia results.

) Replay+All Binpresents the overhead of all instrumentation
Table II: Logging costs vs. # Nodes for BerkeleyDB. primitives for the application binary whilReplay+All Full

multiple nodes are involved. The execution time with 2d0€s So for both the binary and the libraries.

nodes is a lot slower than the 1 node execution because !N @ll cases, tracking the execution position to collectesta
the data has to be replicated to the second node. Whe@ﬂformation take§ less than 3 times the replay runtime, and
the node count goes higher, the overhead does not increalk MOst cases, it takes less thax &s long to execute,

as substantially because the replication is done through:8* O average. Tracking control dependence alone usu-
broadcasting. In the EC2 cluster, execution time with 2 sodeY "as less than -3 overhead with respect to the base
is slower than the 4 node execution because the mast&fPl@y runtime, 2.6 on average. For most benchmarks,
node must wait until receiving at least one acknowledgmenflat@ dependence is the most expensive execution artifact
message from clients for each input data. When we havi? detect, with full data dependence detection, including
2 nodes, one master and one client, the only client needgirough library calls, taking an average of 9:11o execute.

to store all replicas and sends ack messages to the mast&c,’te,that the oyerhead from BerkeleyDB is the do.mmant
but in the 4 node case, any available client can send ack t(c‘)_ont.n_butor to this average. The BerkeleyDB tests involve
the master. When we have 8 nodes, the master node neegignificantly more data than those for the other programs,
at least 3 ack messages from clients, so the execution timfgSulting in a higher number of data dependencies being
is slower than with 4 nodes but still faster than the 2 node€tected. Sometimes, it may be beneficial to exclude data
case. Local machine execution does not show this Symmorﬂepende.nmes that occur inside external library calls.. When
because increasing the number of nodes causes CPU alj§ do this, tracking data dependence can be done with 5.5
memory congestion. The log file sizes are also presented i}pe base runtime on average. Having all primitives actiate

the last column incurs more slowdown. Overall, considering that replay is
much faster than the original run (0.08 the instrumented
10 WMoYk ks no? ot runs are even faster or comparable to the original runs. Such
[¥]
B Replay

overhead is acceptable in the debugging phase.

OO

B Replay+State
@ Replay+CD
B Replay+DD Bin
B Replay+All Bin
X Replay+DD Full
H Replay+All Full

SO

X
%

B. Effectiveness

We tested our tool with eight bugs from four distributed
applications. One of them (RandTree #1) is an unreported
bug and we can easily generate queries to find a root cause.
We will discuss details in the Case Study #2. Fig. 9 presents
the total number of queries generated for debugging, and
also the frequency with which they involved each relation
from Fig. 3. The right-most column represents the number
of nodes we needed to replay in order to find the cause
of each bug. From the table, we can observe that all these

The instrumentation overhead for collecting several dif-real bugs can be resolved in a few queries with 14 being
ferent execution artifacts is presented in Fig. 8. Onceragai the maximum, showing the effectiveness of our technique.
all runtimes are normalized, this time against the replayQueries at different levels, from variable state to node
time for each progranReplaypresents the base replay time, interactions, are needed, and most of these bugs require
i.e., replay inside Pin without instrumentatidReplay+State reasoning across node boundaries, illustrating the niégess
gives the time necessary to locate a particular point irof a unified debugging view. Next, we will present a few
the replay of a node such that the requested state can loase studies.
extracted with the help afwar f dunp. Note that populating Case Study #1:The first case is a failure of a leader
the Output and Communication relations demands the election scheme in BerkeleyDB 4.7.25 that supports the
same online instrumentation and hence the same overheathgle master/multiple clients model. This bug was oritjina
applies to those primitives as welReplay+CD gives the analyzed in [32].
time necessary for detecting the control dependence for eac When a master crashes, all remaining nodes in the system
execution point within a noddreplay+DD Binpresents the automatically start a new round of leader election. However
time for detecting the data dependence for each executioim the case of this bug, the system permanently fails to
point in the application binary whilReplay+DD Fullcovers elect a new master because all nodes in the system believe

d
S
XXXXXXXX

O
X

h

o

XX
OO

X

Ove
(]
XXX

[<]
X
<]

XX

<
3 4

<X
XX

e
XXX

(]

Normali
w
OO
XX
XXX

s
0%
X

XXX XX

N
OO
bl

X
XXX XX

g

s
%

XX

el

o L
XXX

BerkeleyDB 13/Chord Pastry RandTree AVERAGE
Figure 8: Instrumentation overhead.

