
HAL Id: hal-00657536
https://hal.science/hal-00657536v1

Submitted on 6 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DFG implementation on multi GPU cluster with
computation-communication overlap

Sylvain Huet, Vincent Boulos, Vincent Fristot, Luc Salvo

To cite this version:
Sylvain Huet, Vincent Boulos, Vincent Fristot, Luc Salvo. DFG implementation on multi GPU cluster
with computation-communication overlap. DASIP 2011 - Conference on Design and Architectures for
Signal and Image Processing, Nov 2011, Tampere, Finland. pp.1-8. �hal-00657536�

https://hal.science/hal-00657536v1
https://hal.archives-ouvertes.fr

DFG IMPLEMENTATION ON MULTI GPU CLUSTER WITH
COMPUTATION-COMMUNICATION OVERLAP

Sylvain Huet, Vincent Boulos, Vincent Fristot

GIPSA-lab
UMR5216 CNRS/INPG/UJF/U.Stendhal
F-38402 GRENOBLE CEDEX, France

firstname.lastname@gipsa-lab.grenoble-inp.fr

Luc Salvo

SIMAP
UMR5266 CNRS/INPG/UJF

F-38402 GRENOBLE CEDEX, France
Luc.Salvo@simap.grenoble-inp.fr

ABSTRACT

Nowadays, it is possible to build a multi-GPU supercomputer,
well suited for implementation of digital signal processing al-
gorithms, for a few thousand dollars. However, to achieve
the highest performance with this kind of architecture, the
programmer has to focus on inter-processor communications,
tasks synchronization . . .
In this paper, we propose a design flow allowing an efficient
implementation of a Digital Signal Processing (DSP) appli-
cation specified as a Data Flow Graph (DFG) on a multi
GPU computer cluster. We focus particularly on the ef-
fective implementation of communications by automating
the computation-communication overlap, which can lead to
significant speedups as shown in the presented benchmark.
The approach is validated on a 3D granulometry application
developed for research on materials.

1. INTRODUCTION

Nowadays, computers embed many CPUs and a powerful
graphics card based on Graphical Processing Unit (GPU).
Workstations can host several GPU boards, which are well
suited for scientific and engineering computations. Such
computers are linked through high bandwidth networks to
compose clusters for High Performance Computing (HPC).
These machines provide highly parallel multicore architec-
tures while being cost-effective. Moreover, they significantly
reduce dissipated power, and space needs compared to clas-
sical HPC clusters. However, the real challenge is to achieve
the highest performances on muti-GPU architectures. The
programmer has to design architecture-specific code includ-
ing GPU communications and memory management, task
scheduling and synchronization. So, a high level program-
ming abstract model is required to express all these important
operations. In this paper, we propose a design flow allowing
an efficient implementation of a DSP application specified as
a DFG on a multi GPU computer cluster. We focus particu-
larly on the effective implementation of communications by
automating the computation-communication overlap.

After presenting the related work in section 2, we show in sec-
tion 3 the interest of the implementation of communication-
computation overlap on multi-GPU architectures. In section
4 we present our design flow that allows an efficient imple-
mentation of an algorithm expressed as DFG on a multi-GPU
architecture. It is applied in section 5 on a real world applica-
tion of 3D granulometry developed for research on materials.

2. RELATED WORK

Although multi-GPU architectures are recent, many studies
have been conducted to raise the level of abstraction in GPU
programming.
Some authors proposed directive-based programming, to en-
hance a C source code. HiCUDA, developed by University
of Toronto [1] is a high-level directive-based language for
NVIDIA-CUDA programming. A source-to-source compiler
translates a sequential C program with hiCUDA pragmas to
CUDA and CPU programs. The proposed directives allow
the programmer to specify code regions which are executed
on the GPU or on the host, to specify the memory location
of the data (host, GPU global memory, GPU shared memory,
GPU constant memory),. . . This tool simplifies GPU porting
of C sequential program. Nevertheless, at our knowledge,
it is does not support asynchronous transfers between CPU
and GPU and thus does not allow to do communication-
computation overlap and does not target multi-GPU clusters.
A Hybrid Multi-core Parallel Programming Environment
HMPP [2] is proposed by the CAPS French company that
provides a set of compiler directives with tools and a software
runtime support multi-core processor parallel programming
in C and Fortran. HMPP subroutines can be remotely exe-
cuted on a hardware accelerator as GPU, FPGA.
StarPU [3] developed by INRIA and Bordeaux University,
provides a high level, unified execution model for heteroge-
neous systems (CPU, GPU or CELL), including high level
abstraction of tasks (codelets for multiple hardware imple-
mentations), with dynamic scheduling policy and transparent
support for GPU pipeline (Virtual Shared Memory).

