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Abstract

Two variants of the SIFT algorithm are presented which

operate on calibrated central projection wide-angle images

characterised as having extreme radial distortion. Both de-

fine the scale-space kernel, termed the spherical Gaussian,

as the solution of the heat diffusion equation on the unit

sphere. Scale-space images are obtained as the convolution

of the image mapped to the sphere with the spherical Gaus-

sian which is shift invariant to pure rotation and the radial

distortion in the original image. The first method termed

sSIFT implements convolution in the spherical Fourier do-

main, and the second termed pSIFT approximates this pro-

cess more efficiently in the spatial domain using stereo-

graphic projection. Results using real fisheye and equian-

gular catadioptric image sequences show improvements in

the overall matching performance (recall vs 1-precision) of

these methods versus SIFT, which treats the image as planar

perspective.

1. Introduction

Robust vision-based localisation of mobile robots may

be considered as the primary goal of many computer vision

researchers. Recent advances in methods of visual SLAM

and loop closure detection highlight the current interest in

the use of vision for such applications [7, 9, 16, 24].

A considerable amount of research has focused on the

problems of camera modelling, calibration and geometry of

wide-angle images [1,12,27]. This work has made it possi-

ble to calibrate wide-angle cameras with sufficient accuracy

for applications relating to mosaicing and vision-based lo-

calisation [6]. Their ability to capture a wide field of view

not only removes ambiguities in motion estimation [11], but

has potential advantages in loop closure scenarios where

certain camera configurations allow the camera to obtain

a similar view of the operating environment irrespective of

orientation [23]. The ability to find corresponding keypoints

in wide-angle images across wide baselines has potential

advantages for localisation and is the interest of this work.

Although numerous advances have been made relating

to the problem of wide-baseline feature matching [2, 3,

18, 21, 22, 26], with the most prominent algorithm used

in the literature being the Scale-Invariant Feature Trans-

form (SIFT) [20], these methods have typically been de-

signed for use with perspective images. With some excep-

tions [8,14], these algorithms are frequently applied blindly

to wide-angle images without compensation for the extreme

radial distortion present in the images. While one could ar-

gue that any wide-angle image could simply be converted

to perspective, this is not suitable since perspective projec-

tion is limited to representing images with less than a hemi-

spherical field of view where the transformation produces

artifacts during the interpolation. Furthermore, we argue

that image processing with wide-angle images should be

shift-invariant for a camera subject to pure rotation. Both

these conditions may be met by considering the image as a

function defined on the unit sphere, with image processing

considered in the same domain.

The contribution of this work is a suitable means for

scale-invariant keypoint detection and matching with wide-

angle images which is invariant to radial distortion and

shift-invariant to pure rotation. Given any central calibrated

image, it may be mapped to the unit sphere. Scale-invariant

keypoints are then found using a variant of the SIFT algo-

rithm which defines the scale-space kernel as the solution

of the spherical heat-diffusion equation on the sphere which

was solved by Bülow [5] who considered its use for scale-

space analysis with wide-angle images [4]. Scale-space im-

ages are obtained as the convolution of the image mapped

to the sphere with the spherical Gaussian. In this work we

implement this convolution in two ways; the first in the

spherical Fourier domain which we have previously con-



sidered [14], and the second using a more efficient approx-

imation for the image and spherical Gaussian mapped to

the stereographic image plane. We consider the second ap-

proach since we found issues related to aliasing for the for-

mer [15]. Furthermore, keypoint descriptors are found by

sampling the keypoint support region on the sphere which

is again invariant to the radial distortion in the original im-

age.