[Bug | Summary | Total Queries | STATE | CD [DD | OUTPUT | CF [COM [# of nodes |
DB#1 Permanent election failure [32] 13 1 4 6 1 0 2 2
DB#2 Master node panic [32] 14 1 3 8 1 0 1 2
Chor d#1 Packet handling failure [9] 7 3 2 3 1 0 0 1
Chor d#2 Inconsistent ring [10] 7 0 2 1 1 2 2 2
RandTr ee#1 | Permanent join falil 9 0 2 4 1 0 3 3
RandTr ee#2 | Disjoint tree [10] 7 0 3 2 1 1 1 2
RandTr ee#3 | Fail to find peer [13] 5 1 1 3 1 0 1 2
Pastry#1 Buffer overflow [13] 5 1 2 1 1 0 1 2

Figure 9: Analyzed bugs with the number of queries used and relation usage distniu

e \
QUERY 4: SELECT c.branch FROM CD ¢ WHERE N\ QUERY 9: SFLECT c.branch FROM CD ¢ WHERE
<rep elect.c> L _ c.location=id_2097 and c.host=1
o I SR BRI UERY 10 SELECT d.definition FROM DD d WHERE
368 if (send_vote == DB_EID_INVALID) { QUERY 5: SELECT s.value FROM State s WHERE QU7 ADg LEHIIE
371 db_errx(env, L . e d.use=id_476 and d.host=1
T L \ s.location=id_981 and s.variable="priority y,
372 Noelectable ...", <rep_auto.c>
<db_errx.c> _ QUERY 6 : SELECT d.definition FROM DD d WHERE 125 DB_NTOHL_COPYIN(env, argp->rectype, bpl;
417 _db_errx(env, fmt, va_alist) { d.use=id_981 and d.variable=“priority” ...
435 sprintf(new_fmt, "%d.%d : %s", time.tv_sec...) QUERY 11 : SELECT d.definition FROM DD d WHERE
7 QUERY 1: SELECT c.branch FROM CD c, OUtput o N | 252 if(rep->flags & (REP_F_READY_API | d.use=id_129 and DD.variable="bp” and DD.host=1

REP_F_READY_OP | REP_F_RECOVER_LOG)){

WHERE c.location= o.location and o.value=“No 257 priority = 0;

<repmgr_posix.c>

electable..” and o0.host=1 521 .. readv(fd, iovec buf count)..
QUERY 2 : SELECT d.definition FROM DD d QIUERV: SZLEZCST7C'b;a";h FRC;M CD ¢ WHERE (" QUERY 12: SELECT COM.sender, COM.send_point
WHERE d.use = id_368 and d.variable=“send_vote” ... c.location=id_257 and c.host= iver= -
kqep_e,enp = 4 | QUERY 8 :SELECT d.definition FROM DD d WHERE zg?ergcovmpg:szis C_r’oz'\l""ece“’e"l and
351 send vote = rep->winner; d.use=id_252 and d.variable="rep->flags” ... - = =
QUERY 3 :SELECT d.definition FROM DD d WHERE <rep_record.c > Senderis NODE 0
d.use=id_351 and d.variable=“rep->winner” ... 476 switch (rp->rectype) { 2112 (void)__rep_send_message(env, eid, ...)
= — 873 case REP_UPDATE: <repmgr_posix.c>
581 if (priority 1=0 || LF_ISSET(REPCTL_ELECTABLE)){ 878 ret=_ repupdate_setupleny, eid, rp, rec); 503 wonteu(fd. iove, buf_count)..
988 }else { . <rep_backup.c > -
oot :p::x'"p":;ri:t\:’fa?'o-'NVAL'D; —rep_update_setup(..) { QUERY 13: SELECT COM.receiver FROM COM WHERE
= 2097 _F_SET(rep, REP_F_RECOVER_LOG); COM.sender=0and COM.send_point > id_521

Figure 10: Case study 1 : BerkeleyDB - failure in election.

