
A Low Power Strategy for Future Mobile Terminals

Mladen Nikitovic and Mats Brorsson

Department of Microelectronics and Information Technology,
Royal Institute of Technology

Electrum 229, SE-164 40 Kista, Sweden
{mladen,matsbror}@imit.kth.se

Abstract

In this paper, we have investigated the efficiency of two
power-saving strategies that reduces both static and
dynamic power consumption when applied to a chip-
multiprocessor (CMP). They are evaluated under two
workload scenarios and compared against a conventional
uni-processor architecture and a CMP without any power-
aware scheduling. The results show that energy due to static
and dynamic power consumption can be reduced by up to
78% and that further 8% energy can be saved at the expense
of response-time of non-critical applications.

Furthermore, a small study on the potential impact of
system-level events showed that system calls can contribute
significantly to the total energy consumed.

1. Introduction

The functionality of mobile terminals such as Personal Digital
Assistants (PDAs) and cell phones has increased rapidly in
recent years and the trend is to integrate even more functional-
ity in the future. This results in an increased performance
demand on the underlying computer architecture design. Cur-
rently, it is common to use an uni-processor system with high
enough frequency to satisfy the performance need. However,
one cannot increase the frequency indefinitely without paying
the penalty of increased power consumption. Therefore, a more
efficient architecture is needed.

We believe that a multi-processor system implemented on a
single chip i.e. chip-multiprocessor (CMP) can satisfy that
demand because it can extract both instruction-level parallel-
ism (ILP) and thread-level parallelism (TLP), whereas an uni-
processor only extracts ILP. This way, the CMP can provide
performance without having to run in high frequencies, result-
ing in low power consumption if intelligently managed.

In this paper, we propose two power-saving scheduling strat-
egies applied to a CMP architecture. In contrast to our previous
work [8], we analyze potential savings in both dynamic and
static power consumption using a refined workload model to
better reflect non-deterministic user interaction. It is common
that only user-level events are captured in simulator statistics.
Therefore, a small study is done on system-level events such as
system calls and taskswitches and their potential contribution
to the overall energy consumption.

Our experimental results show that up to 78% of both static
and dynamic power can be reduced using our proposed strate-
gies compared to both uni-processor and CMP without any

power-aware scheduling. Furthermore, it showed that system
calls can contribute significantly to the total energy consumed.

Very few have designed CMPs for mobile devices with low
power consumption in mind. Although [6] published a CMP
with the ability to activate and de-activate sections of the chip,
no study have been done showing its efficiency.

2. Adaptive CMP Architecture

Our proposal is based on a CMP architecture consisting of sim-
ple single-pipelined processors with private instruction and
data caches. The processors are interconnected through an
atomic bus through which they can access the shared unified
second level cache. Coherency between caches is maintained
using MESI protocol.

The adaptivness of the CMP comes from the OS scheduler’s
ability to dynamically activate and de-activate processors. To
be able to do that, the CMP has to consist of processors that can
be put in power-saving modes. We implemented a process
scheduler that does normal process scheduling according to
Earliest Deadline First (EDF) algorithm and also schedules the
activity of individual processors according to simple strategies.

The scheduler is utilizing a power-saving mode in the pro-
cessor that disables its clock-tree and power lines. This way,
both dynamic and static power consumption is minimized. The
cell state in the caches is preserved using drowsy caches [4],
meaning that data can still be fetched if needed with small per-
formance cost, which is useful when sharing coherence state.

We evaluated two simple processor scheduling strategies.
The first strategy, S1, prioritizes performance while the second
strategy, S2, prioritizes low power consumption while still
meeting deadlines. Both strategies impacts the scheduler’s way
of doing process allocation and process migration. In the first
strategy, applications are allocated to already running proces-
sors to reduce the overhead with waking up from power-saving
mode. In the second strategy, non-critical applications are allo-
cated on the same single processor to reduce power consump-
tion at the expense of longer response time.

3. Workload Model

We created two multi-programmed workload scenarios consist-
ing of selected applications from the Mediabench benchmark
suite [7]. Applications in the workloads were either time-criti-
cal, thus they had deadlines or they were executed according to
a best-effort strategy, thus they had low scheduling priority.

Each application is independent, thus there is no inter-pro-
cess communication.

1530-1591/04 $20.00 (c) 2004 IEEE

In order to evaluate a scheduling strategy, we cannot execute
applications in isolation but need some way to aggregate them
in a workload. Previous use of multi-programmed workload
models have been trivial in nature and did not exhibit any of
the burstiness that we are expecting. For that reason, we have
chosen to use a model, b-model, derived from studies on traffic
with self-similar patterns in web, video, and disk environments
[11]. Our approach is to map each data point in the generated
traffic graph into a release of a benchmark application. In our
study we are considering two workload scenarios; one where
the workload is light, consisting of 64 applications, thus poses
a modest load on the system, and a heavy load, consisting of
256 applications, where the system is more utilized (see Figure
1.). Both workloads are aggregated over 1024 OS ticks, where
each tick is a 20 ms period.