Our goal is to provide a design flow that has a suitable entry
point to the application developer of signal processing appli-
cation that allows him to do not focus on the expression of
inter-processor communications, the synchronization of tasks
and memory allocation and optimization on both the CPU
and GPU. We choose to focus on DFG since it is a formalism
that have been widely used to specify DSP applications.
Before presenting the design flow that we propose, the fol-
lowing section shows a benchmark that allows quantifying
the performance gain that can be expected when computation
and communication overlap on a GPU cluster.

3. COMMUNICATION-COMPUTATION OVERLAP
BENCHMARKS

In this section, we detail communication/computation over-
lap, in a real world application. We suppose data transfer time
is around the kernel execution duration. First, the principle of
communication/computation overlap for multi-GPUs systems
is given. Then this overlap is shown and measured. An assess-
ment of data transfer rate can be derived for several hardware
configurations. This study is done using a single multi CPUs
host workstation of the GPU cluster. The programming inter-
face used is the CUDA Nvidia API, a popular environment for
GPGPU, dedicated to Nvidia’s GPU devices. CUDA is gen-
erally more efficient than OpenCL programming standard [4],
as the later is affected by its compatibility to program CPUs
and GPUs from different vendors.

3.1. The method

A basic test model is proposed for one host PC with two GPU
boards for the data flow algorithm presented on figure 1. The
architectural target is a node equipped with 2 GPU accelera-
tors (Kernel A running on GPU-0, Kernel B running on GPU-
1). The host program is designed as follows. After initializing
memory blocks on the host and devices, an infinite loop han-
dles communications, computations and synchronization for
each GPU device in four steps: (1) host to device data trans-
fer, (2) kernel execution on GPU device, (3) device to host
data transfer, (4) wait for the synchronization barrier.
The code is written in multi-threaded C, based on the Posix
pthread library. We create one CPU thread for each GPU
board plus one CPU thread for the synchronization barrier.
Allocation of the host memory blocks in page-locked (pinned)
memory (with the cudaHostAlloc() function) allows a 70%
increase of transfer rate compared with pageable host mem-
ory allocated by the malloc() function.

Kernel A
(gpu0)

Producer
(cpu)

Kernel B
(gpu1)

consumer
(cpu)

Fig. 1: data flow graph (DFG) of the test model

GPU-1

inKA0 KA0 outKA0

KB-1

inKA1 KA1 outKA1

inKB0 KB0 outKB0

synchro barriers

GPU-0

Fig. 2: serialized communication/computation execution

Host to Device

Device to Host

Kernel execution

GPU
0

KA0 KA1

inKA1

KA1

inKA2

outKA0

KA2

inKA3

outKA1

KA3

inKA4

outKA2

Host to Device

Device to Host

Kernel execution

GPU
1

KB-3 KB-2 KB-1

inKB0

KB0

inKB1

KA-1

inKA0

KB-4

Fig. 3: concurrent execution of communications and compu-
tations

A first implementation concerns the synchronous mode
with regular sequential data transfers and computations. Data
transfers are launched by cudaMemcpy() functions, commu-
nications and kernel execute sequentially as shown in Figure
2. Both GPU devices run kernels concurrently. The latency
stands to one cycle of synchronization, related to concurrent
execution of the two kernels.
A second implementation is more efficient, running with
communication/computation overlap. CPU threads launch
kernels and transfers simultaneously, in asynchronous mode,
which means that all data is stored in double buffers, each one
allocated on the CPU and the GPU devices. Data transfers
are launched by cudaMemcpyAsync() functions and concur-
rent execution of kernels and transfers is managed by CUDA
streams. In the Figure 3 example, the latency stands to a total
of seven cycles (two cycles are inserted by each kernel and
retrieval of data plus one cycle to upload data to kernel B, and
also two cycles are needed by host memory double-buffers
for a producer out and consumer in).