they cannot be the master. Suppose node 0 is the originghuse variableend_vot e has the valu®B_EI D | NVALI D.
master node and is synchronizing data with all other clienNow we want to know where the value afend_vote
nodes, nodes 1 and 2. The steps of synchronization are agms defined. In Q2, we query the data dependence of
follows. First, when node 0 receives modified data, it sendsend_vot e at line 368. Here, we used_368 to denote
a REP_PAGE message with the modified data to all clients. the execution point of line 368 for readability. Q2 returns
All clients who receive this message change their state tthe execution point of line 351, and now we need to know
LOG_RECOVERY by setting a flag t&REP_F_RECOVERY_LCOG, where the variableep—w nner was defined. From Q3, we
meaning they expect the corresponding log update in theeach line 989, whereep—wi nner was given the constant
next step. When this flag is set, the node cannot be a mastelueDB_EI D_| NVALI D. Now we need to obtain the control
The clients send &EP_LOG REQ message to the master dependence of the execution point at line 989. Q4 shows
node, requesting the updated log. In the next step, when nodbat line 981 controls line 989. In order to decide which
0 receives theREP_LOG_REQ message, it sendsREP_LOG condition caused the wrong branch outcome, we query the
message with the updated log records. When clients receivealue ofpri ority at 981 (Q5), which reveals that it has
the REP_LOG message from the master, they restore to thean undesirable value of 0. Through Q6 and Q7, we reach
normal state. The bug happens when node 0 is down after line 252, the branch controlling the definition fi ori ty
sends &REP_PAGE message but before sending ®&P_LOG to O at line 257.
message. When the master is down, all clients start election From queries Q8-11, we can reach the line 521, where the
but permanently fail to elect a new master. The symptonmessage was received from another node. At this point, Q12
is an error message on all client nodesNe “el ectabl e reveals that that node 1 has received the message from node
site found " 0 at line 503. Node 0 was supposed to s@ae_LOG after

We generated 13 queries. Figure 10 presents the codbe execution of line 503 (sendingeP_PAGE). However,
snippets related to the failure appended with the correspon according to Q13, whose result is an empty set, node 0
ing queries. We started debugging with node 1, which isdid not send any further message to node 1. From these
one of the client nodes that printed the error message. Frogombined queries, we thus discover the reason for the
QUERY1 (Q1), we can obtain the execution point where theglection failure.
message was printed, line 435, and we can also reach thgase Study #2:The second case study is for a previously
branch point controlling the execution there, which is lineunreported bug in RandTree. This bug exhibits as a perma-
368. From the first query, we find that this error happens benent failure when a node joins the tree. In the experiment, we

650 else if (children.find(msg.source)...) { I Senderis NODE1
652 maceout<< "!!!received Join from " << ... 84 intr = recvfrom(transportSocket, rbuf, ...); Going back to the original line 650

576 if (... (msg.source != root)&& ...) {

QUERY 1: SELECT c.branch FROM CD c, Output o 580 downcall_route(root, msg);
WHERE c.location= o.location and o.value= int r = ser i ;
lireceied Joion ond o hosted 178 int r = sendto(transportSocket, m.data(), m.size(),...); rmY 8 SELECT DD definition FROM DD
. g UERY 5 :SELECT CD.b h FROM CD WHERE =i i =4 m
QUERY 2 : SELECT d.definition FROM DD d WHERE (Q J&l ranc \ WHERE DD.use=id_650 and DD.variable="“msg.source
d.use=id_650 and d.var="“children.find(msg.source)” Ol A7 D=l il Ui ST
_ QUERYES SELECJ DD'def'S'tlon FRO;YI 22 84 intr=recvfrom(transportSocket, rbuf,
WHERE DD.use=id_576 and DD.variable= .
626 (children.size() < MAX_CHILDREN)) { imsg source” and T)D] MAX_MESSAGE_SIZE, O, (struct sockaddr*)&sa, &salen);
627 _children.insert{msg.source); QUERY 7: SELECT COM.sender, COM.send_point QUERY 9: SELECT COM.sender, COM.send_point
QUERY 3 : SELECT d.definition FROM DD d FROM COM WHERE COM.receiver=1and FROM COMM WHERE COMM.receiver=0and
WHERE d.use=id_627 and d.variable=“msg.source”... UOMM.recv_point:id_84_1 J COMM.recv_point=id_84_2
84 intr =recvfrom(transportSocket, rbuf, ...); Senderis NODE 2 (OLD) Senderis NODE 2 (NEW)
. | __initialization... __initialization...
QUERY 4: SELECT COM.sender, COM.send_point 1398 state_change(joining); 1398 state_change(joining);
FROM COM WHERE COM.receiver=0 and 1404 downcall_route(bootstrap,...); 1404 downcall_route(bootstrap,...);
L COM.recv_point=id_84 y 178 int r = sendto(transportSocket, m.data(), m.size(),... 178 int r = sendto(transportSocket, m.data(), m.size(),...