2. Scale-Space with Wide-Angle Images

We assume that any wide-angle image may be

considered as a function f on the unit sphere S
2,

where each pixel maps to a unique point η(θ, φ) =
(sin θ cosφ, sin θ sinφ, cos θ)T with θ ∈ [0, π) an angle of

colatitude and φ ∈ [0, 2π) an angle of longitude. Bülow [5]

proposed scale-space for functions defined on the sphere as

the solution of the spherical heat diffusion equation

∆S2f(θ, φ; t) =
1

k
∂tf(θ, φ; t), (1)

where ∆S2 is the spherical Laplace operator which re-

stricted to the unit sphere (r = 1, ∂f
∂r = 0) is defined

as [17]:

∆S2f =
1

sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

sin2 θ

∂2f

∂φ2
. (2)

The Green’s function of (1) may be considered as the

spherical Gaussian GS2 and was solved by Bülow with ini-

tial condition GS2(θ, φ; 0) = δSs being the spherical Dirac

function at the north pole n = (0, 0, 1)T defined as

f(n) =

∫

η∈S2

f(η)δS2(θ, φ)dη, f ∈ L2(S2), (3)

to obtain the solution

GS2(θ, φ; kt) =
∑

l∈N

√

2l + 1

4π
Y 0

l (θ, φ)e−l(l+1)kt, (4)

where Y 0
l are the zonal spherical harmonic functions (GS2

is rotationally symmetrical about the pole). The reader is

referred to standard texts [13] for a description of spherical

harmonic functions and [5] for a derivation of the solution.

The solution in (4) describes how a unit heat source at the

north pole of a thin spherical vessel of constant thermal con-

ductivity k evolves over time t. In the context of image pro-

cessing and scale-space analysis, the variable ktwill simply

be referred to as the scale.

Given the spherical Gaussian function, it is possible to

find the scale-space representation LS2 of an image I at

scale kt as the convolution of the image mapped to the

sphere with the spherical Gaussian function GS2 . Using

the definition of spherical convolution in [10], for all rota-

tions R ∈ SO(3) define the operator Λ(R) which rotates a

point on the sphere to new position Λ(R)f(η) = f(R−1η).
These may, for example, be parameterised by Euler rota-

tions R = Rz(γ)Ry(β)Rz(α). Convolution of two square

integratable functions f and h on the sphere is defined as

(f ∗ h)(η) =

∫

R

f(Rn)h(R−1η) dR, η ∈ S
2. (5)

The convolution defined in (5) may be implemented in ei-

ther the spatial or spherical Fourier domain.

2.1. Diffusion in Spatial Domain

Considering that the spherical Gaussian function is ro-

tationally symmetrical, using the analogy in [8], integra-

tion in (5) may be restricted to the subgroup of rotations

R = Rz(γ)Ry(β). Then, the scale-space representation

LS2 of an image at scale kt may be obtained as

LS2(β, γ; kt) =

∫

η∈S2

I(η)GS2(R−1η; kt) dη, (6)

where dη = sin(θ)dθdφ. Rather then mapping the image to

the sphere, the convolution defined in (6) may be performed

by mapping the spherical Gaussian to the image plane as

discussed in [8]. This has the advantage that the original

image values are used without any interpolation when map-

ping them to the sphere. Note that the scale-space image

LS2 will be represented on the original image plane.

Unfortunately, implementing convolution in such a way

requires a unique non-symmetrical kernel at all positions on

the image plane. Assuming that for a single scale kt all ker-

nels at all locations are precomputed offline with size n×n
pixels on them×m sized image, convolution requires a to-

tal of 2n2m2 computions (O(n2)). In contrast, convolution

with a standard Gaussian function may exploit the symme-

try of the kernel and use the separability criteria to rewrite

convolution as I ∗ Gx,y = (I ∗ Gx) ∗ Gy which requires a

total of 4nm2 computions (O(n)). It is for this reason that

convolution in the spherical Fourier domain is considered.

2.2. Diffusion in Spherical Fourier Domain

Given that the image I may be mapped to the sphere, the

spectrum of the image Î may be found via a discrete spheri-

cal Fourier transform Î = SFT (I). This spectrum includes

the set of coefficients Îm
l for degree l and order m, where

l ∈ {0, 1, . . . , b − 1} and |m| ≤ l for the image sampled

on a 2b × 2b equiangular polar grid. Then setting initial

condition as the original image data L̂(0) = Î , the convolu-

tion theorem in [10] for a symmetrical filter may be used to

obtain the scale-space representation of the image L̂(kt) as



a response in the spherical Fourier domain via convolution

with the spherical Gaussian [5]:

L̂m
l (kt) = L̂m

l (0)e−l(l+1)kt. (7)

This scale-space representation in the spatial domain

LS2(kt) may then be found via an inverse spherical Fourier

transform LS2(kt) = ISFT (L̂(kt)) and mapped to the

original image plane. Using the discrete forward and in-

verse spherical Fourier transform algorithm of Driscoll and

Healy [10], for bandwidth (sample rate) b the computa-

tional expense is of order O(b2(log b)2).
Unfortunately, although convolution in the spherical

Fourier domain over multiple scales kt provides an efficient

means for obtaining multiple scale-space representations of

the image, there is an upper limit on the bandwidth b which

needs to be enforced due to computational requirements. As

a result, there may be aliasing issues when finding the dis-

crete SFT due to the variable spatial resolution of the image,

as discussed in detail in [15] where a suitable anti-aliasing

filter implementation is described.

2.3. Approximate Spherical Diffusion

An efficient approximation to spherical diffusion is pro-

posed using stereographic projection. Importantly, the

method is not limited by bandwidth related issues. Given

any central projection wide angle image, it is first mapped

via the sphere to the stereographic image plane. Then for

some scale kt, the spherical Gaussian function GS2 cen-

tred at the pole is mapped to the stereographic image plane.

The approximate spherical diffusion is then found simply as

the convolution of the stereographic image with this spher-

ical Gaussian function at all locations on the image. Since

stereographic projection is conformal and locally preserves

angles, the inverse stereographic projection of this spher-

ical Gaussian at any location on the stereographic image

plane back to the sphere is a near isotropic function on the

sphere. However, the resulting convolution operation re-

sults in a non-uniform diffusion scale on the sphere due to

the variable spatial resolution of the stereographic image.

To illustrate, for simplicity we assume the image plane

and sphere to be smooth manifolds. Then, an infinitesi-

mal small change in angle dψ along any great circle on the

sphere from a point η(θ, φ) = (x, y, z)T may be written

as dψ2 = dx2 + dy2 + dz2. Substituting for the angle of

colatitude θ and longitude φ yields the expression

dψ2 = dθ2 + sin2 θ dφ2. (8)

Since the polar coordinates of a point on the image plane

x(R, ζ) project by inverse stereographic projection to a

point η(θ, φ) on the sphere by

φ = ζ, θ = 2 arctan(R / mp) (9)

Figure 1. The vector dP represents a small
shift at angle α on the image at radius R from
the principal point (centre of distortion).

where mp is the distance of the stereographic image plane

from the north pole, then substituting into (8) gives the fol-

lowing expression for dψ2 parameterised by polar coordi-

nates R, ζ on the image plane:

dψ2 =
4m2

p
(

m2
p +R2

)2

(

dR2 +R2dζ2
)

. (10)

Referring to figure 1, the change in polar coordinates on

the wide-angle image plane may be rewritten as a shift dP
at angle α as

dR2 = dP 2 cos2 α (11)

dζ2 =

{

0 if R = 0
dP 2 sin2 α

R2 if R > 0
, (12)

where dP is measured in pixels. Substituting into (10)

yields a simplified expression for dψ2 dependent only on

the radius from the principal point R and magnitude of the

shift dP at any angle α:

dψ2 =
4m2

p
(

m2
p +R2

)2 dP
2. (13)

It may be seen from this result that using the approxi-

mate diffusion operation, the ratio dψ2/dP 2, and hence the

spherical diffusion scale, reduces with radius R from the

principal point. Although this makes the method unsuit-

able for uniform diffusion, for scale-space analysis this is

not a limiting factor as the image is analysed across a wide

range of scales during keypoint detection. Additionally, if

the scale of the spherical Gaussian mapped to the image at

the principal point kt0 is known, the corrected scale on the

sphere ktR at a given radius R on the image plane may be

found. This may be achieved simply by comparing the local

sample rates ψ2
0 and ψ2

R on the sphere at the image centre

and at a given radius R respectively. From (13), the ratio

of the local sample rates dψ2
R and dψ2

0 for radius from the

image centre R and 0 respectively is

dψ2
R

dψ2
0

=
m4

p
(

m2
p +R2

)2 . (14)



Then, the corrected scale at radius R relates to the scale

at radius 0 by

ktR =
kt0 m

4
p

(

m2
p +R2

)2 , (15)

where the ratio ktR/kt0 is independent of the magnitude of

the scale kt0 at the image’s principal point. Assuming the

kernel values are precomputed a priori, the same separabil-

ity criteria used for standard Gaussian convolution may be

used resulting in the same computational cost.