3.2. Communication/computation overlap

We monitor CPU-GPU communication and GPU computa-
tion time. The overlap of data transfers and kernel execution
is underscored by varying the time length of GPU kernels. We
set kernel duration from 0 to twice the data transfer length.
The test program saves loop’s duration, with or without data
transfers, in synchronous or asynchronous mode. Experimen-
tal conditions are transfers of 64 MiB blocks to achieve maxi-
mum bandwidth on the PCI express bus. We checked three
motherboard configurations, recommended for GPU super-
computers (1) an AsusTek G53JW notebook featuring an In-
tel I7 Q740 CPU and including a GTX460M board (mono
GPU) (2) a workstation based on AsRock X58 SuperCom-
puter motherboard with an Intel I7 920 CPU and 3 GTX285
boards (3) a workstation based on Asus P6T7 WS Super-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2

D
a

ta
 t

ra
n

s
fe

r
+

 k
e

rn
e

l
d

u
ra

ti
o

n

Kernel duration

Kernel only
2 data transfers async mode

2 data transfers sync mode
speedup

Fig. 4: Communication/kernel overlap on Asus Notebook

computer motherboard with an Intel I7 920 CPU equipped
and 3 GTX285 boards. The results were measured using
Nvidia’s GPU CUDA SDK 3.2 (NVIDIA 260.19.26 driver)
under linux Ubuntu 10.04. In asynchronous mode, there is
a complete overlap if the kernel’s duration exceeds transfer
time. Otherwise, only the duration of the transfer remains. In
synchronous mode, we find that transfer duration adds to the
length of the kernel (Figure 4).

The speedup factor is defined as improvement of over-
lapped mode versus no overlap that reaches a factor of two if
data transfer time is around kernel execution duration.

3.3. Data transfer bandwidth on PCIe

On the PC motherboards, data transfers between host mem-
ory and GPU devices go through the PCI express bus. PCIe is
a high-speed point-to-point serial link connecting expansion
boards to the chipset. For PCIe Gen2.0, the serial bus uses
two low-voltage differential LVDS pairs, providing a 5 GT/s
(giga transfers per second) in each direction. The AsusTek
G53JW notebook has the 3400 Intel chipset, implementing
PCIe 2.0 x8 lanes. Actual data transfer bandwidth performs
3.0 GB/s for host to device (h→d) transfer and 3.2GB/s d→h
transfer. So in this case, there is no overlap between the
h→d and the d→h data transfers, on the same GPU board.
On Geforce boards, the PCIe interface does not support full-
duplex transfers (h→d and d→h simultaneously). Half du-
plex transfers of Geforce boards is the bottleneck for high
speed data transfers. It seems that Quadro and Tesla boards
support full duplex transfers on PCIe, doubling the data trans-
fer bandwidth. Both workstation motherboards have the X58
Intel chipset, with 2 PCIe 2.0 x16 links. The AsRock X58

motherboard 1 transfer 2 transfers 6 transfers
AsRock X58 3.0 6.0 7.0
Asus P6T7 5.5 7.1 7.1

Table 1: PCIe 2.0 bandwidth of motherboards (in GB/s)

motherboard (three GPU boards PCIe x16), seems to be less
efficient for a single data transfer but both motherboards cap
around 7.0 GB/s for six simultaneous data transfers, ie si-
multaneous h→d and d→h transfers for each GPU board.
However, we demonstrated that communication and computa-
tion can overlap when asynchronous transfers in multi GPUs
nodes are used. Thus, we improved the efficiency of multi-
GPU parallelism by hiding the transfer time.