Figure 11: Case study 2: RandTree — permanent failures to join tree.

have two nodes in the tree, nodes 0 and 1, in the initial phaséo examine them regardless of foresight, starting from the
Later, node 2 starts and sends a join message to node 1. Thbserved symptoms. Another thread of work for debug-
message is relayed to the root node 0. Node 0 sends a joging distributed systems uses model checking [19], [31].
reply message to node 2 and updates its own child list, whictMaceMC [12] is an explicit state model checker that checks
now includes node 2, but node 2 resets right after sending thiezeness properties. In general, model checking also regui
join message. After node 2 is reset, it ignores the join replythe user to have prior knowledge about the property to check
message from node 0 because it is in the initialization phasend generally scales poorly. CrystalBall [30] is a tool that
After node 2 finishes initialization, it sends a join messagecheckspredefinedproperties on the fly.
to node 0. Node 0 ignores that message because node 2 isln [25], Singh et al. propose a declarative language based
already its child. Node 2 keeps sending join messages tdebugging interface that is similar to our SQL interface.
node 0, but all of them are ignored and thus node 2 canndiowever, their system is specialized to their own decleeati
join the tree. When node 0 ignores the join message fronpervasive system programming language [16]. Our system is
node 2, it prints the error message! frecei ved Join much more general, working on arbitrary binarietsql [11]
from XX, already child.” and pqgl [18] propose query languages for single process
We used 9 queries to debug this failure, all presented irexecution. These techniques are not combined with replay
Fig. 11. We started from the error message. After Q1, weand their schema design does not focus on debugging.
reach line 650, meaning node 2 is found in the child list. Magpie [5], Pinpoint [6], and Pip [23] are projects based
From this point, we seek to know why node 2 is alreadyon log mining. In other words, they try to identify problems
in the list. Using Q2, we find that node 2 is added at lineby looking at event logs. These techniques are quite effecti
627, as the result of a message received at line 84 (Q3)n debugging performance problems, but less so for fauits. |
Q4 discloses that the message was sent from node 1, as tfR9], Xin et al. present a technique to analyze distributed sys-
result of a message received at line 84 in node 1 (Q5-6). Q#ms by building task graphs from event log files. Potleier
identifies that the message was from previousprocess of al. [22] present a portable Trace-Oriented Debugger for Java
node 2 expressing its intention of joining the tree. Node 1which uses efficient instrumentation techniques for event
simply relayed the join message. Then, we go back to lingeneration and a scalable storage system for completeness
650 and try to understand whysg. sour ce has the value and efficient querying. All attributes of all events are ledg
of node 2. Through Q8 and Q9, we know that this join isat all times which is considered feasible in the targeted

from thenewnode 2 process. centralized setting targeted and with the assumption of a

The full queries for the remaining bugs in Fig. 9 are wireline connection to a dedicated scalable backend. Log-
omitted due to space restrictions. ging and replay [7], [9], [26], [21] is an important strategy
for pervasive debugging. Existing work focuses on single

VIl. RELATED WORK node replay, which is insufficient for pervasive debugging.

Debugging pervasive systems is becoming increasingly"day’s replay system [10] supports replay with a GDB-like

important. D3S [15] and WIDS [14] are projects that aim Interface, but it cannot handle fine-grained instrumeotati
to detect runtime errors in distributed systems. They are
based on runtime property checking at the event level. These
systems assume the user knows exactly what properties We have presented Recon, a system for debugging dis-
to check. In contrast, our system provides an interfacdributed systems based on a novel architecture, providing
that exposes artifacts at various levels, allowing the usea consistent view of salient system properties. This view

VIIl. CONCLUSION

exposes properties via a relational framework that can b@l4] X. Liu, W. Lin, A. Pan, and Z. Zhang, “WiDS checker:
gueried with a simple language based on SQL. Information
collection is performed on demand to answer the queries[,15]
using filtering and prioritization to avoid collecting data
unnecessary to formulating the answer.