3. Scale-Invariant Keypoint Detection

We present here two variants of the SIFT algorithm

which define scale-space as the convolution of the image

with the spherical Gaussian. The first termed spherical SIFT

(sSIFT) implements diffusion in the spherical Fourier do-

main using the method outlined in section 2.2, the second

termed parabolic SIFT (pSIFT) uses the approximate diffu-

sion operation described in section 2.3. The latter is termed

parabolic since it operates on the same image plane that

would be obtained by using a parabolic catadioptric cam-

era.

3.1. Scale Selection

Unlike SIFT which defines scale σ in pixels relative to

the original image resolution, spherical scale-space defines

scale kt relative to a function on the sphere. It is necessary

to consider how the scales kt may be selected with respect

to the original image resolution. In this work, the scales

selected in SIFT are used as a guide. For a one-dimensional

Gaussian the following is true:

G(x = σ;σ)

G(x = 0;σ)
= e−0.5, ∀σ > 0. (16)

We consider then if a similar relationship for the spheri-

cal Gaussian holds for which

GS2(θ = f(kt); kt)

GS2(θ = 0; kt)
= e−0.5, ∀kt > 0 (17)

where f(kt) is some function of the scale kt. Figure 2

shows the plot of the scale
√
kt versus angle of colatitude θ

for which the condition in (17) is satisfied using the defini-

tion of the spherical Gaussian function in (4). Note that the

results have been found using non-linear optimisation since

a closed form solution to (17) has not been found. From

figure 2 it may be observed that there is a linear relationship

where kt = θ2/2.

Define a one pixel sample measurement on the image

plane from the principal point as xs, and θs the correspond-

ing angle of colatitude for the sample mapped to the sphere
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Empirical Data

Fitted Line

Figure 2. Fitted line obtained via least
squares minimisation

for the given wide-angle camera model. It is proposed that a

suitable initial scale kt0 may be selected based on the orig-

inal image resolution and SIFT starting scale σ0 as

√

kt0 = σ0(θ
2
s/2), (18)

where the remaining scales are found using the same scale

multiplicative factor used in SIFT for a total of N scales as

kti =
(

√

kt0 2i/3
)2

, i ∈ {0, 1, . . . , N − 1}. (19)

3.2. Keypoint Detection

Given the set of scale-space images LS2 represented on

the image plane, the difference of neighbouring Gaussian

images are found DS2 . Keypoints are then found using

the same method as SIFT [20] as being a local extrema

in the current and adjacent difference of Gaussian images

DS2 whose absolute difference of Gaussian value is above

some threshold. Edge responses are removed by enforcing

a threshold r on the ratio of maximum to minimum cur-

vature of the eigenvalues of the Hessian matrix H(DS2).
Finally, keypoint position and scale are interpolated using

3D quadratic fit. It is important to note that for edge re-

moval and interpolation, the difference of Gaussian images

represented on the wide-angle image plane are assumed lo-

cally perspective in the 3 × 3 neighbourhood surrounding

any pixel; this assumption is particularly valid for pSIFT

since the image is represented on the stereographic image

plane. For pSIFT, the scale correction factor in (15) must

be applied to all keypoints.

3.3. Keypoint Descriptors

Referring to figure 3, for a keypoint of scale kt both

sSIFT and pSIFT define the support region used to find the



descriptor as a circle on the sphere parameterised by angle

ψs = n
√

2kt from the axis passing through the keypoint

and the centre of the sphere. Note also that we define β as

an angle about this same axis. Here, n is an overall scaling

factor applied to all keypoints. The greyscale intensity val-

ues on the image which lie within this region are mapped to

a fixed sized patch, then the SIFT descriptor is evaluated.

y

z

x

ψ

β

ψ
s

Figure 3. For a keypoint of scale kt, the sup-

port region is parameterised by angle ψs =
n
√

2kt from the line passing through the key-
point position and the centre of the sphere.