4. DESIGN FLOW

Our goal is to provide a design flow that allows implement-
ing a DSP application on a computer cluster without taking
care of implementation considerations. Particularly, we fo-
cus on automation of an efficient implementation of commu-
nications, i.e. with computation communication overlap, on
computer cluster with multi GPU. In the first subsection, we
present the steps of our design flow. In the second subsec-
tion, we detail the graph analysis and transformations we do
to obtain the implementation graph.

4.1. Steps

The application is specified with a textual representation of a
DFG. It is composed of nodes representing the computations
and edges showing the data dependencies between them. The
semantic of a DFG is as following: a node can be fired if and
only if all its inputs are available. When fired, it consumes
all its inputs and executes the function it is associated to and
produces all its outputs. The designer associates in its DFG
specification a data type to each edge and an object type to
each node. Initially, we impose that each node has one in-
put. This restriction is discussed at the end of subsection 4.2
and will be removed in a near future. Figure 5 presents an
example of a DFG: node p produces data consumed by node
a which produces data for node b that broadcasts it to nodes
c1, c2, d, and so on. An iteration is the firing of all nodes
of the DFG. The meaning of the couple between parentheses
is given in subsection 4.2. The architecture is described with
a textual representation of an Architecture Graph (AG). The
nodes represent the processing elements, and the edges the
communication channels between them. Figure 6 presents an
AG of a cluster of two computers where each has a moth-
erboard with one CPU and three GPUs. Here, the designer
also specifies the nature of each communication link. On our
cluster, CPU and GPUs on the same computer communicate

Fig. 5: Data Flow Graph example

through PCIe links whereas the computers through Infiniband
Network.

The mapping of an application on the architecture is spec-
ified in the textual representation of a DFG. Figure 7 presents
the mapping we choose to illustrate the design flow.
Finally, the designer has to provide a c++ class description
for each kind of object associated to the DFG nodes and to
complete resolution functions that are called at runtime to do
the memory allocations, the instantiation of the c++ class as-
sociated to each nodes . . .

At this time, the designer’s code is compiled and linked
with a library we developed, called Parallel Computations
with Communications Overlap (PACCO). This library al-
lows to obtain a binary which can execute the application
with computation communication overlap. Since we rely on
MPI [5] for inter-computer communications, we use mpirun
to launch and distribute the application on the cluster. At
runtime, the DFG with its mapping annotations and the AG
are analyzed. We do some graph transformations to allow
communication-computation overlap and to obtain an opti-
mized Implementation Graph (IG). We then create the threads
that will manage the CPU and GPU computations, i.e. DFG
nodes firing, the communications among them and the syn-
chronizations. This code needs to be recompiled only when
the designer introduces a new data type in the DFG or asso-
ciates a new object to a DFG node.
Figure 8 summarizes all the steps of the design flow. Here,
the designer only provides the information within the dark
rounded rectangles.

4.2. Graphs analysis and transformations

The objective of the analysis and transformations is to obtain
an IG which will be used by each CPU and GPU thread to
determine what it has to do. The IG specifies the scheduling
of the DFG nodes and the buffers that allow them to commu-
nicate through the architecture.
- Scheduling.
A first step consists in finding a schedule, i.e. a firing order
of the nodes for an iteration of the DFG. For this purpose we
used a recursive algorithm called on sink nodes. The schedule
of our application example is specified in the first element of
the couple between parentheses in the DFG nodes.
- Buffer node insertion.

Fig. 6: Architecture Graph example

Fig. 7: DFG mapped on AG

The DFG of an application specifies the data dependencies
(edges) between computations (nodes). From the implemen-
tation point of view, we need buffers to store the data that is
produced and consumed by the nodes. This means that buffers
are required all along an architecture’s path connecting the
nodes which with producer/consumer relationship. Figure 9
illustrates the result of buffer node insertion of the applica-
tion presented in Figure 5 on the architecture Figure 6 with
the mapping presented in Figure 7.