4. Evaluation Methodology

We use simulation to estimate performance and power con-
sumption of our chosen architecture configurations. Timing is
estimated using SimpleScalar models [2]. Our simulator is
based on a functional cache simulator, sim-cache, and extended
to a multiprocessor system. We assume that it takes one cycle
to execute an instruction if no memory stalls are experienced.

The power consumption of the simulated architectures is
estimated using Wattch [1]. It provides models for caches,
TLBs, and the global clock-tree. Also, it is capable of simulat-
ing several clock-gating strategies. We use the base cost model
proposed by Sinha et al. [10] for modeling processor power
consumption. As for the global bus, the power consumption is
estimated using capacitance models of simple wires [9]. The
activity factor of the bus is set to 50%. The power consumption
of off-chip bus and main memory is modeled using [5]. All on-
chip models are based on 0.18 µm process technology figures.

Most studies only analyze user-level activities. Events such
as system calls and taskswitches become unaccounted for. We
are using a simple pessimistic model for such events. We
assume that 100 instructions are enough to perform a
taskswitch and 1,000 instructions are needed to perform a sys-
tem call. We assume a 80% cache miss-ratio for both events.

5. Results and Conclusions

Figure 2 shows the dynamic and static energy consumed by
architectures we considered during heavy and light workload
scenarios (H/L prefix), thus uni-processor with and without
DVS, 4-way CMP without scheduling strategies, 4-way CMP
with S1 or S2 strategy. The bars are normalized against the 4-
way CMP without any strategy. Using DVS on the uni-proces-
sor only decreased the energy consumed during the light work-
load. We can see that the 4-way CMP without any strategy
consumes as much as a uni-processor with DVS during a light
workload and several times less energy during the heavy work-
load. Using S1 strategy, the 4-way CMP reduced its energy
consumption by 78% during the light workload. Energy con-
sumption was further reduced using S2 strategy by 8% at the
expense of response-time of non-critical applications while
deadlines of time-critical applications are still met.

Table 1 shows how many system calls and taskswitches were
performed and their energy consumption compared to overall
energy consumption. Results show that system calls can con-
tribute significantly to the energy consumed during heavy
workloads whereas taskswitches were efficient at all times.

References
[1] D. Brooks et. al., Wattch: A Framework for Architectural-level Power

Analysis and Optimizations. In Proc. of International Symp. on Com-
puter Architecture, pp. 83-94, 2000.

[2] D. Burger et. al., The SimpleScalar Tool Set, Version 2.0. CS-TR-97-
1342, University of Wisconsin, 1997.

[3] L. T. Clark et al, An Embedded 32-b Microprocessor Core for Low-
Power and High-Performance Applications, IEEE Solid-State Cir-
cuits, Volume 36, Issue 11, pp. 1599 -1608.

[4] K. Flautner et. al., Drowsy caches: simple techniques for reducing
leakage power, In Proceedings of International Symposium on Com-
puter Architecture, pp. 148-157, 2002.

[5] R. Fromm et al., The Energy Efficiency Of Iram Architectures. In
Proceedings of IEEE International Symposium on Computer Archi-
tecture, pp. 327-337, 1997.

[6] M. Edahiro et. al., A Single-Chip Multiprocessor for Smart Terminals.
IEEE Micro, Vol. 20 Issue 4, pp. 12-30, 2000.

[7] C. Lee et. al., Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. In Proc. of International
Symp. on Microarchitecture, pp. 330-335, 1997.

[8] M. Nikitovic and M. Brorsson. An adaptive chip-multiprocessor
architecture for future mobile terminals. In Proc. of CASES’02, pp.
43-49, 2002.

[9] J.M. Rabaey and M. Pedram, Low Power Design Methodologies.
1996, ISBN 0-7923-9630-8.

[10] A. Sinha and A.P Chandrakasan, JouleTrack-a Web Based Tool for
Software Energy Profiling. In Proc. of Design Automation Confer-
ence, pp. 220-225, 2001.

[11] M. Wang et. al., Data Mining Meets Performance Evaluation: Fast
Algorithms for Modeling Bursty Traffic. In Proc. of International
Conf. on Data Engineering, pp. 507-516, 2002.

0

2

4

6

8

10

12

1 500 999

OS ticks

no
fp

ro
ce

ss
es

Figure 1. A heavy workload scenario.

Table 1: Energy consumed by system-level events.

Workload # syscalls # taskswitches energy ratio energy ratio

Heavy 37 012 8 956 3.1% 0.003%

Light 9 337 4 236 0.7% 0,007%

0

1
2

3

4

5
6

7

H_u
nip

ro

L_
un

ipr
o

H_u
nip

ro
_D

VS

L_
un

ipr
o_

DVS

H_C
M

P4

L_
CM

P4

H_C
M

P4_
S1

L_
CM

P4_
S1

H_C
M

P4_
S2

L_
CM

P4_
S2N

or
m

al
iz

ed
en

er
gy

co
ns

um
pt

io
n

dynamic static

Figure 2. Estimated energy consumption.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