For a fixed sized patch of size p × p pixels with polar

coordinates Rp, ζp, an equiangular mapping is used where

Rp = 0.5(p− 1)(ψ/ψs), ζp = β. (20)

This mapping is selected as the spherical Gaussian func-

tion itself will appear identical when mapped to the patch

irrespective of its scale kt. This is explained by considering

that a spherical Gaussian centred at the keypoint position of

scale kt may be written as a function of the angles ψ, β as

GS2(ψ, β; kt). It may then be rewritten in scale-normalised

coordinates relative to the keypoint support region scaling n
as GS2(ψ′, β; 1/n2) where ψ′ = ψ/ψs. One may see from

(20) that the mapping may be written as a linear function of

the scale-normalised coordinates.

4. Experiments

The experiments presented compare the matching per-

formance of sSIFT and pSIFT to standard SIFT where the

image is treated as planar perspective. This comparison is

made in the context of visual odometry where the goal is to

find keypoint correspondences between successive images.

4.1. Input Data

The data used includes three separate image sequences,

with an example of three consecutive images for each

shown in figure 4. The first (fisheye) includes images taken

from a camera moving in an outdoors industrial environ-

ment. The second (tractor) uses images from a downwards

facing equiangular catadioptric camera on a mobile robotic

tractor moving outdoors through a university campus. The

third (Hyperion) again uses downwards facing equiangular

catadioptric images from a camera on the mobile robot Hy-

perion operating in the Atacama desert. All images are con-

verted to greyscale for image processing, where a suitable

mask is used to remove keypoints detected in regions out-

side the camera’s field of view, and in the case of the tractor

and Hyperion data sets, keypoints on the mobile robot itself.

(a) Fisheye - 1024 × 768 pixels.

(b) Tractor (equiangular catadioptric) - 1024 × 768 pixels.

(c) Hyperion (equiangular catadioptric) - 640 × 480 pixels.

Figure 4. Example of three consecutive im-
ages in each data set.

4.2. Keypoint Detection

For each image sequence, SIFT, sSIFT and pSIFT key-

points are found in each image. When finding SIFT key-

points, the original wide-angle images are treated as per-

spective with the masks used to remove invalid keypoints.

For sSIFT, the initial scale is selected using the method

described in section 3.1 based on the original camera mod-

els. The sample bandwidth used to find the forward and

inverse SFT’s is set to to b = 512 which is the maximum

computationally feasible. Since there is some degree of

aliasing with both the fisheye and tractor data sets, a suit-

able anti-aliasing filter is used when sampling the image for

the forward SFT (see [15] for details). For sSIFT the scale-

space representations of the image are always mapped back

to the original sized image plane for image processing at



any scale.

When finding pSIFT keypoints, each image is first

mapped to the stereographic image plane via the sphere.

For all sequences, the stereographic image is the same size

as the original images where the scaling is set such that a

point on the equator of the sphere maps to the same radius

on the stereographic image as the original image. In the

following experiments, results for pSIFT are found using

two separate initial scales (both applied to the same stereo-

graphic image). The first initial scale is found based on the

stereographic image model, and the second for the original

camera model (ie. fisheye or equiangular). Furthermore,

the same octave based approach to image processing used

in SIFT (3 scales per octave) is implemented with pSIFT

where all kernels are precomputed offline.

For both sSIFT and pSIFT, the difference of Gaussian

threshold is set to 0.01 (assuming greyscale values in the

range 0 to 1), with the ratio of maximum to minimum cur-

vature used in edge removal set to r = 10. The descriptor

support regions are set to size ψs = 8
√

2kt, where kt is the

keypoint scale, and the local region mapped to a fixed sized

41 × 41 patch from which the SIFT descriptors are found.