For example we consider the case of nodes b And c2 that

PACCO Lib
Resolutions functions C++ classes to be fired

Compile and link

Binary

Application launch
(mpirun)

Application running on each computer cluster

Graphs analysis and
transormations

Application DFG
with mapping
annotations

Architecture
graph

Threads creation and
launch

Implementation graph

Fig. 8: Design flow

Fig. 9: Buffer nodes insertion

have a producer-consumer relationship. Node b is mapped on
GPU1 of CPU0, whereas c2 is mapped on GPU0 of CPU1.
To go from GPU1 of CPU0 to GPU0 of CPU1, you have
to pass by CPU0 and then by GPU1. Thus, four buffers
are required: bn_2 allocated on the memory of GPU1 of
CPU0 computer, bn_9 allocated on the CPU0 computer
main memory, bn_10 allocated on the CPU1 computer main
memory and bn_11 allocated on the memory of GPU0 of
CPU1 computer. We notice that the data produced by b is
also consumed by c1. As the architectural path going from
b to c1 is included in the path from b tp c2, no other buffer
node is required.
- Buffer node depth and optimization.
This step consists in determining the depth of each buffer
node, simple or double, and to optimize their allocation
through sharing. The choice of the depth of a buffer node de-

Fig. 10: Buffer nodes optimization

pends on location of the processing elements of the nodes it
connects and the communication strategy, i.e. with or without
computation overlapping. The communication strategy also
impacts the IG model of execution
Inter processing elements communication with computa-
tion communication overlap In this case, each buffer node
that receives or send data to a processing element other than
the one it is mapped to must be a double buffer. Indeed,
in this case the two following situations have to be consid-
ered. (1) The case of a buffer node which receives a data
from another processing element. To implement computation
communication overlap, the buffer node can be written by
an asynchronous data transfer, whereas it can be read by an
internal DFG node. It is the case of bn_7, in Figure 9, which
is read by an asynchronous data transfer between bn_7 and
bn_8whereas it can be written by another asynchronous data
transfer between bn_1 and bn_8. (2) The case of a buffer
node that sends data to another processing element. With
computation communication overlapping, the buffer node
with the data sends asynchronously to the other processing
element is written by an internal node. It is the case of bn_1
in figure 9 which can be asynchronously sent to bn_7 while
it is written by node a.
Inter processing elements communication without com-
putation communication overlap In this case, the transfers
between processing elements are done when all the kernels of
each processing elements have been fired. Thus only single
buffers are required.
Intra processing elements communication As the DFG
nodes are fired with respect to the scheduling, only single
buffer nodes are required as internal storage. We develop an
optimization pass, which allows sharing the internal buffer
nodes that transport the same data type. Even the double
buffer node’s part which is not used by an asynchronous
transfer between two processing elements can be shared. Fig-
ure 10 shows the results of this optimization applied to our
example application. In the context of computation commu-
nication overlap, the part of bn_1 double buffer which is not
used by the asynchronous transfer between CPU1 and GPU0
of CPU1 is read by c2,d,f and written by e and buffer
node bn_3 is read by e,c3 and written by d,f. To ensure
data consistency, all these transfers are of course done in the
scheduling order. This optimization avoids the instantiation
of two buffer nodes. Currently, we are working to determine
a scheduling specific to each processing element that mini-
mizes the buffer nodes number.
- Implementation graph model of execution
At runtime, a CPU thread is associated to each processing el-
ement (GPU computations and transfers are managed through
a CPU thread which launches the GPU kernels and transfers).
These threads manage the nodes mapped on the processing
elements that are associated.
In the case with computation communication overlap they
iteratively execute the following sequence: (1) launch the