We qualitatively evaluated Recon on several bugs irI16

popular distributed programs. Furthermore, we have evalu-
ated our design that separates a logging infrastructura fro
heavyweight analyses during replay, showing that it allow
Recon to be used to record realistic runs with acceptable
overhead (3%) and debug the runs later by replaying them.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their insightful comments. This research is supported in
part by the National Science Foundation (NSF) under grants

0845870 and 0834529. Any opinions, findings, and conclu 19

17]

(18]

sions or recommendations in this paper are those of the
authors and do not necessarily reflect the views of NSF.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES
dwarfdump, http://reality.sgiweb.org/davea/dwarf.html
Macedon, http://www.macesystems.org/macedon
python-sqlparse, http://code.google.com/p/python-sglparse

M. Balazinska, H. Balakrishnan, and D. Karger, “Ins/twine:
a scalable peer-to-peer architecture for intentional resourc
discovery,” inPervasive 2002.

P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie
online modelling and performance-aware systemstiaOS
2003.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. A. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” inDSN 2002.

G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen, “Revirt: enabling intrusion analysis through virtual-
machine logging and replay,” i@SD|, 2002.

(20]

[21]

[22]

23]

124]

(25]
(26]

(27]

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The pro-

9]

[10]

[11]

[12]

[13]

gram dependence graph and its use in optimizatidd¢M
TOPLAS vol. 9, no. 3, 1987.

D. Geels, G. Altekar, S. Shenker, and |. Stoica, “Replay
debugging for distributed applications,” IWSENIX 2006.

D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and |. Stoica,
“Friday: global comprehension for distributed replay,” in
NSDI, 2007.

S. Goldsmith, R. O’Callahan, and A. Aiken, “Relational
queries over program traces,” @OPSLA 2005.

C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life,
death, and the critical transition: finding liveness bugs in
systems code,” ilNSDI, 2007.

C. E. Killian, “Systems and language support for building
correct, high performance distributed systems,PimD. dis-
sertation University of California, San Diego, 2008.

(28]

(29]

(30]

(31]

(32]

combating bugs in distributed systems,”N&DI, 2007.

X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. Kaashoek, and Z. Zhang, “D3S: Debugging deployed
distributed systems,” ilNSDI, 2008.

] B.T.Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,

and |. Stoica, “Implementing declarative overlays,’S©QSR
2005.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumen-
tation,” in PLDI, 2005.

M. C. Martin, V. B. Livshits, and M. S. Lam, “Finding
application errors and security flaws using PQL: a program
query language,” iOOPSLA 2005.

] M. Musuvathi and D. R. Engler, “Model checking large

network protocol implementations,” iINSDI, 2004.

N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,RoDI, 2007.

S. Park, W. Xiong, Z. Yin, R. Kaushik, K. Lee, S. Lu, and
Y. Zhou. “Pres: probabilistic replay with execution sketching
on multiprocessors,” iBOSP 2009.

G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient
debugging,” inOOPSLA 2007.

P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat, “Pip: detecting the unexpected in
distributed systems,” ilNSDI, 2006.

Y. Saito, “Jockey: a user-space library for record-replay
debugging,” INnAADEBUG 2005.

A. Singh, P. Maniatis, T. Roscoe, and P. Druschel, “Using
queries for distributed monitoring and forensics,’"HoroSys
2006.

S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou,
“Flashback: a lightweight extension for rollback and deter-
ministic replay for software debugging,” IATEC 2004.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan, “Chord: a scalable peer-to-peer lookup service for
internet applications,” ilSIGCOMM 2001.

B. Xin and X. Zhang, “Efficient online detection of dynamic
control dependence,” ifSSTA 2007.

B. Xin, P. Eugster, X. Zhang, and J. Yang, “Lightweight task
graph inference for distributed applications,” $RDS 2010.

M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak, “Crys-
talball: predicting and preventing inconsistencies in deployed
distributed systems,” ilNSDI, 2009.

J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi, “Using
model checking to find serious file system error&CM
TOCS vol. 24, no. 4, 2006.

J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,
F. Long, L. Zhang, and L. Zhou, “MODIST: transparent
model checking of unmodified distributed systems,NSD|,
20009.