4.3. Performance metric

The performance of each keypoint detection method is

measured using recall vs 1-precision which has previously

been used in similar studies related to keypoint detection

and descriptors [19, 22] and suitable for use when the ex-

act number of false matches between images is unknown.

For a given data set all frame to frame keypoint correspon-

dences are found, combined into a single global set and then

ordered based on their similarity score. The Recall vs 1-

precision results are then found which are defined as:

recall = #correct matches / #total correct matches (21)

1 − precision = #false matches / #all matches. (22)

where the number of correct matches (#correct matches) and

number of false matches (#false matches) refers to the number

in the subset of matches whose score is below the matching

threshold in the global set.

Two commonly used similarity scores are considered

in these experiments. The first is the Euclidean distance

between descriptors, and the second the ambiguity metric

which is the ratio of nearest to second nearest Euclidean

distance to all keypoints in the other image. For both, a key-

point in one image may only correspond to one keypoint in

the other image. If two or more are found for any keypoint,

only the one with the highest similarity score is retained.

For a set of (calibrated) keypoint matches, between

frames, with spherical coordinates η and η′ in image 1 and

2 respectively, the essential matrix E is found using a sub-

set of all keypoint matches for all keypoint detection modes

with the highest similarity. The five point algorithm [25]

is used to solve for E with RANSAC used to remove out-

liers. Then assuming the operating environment is rigid, a

keypoint is considered correct if |η′TEη| < threshold.

4.4. Results and Discussion

The results for each keypoint detection method and

matching mode are shown in figures 5, 6 and 7 for the fish-

eye, tractor and Hyperion data sets respectively. The mean

number of frame to frame correspondences for each key-

point type and image sequence are given in table 1.
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Figure 5. Recall versus 1-precision results for

the fisheye sequence.

For the fisheye sequence, sSIFT outperforms all other

keypoint detection modes for both similarity metrics with
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Figure 6. Recall versus 1-precision results for
the tractor sequence.

more average frame to frame matches found. The results

using pSIFT are similar irrespective of the initial scale used

with both showing improved performance over SIFT.

Similar results are found for the tractor data set with

sSIFT outperforming all other keypoint detection modes for

recall vs 1-precision, however, with fewer average frame to

frame matches. Although the number of matches is fewer

than SIFT, pSIFT again gives improved recall vs 1-precision

results compared to SIFT for each similarity metric and ini-

tial scale used.

Although the the Hyperion and tractor data sets both use

an equiangular catadioptric camera, the relative results be-

tween keypoint detection modes is different. Again, pSIFT

outperforms SIFT in the recall vs 1-precision results with
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Figure 7. Recall versus 1-precision results for
the Hyperion sequence.

a significant increase in the average number of frame to

frame matches. For sSIFT, the recall vs 1-precision re-

sults degrade more quickly than the other keypoint detec-

tion mode with only a minimal number of average frame to

frame matches. We attribute this poor recall vs 1-precision

result to the fact that this data set has minimal detail in each

image where the mapping to the sphere and back to the im-

age plane required for convolution in the spherical Fourier

domain effectively destroys much of the original informa-

tion contained within the image. This result re-enforces

the argument that image processing should be implemented

on the original image plane. Although this is not done for

pSIFT, there is only one transformation from the original

image plane to the stereographic image plane.



Table 1. Mean number of frame to frame
keypoint matches for each method of SIFT.
pSIFT* refers to the original camera model
values used for scale selection.

Fisheye Tractor Hyperion

SIFT 251.9 351.2 48.8

sSIFT 288.5 187.9 17.0

pSIFT 236.5 285.8 116.8

pSIFT* 274.1 269.3 241.3

5. Conclusions

Two variants of the SIFT algorithm were presented suit-

able for use with wide-angle images. Both define scale-

space for wide-angle images as the solution of the spherical

heat diffusion equation on the sphere (spherical Gaussian).

The first implements convolution in the spherical Fourier

domain, and the second approximates this process on the

stereographic image plane. Overall, results showed that al-

though pSIFT does not outperform sSIFT on all data sets, it

is a suitable approximation which is efficient to implement

and gives improved performance over a blind application of

SIFT where the image is treated as perspective.
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