asynchronous transfers (2) fire each node with respect to the
scheduling (3) wait until all the nodes all processing elements
have finished for their execution and asynchronous transfers
have completed.
In the case without computation communication overlap they
iteratively execute the following sequence: (1) fire each node
with respect to the scheduling (2) wait until all the nodes all
processing elements have finished their execution (3) lauch
the transfers (4) wait until all the transfers finished.
- Latency computation
Transfers between processing elements introduce delay cy-
cles in either case with computation communication overlap
or without.
With computation communication overlap: each double
buffer introduces a delay of one cycle. The latencies specified
in the second element of the couple between parentheses in
figure 9 were computed in this case.
Without computation communication overlap, each pair of
connected buffer nodes located on different processing ele-
ments introduces a delay of one cycle.
So, whatever the case, at a given time, DFG nodes can be
working on different iterations of the application DFG. More-
over, to avoid firing DFG nodes before valid data is present,
and thus to avoid transients, we compute the latency of the
input of each DFG node. The threads only fire a DFG node
after a number of cycles equals to this latency.
- Multiple input problem
Initially, we impose that a DFG node only has one input.
Indeed when a DFG node has more than one input, it can be
necessary, depending on its predecessors mapping, to resyn-
chronize its inputs since their latency can be different. We are
working on this problem through two means: (1) delaying the
execution of shortest paths (2) adding delay lines.

5. CASE STUDY: GRANULOMETRY

The goal of our work is to provide a design flow that simpli-
fies CPU/GPU and GPU/GPU inter-communication and al-
lows computation/transfer overlapping. In order to apply this
design flow concretely, we intend to use the granulometry ap-
plication. Firstly, we will present the algorithm. Secondly, we
will discuss its practical interest and the reason why this al-
gorithm is adapted to parallel programming and more specif-
ically GPUs. Thirdly, we will talk about the optimizations
brought to it. Lastly, we will present the speedup we get
thanks to our design flow implementation of the algorithm.

5.1. Algorithm description

Granulometry is the study of the statistical distribution of the
sizes of a population of finite elements. In other words, it is
the study of an image’s object sizes. In physics, that would
resemble sieving (grain sorting): the image would be filtered
with a series of ’sieves’ of different mesh sizes.

The algorithm is based on the opening mathematical mor-
phology operator which consists in an erosion followed by a
dilation with the same structuring element. It takes an image
to process as an entry then computes openings with an in-
creasing structuring element size, until all objects in the vol-
ume disappear ; meaning the volume is empty. After each
opening, we collect the number of positive pixels still present
in the image. We then plot the results on a curve: the granulo-
metric curve. The abscissa of this curve represents the num-
ber of openings, and ordinate represents the corresponding
number of positive pixels remaining in the image. The dis-
crete derivative of the granulometric curve is called the pat-
tern spectrum and the abscissa of its peak is the predominant
size of objects in the image (see Fig. 11).

5.2. Practical interest

In order to study a material’s characteristics, tomographic re-
construction is widely used as an efficient method. Many im-
plementations of these algorithms have been ported to GPUs
considerably accelerating computations [6, 7, 8]. However,
less attention has been paid to post-tomographic computa-
tions such as granulometry. Yet, their execution time is not
negligible, can be easily reduced, and hence discredits the ef-
forts made on tomographic reconstruction only.
Ganulometry can be efficiently implemented on GPU since:
(1) there aren’t many flow control instructions needed
(2) it is the same operations done on each pixel of the image
(3) one pixel’s result is independent from other pixels’ results
(4) as we work on binary images, it uses basic operations such
as logic AND and logic OR (maximal instruction throughput
according to the CUDA programming guide [9]) and few in-
termediate variables meaning the occupancy should be maxi-
mal [10]
(5) processing doesn’t need to follow a special data order, so
we can do it in the simplest way, sequentially, to have coa-
lesced memory accesses

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10

N
um

be
r

of
 p

ix
el

s
of

 v
al

ue
 r

em
ai

ni
ng

 in
 th

e
im

ag
e

Structuring element size

Granulometric curve
Pattern spectrum

Fig. 11: Example of appearance of a granulometric curve.
We can see on the pattern spectrum an extrema indicating the
predominant size of the objects in the image.

Erosion Dilation
Pixel

counter

Dilation
Pixel

counter
Erosion Dilation

for i in [1 .. nbr_iterations]

Dilation
Pixel

counter
Erosion Dilation

1st
iteration

2nd
iteration

N th
iteration

Original
image

read volume

granulometry

0

1

Fig. 12: The Data-Flow Graph modelization.

5.3. The DFG implementation of the granulometry appli-
cation

The granulometry GPU implementation comes in handy
when processing huge volumes of data. However, the bigger
the volume to process is, the more time it takes to be read from
the hard disk: our SATA disk evaluated bit rate is 120 MB/s.
Commonly used 3D volumes’ sizes for post-tomographic
processing are of at least 10243 voxels. Therefore, an im-
provement could be to overlap the CPU “read and binarize“
task with the GPU “granulometry“ task. However, this im-
plies the use of double buffers and introduces a latency. Thus,
this solution is mostly useful when processing the granulom-
etry application on a set of volumes. In this subsection, we
will illustrate the steps to follow in order to implement this
solution by using our design flow. First, we decompose our
application in computing entities (nodes). Then, we do the
mapping between these nodes and the architecture. Finally,
we conclude with the results obtained, the benefits and the
limitations to deal with in near future.
- DFG application modelization
Our computing entities (nodes) are easily identified. We can
divide the process into two tasks (see Fig. 12): (1) read vol-
ume from hard drive and binarize it (on CPU) (2) process the
granulometry application on the loaded volume (on GPU).
- Mapping DFG on architecture
The mapping is then processed, automatically adding buffers,
according to the architecture we wish to port the algorithm
onto. In our case, it would look like Fig. 13
- GPU versus CPU implemented application results
Firstly, let’s observe the acceleration brought just by port-
ing this specific application to the GPU (without task and
transfer overlapping). Fig. 14 shows the speedup of the GPU
implemented granulometry application compared to the CPU
single threaded implementation.

Sizes of the processed images on Fermi GTX 480 and
GTX 285 differ because of the difference in available device
memory: 1.5 GB for GTX 480 and 2 GB for GTX 285. Also,
three buffers (four buffers in asynchronous mode) are needed
on the GPU. Moreover, pitched memory is used which sig-
nificantly increases (up to 8 times) the amount of allocated
memory for 2D memory alignment reasons. That limits the
size of the images that can be processed on the GPUs. Let us

Fig. 13: The mapping of the dataflow graph on the architec-
ture.

 20

 40

 60

 80

 100

 120

 140

 200 400 600 800 1000 1200 1400

R
a
ti
o
 C

P
U

/G
P

U
 t
im

e

Volume dimension
3

Performance gain

GTX 285
GTX 480

Fig. 14: Performance gain after porting the granulometry al-
gorithm to GPU.

note that for a fixed image size, the performance gain is con-
stant whatever number of openings are performed. Thus, per-
formance gain is independant from the maximal object size in
an image but depends only on the number of pixels simulta-
neously processed by the GPU compared to the CPU.
- Synchronous versus asynchronous results
Asynchronous mode differs from synchronous in the fact that,
the CPU task (hard drive read and binarize) and the GPU task
(granulometry) are processed simultaneously. Also, the CPU
→ GPU PCI-e transfer is overlapped with the GPU kernels
execution. The results obtained for our CPU/GPU task over-
lapping granulometry implementation appear on Fig. 15.

For a small number of openings, meaning when objects’
sizes in the processed volume are small, the GPU granulome-
try computations are faster than the CPU ”read and binarize”
task. This is clearly demonstrated on Fig. 15: as long as the
“CPU read and binarize” task is slower than the “GPU com-
putations“, you can observe that the processing time remains
constant on the asynchronous curve while increasing by the
amount of time spent by the granulometry application on the
synchronous one. On the asynchronous curve, when the num-
ber of openings becomes big enough, the granulometry ap-
plication time exceeds this constant value and the processing
time increases equally to the time spent by the GPU computa-
tions. In other words, when GPU time reaches CPU time the
speedup is at its peak value: x2 since the both tasks are per-
fectly overlapped. The speedup then decreases asymptotically
to 1. In conclusion, our design flow automatically overlapped

0 10 20 30 40 50
0

200

400

600

800

1000

1200

nb openings

ti
m

e
 (

m
s
)

0 10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

2

s
p

e
e

d
u

p

sync

async

speedup

(a) 2563voxels

0 10 20 30 40 50
4000

6000

8000

10000

12000

14000

16000

18000

nb openings

ti
m

e
 (

m
s
)

0 10 20 30 40 50
1

1.5

2

s
p
e
e
d
u
p

sync

async

speedup

(b) 10243voxels

Fig. 15: Synchronous and asynchronous timings for different
volume sizes.

CPU and GPU tasks successfully with a gain which can at-
tain a x2 speedup. In a less impacting manner, GPU kernels
and the PCI-e CPU→ GPU memory transfer were also over-
lapped automatically. Since the granulometry application is
not suited for multi-GPU pipeline implementation, we didn’t
have the opportunity to develop a multi-host multi-GPU ap-
plication thanks to our design flow but that would certainly be
of higher interest for people aiming at automatically dispatch-
ing their workload onto parallel processing plateforms.

6. CONCLUSION

This paper presents our analysis of task parallelism imple-
mentation on a GPU cluster’s node, dealing with communica-
tion and computation optimization.

We made the following contributions: We detailed com-
munication and computation overlap measurement method.
Our microbenchmarks revealed a speedup factor of two when
data transfer time is around the kernel execution duration. Us-
ing our design flow, the programmer doesn’t have to deal with
inter-component communication and allocation of buffers.
He doesn’t waste time on basic, rudimentary and sometimes

complex coding (MPI, POSIX threads, etc.) but rather focus
on the computation code development. Thus, an application
developed for a certain configuration might be easily portable
on another platform. Also, with the efforts undertaken by the
GPU manufacturers to make the hardware even more adapted
to scientific computations, components’ inter-communication
will be the most important programming bottleneck after
kernel coding. The proposed design flow automates tasks
overlap. It allows to hide the CPU-GPU transfer time and
lead to optimal use of the hardware.

7. REFERENCES

[1] Tianyi David Han and Tarek S. Abdelrahman, “hicuda:
a high-level directive-based language for gpu program-
ming,” in Proceedings of 2nd Workshop on General Pur-
pose Processing on Graphics Processing Units, 2009.

[2] R. Dolbeau, S. Bihan, and F. Bodin, “Hmpp: A hy-
brid multi-core parallel programming environment,” in
Workshop on General Purpose Processing on Graphics
Processing Units, 2007.

[3] Cédric Augonnet, Samuel Thibault, and Raymond
Namyst, “StarPU: a Runtime System for Schedul-
ing Tasks over Accelerator-Based Multicore Machines,”
Research Report RR-7240, INRIA, 2010.

[4] Kamran Karimi, Neil G. Dickson, and Firas Hamze, “A
performance comparison of cuda and opencl,” CoRR,
vol. abs/1005.2581, 2010.

[5] William Gropp, Ewing Lusk, and Anthony Skjellum,
Using MPI (2nd ed.): portable parallel programming
with the message-passing interface, MIT Press, 1999.

[6] Damien Vintache, Bernard Humbert, and David Brasse,
“Iterative reconstruction for transmission tomography
on gpu using nvidia cuda,” Tsinghua Science & Tech-
nology, vol. 15, pp. 11 – 16, 2010.

[7] J.L. Herraiz, S. Espaa, S. Garcia, R. Cabido, A.S. Mon-
temayor, M. Desco, J.J. Vaquero, and J.M. Udias, “Gpu
acceleration of a fully 3d iterative reconstruction soft-
ware for pet using cuda,” in Nuclear Science Symposium
Conference Record (NSS/MIC), 2009 IEEE, 2009.

[8] Byunghyun Jang, D. Kaeli, Synho Do, and H. Pien,
“Multi gpu implementation of iterative tomographic re-
construction algorithms,” in Biomedical Imaging: From
Nano to Macro, 2009. IEEE International Symposium
on, 2009.

[9] NVidia, “Nvidia cuda c programming guide 3.2,” .

[10] NVidia, “Cuda occupancy calculator,” .

