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Abstract

Motivated by the success of fractional pixel motion in video coding, we explore the design
of motion estimation with fractional-voxel resolution for compression of color attributes of
dynamic 3D point clouds. Our proposed block-based fractional-voxel motion estimation
scheme takes into account the fundamental differences between point clouds and videos,
i.e., the irregularity of the distribution of voxels within a frame and across frames. We
show that motion compensation can benefit from the higher resolution reference and more
accurate displacements provided by fractional precision. Our proposed scheme significantly
outperforms comparable methods that only use integer motion. The proposed scheme can
be combined with and add sizeable gains to state-of-the-art systems that use transforms
such as Region Adaptive Graph Fourier Transform and Region Adaptive Haar Transform.

1 Introduction

Recent progress in 3D acquisition and reconstruction technology makes the capture
of 3D scenes ubiquitous. In dynamic point clouds, each frame consists of a list of
data points with 3D coordinates and RGB color values. Since point clouds in raw
format would require a huge amount of bandwidth for transmission there has been
a significant interest in point cloud compression techniques, which has led to MPEG
standardization efforts [1], considering both video-based point cloud compression (V-
PCC) and geometry-based point cloud compression (G-PCC) [1, 2].

Methods for inter-frame (temporal) prediction have been proposed to achieve ef-
ficient compression of dynamic point clouds. These methods can be grouped into
three main categories. In voxel-based schemes [3], where a motion vector (MV) is
estimated for each voxel, a few points in both the prediction and reference frames are
selected as anchors to establish correspondence via spectral matching, leading to a set
of sparse MVs. Then, using a smoothness constraint, a dense set of MVs can be ob-
tained from the sparse set to provide motion for all remaining points. In patch-based
techniques [4], motion estimation (ME) is considered as an unsupervised 3D point
registration process wherein a MV is estimated by iterative closest point (ICP) [5] for
each patch generated by K-means clustering. In this paper we focus on block-based
methods, where frames to be predicted are partitioned into several non-overlapping
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3-dimensional blocks of a given size. For each block, the best matching block in a
reference frame is selected according to specific matching criteria, which can be based
purely on geometry, e.g., an ICP-based approach that generates rigid transforms [6],
or can use a combination of geometry and color attribute information [7]. Recent
work has also focused on block-based motion search speedup, including both efficient
search pattern design and search window reduction [8, 9, 10, 11].

Our work is motivated by the observation that ME with sub-pixel accuracy is an
essential tool for modern video coding [12], while all the aforementioned ME methods
for dynamic point clouds are based on integer-voxel displacements. There are two
main reasons why a direct extension of video-based fractional ME to 3D contexts is
not straightforward. First, point clouds are irregularly distributed within each frame,
i.e., only those voxels that correspond to the surfaces of objects in the scene contain
attribute information. Thus, while interpolation of attributes at new voxel locations
can be based in conventional methods, we have the additional challenge of choosing
only those new voxel locations that are consistent with object surfaces, even though
those surfaces are not explicitly known. For example, we would like to avoid creating
additional, fractional accuracy voxels inside an object. Second, voxels are inconsistent
across frames, i.e., both the number of voxels and their distribution in space are
different from frame to frame. Thus, since two matching blocks in consecutive frames
will in general have a different number of voxels containing attribute information,
we will need to develop alternatives to the one-to-one pixel (or sub-pixel) matching
commonly used for conventional video.

In this paper, we focus on fractional-voxel motion estimation (FvME) under the
assumption that integer-voxel MVs (IvMVs) have already been obtained using an
existing integer-voxel motion estimation (IvME) scheme [7, 8, 9, 10]. Specifically, in
this paper we use precomputed IvMVs from a public database [13]. In our approach,
we start by creating fractional voxels between pairs of neighboring occupied integer
voxels. Neighboring voxels are used to favor consistency with object surfaces, without
requiring explicit estimation of the surfaces. Then, a higher resolution point cloud is
obtained by interpolating attributes at each fractional voxel from the values at nearby
integer voxels. FvME is implemented by searching fractional-voxel MVs (FvMVs)
around the positions given by IvMVs and selecting the fractional displacement leading
to the lowest motion compensation prediction error. Motion-compensated prediction
is implemented by directly copying, as the attribute for a voxel in a block in the current
frame, the attribute of the nearest voxel in the matched blocked in the reference
frame. Our proposed FvME scheme leads to improved performance over transform-
based approaches without inter or intra prediction and is also significantly better than
temporal prediction methods based on the IvMVs from [13].

2 Fractional-Voxel Motion Estimation and Compensation

2.1 Motivation

Real-world scenes and objects are captured by multiple calibrated and synchronized
RGB or RGB-D cameras clusters from various viewing angles [14, 15]. After stitching



and voxelization, dynamic point clouds are generated on integer grids. Note that the
3D voxel coordinates are obtained as integer approximations to the “true” positions
of the object in 3D space, while the optimal displacement between frames is unlikely
to be exactly integer. Thus, a fractional voxel displacement can be better than an
integer-one, so that higher resolution MVs have the potential to provide more accurate
motion and hence more accurate MC prediction.

Furthermore, distortion due to lossy coding in previously reconstructed point cloud
frames can lead to higher prediction errors, while camera noise, lighting change in the
capture environment, object movements, etc., may also result in noisy color attributes
and in imperfect matches during motion search [16]. Thus, as for conventional video,
where it is well known that fractional motion compensation contributes to noise re-
moval, the process of generating higher resolution point clouds and attributes at
fractional voxel locations can contribute to denoising and lead to improvements in
the quality of the reference frames.

2.2 Occupied fractional voxels

In this section, we define fractional voxels and describe our proposed method for
interpolation. Based on the same design philosophy used for images and videos,
fractional voxels are created at selected intermediate locations between voxels on the
integer resolution grid. We define a fractional voxel of 1/2 resolution (1/2-voxel), as
a voxel at the mid point between any two neighboring integer-voxels.

As noted in the introduction, not all integer-voxels are “occupied” in 3D space,
and those that are occupied typically correspond to object surfaces. Thus, in our
proposed method, new fractional voxels are created only at locations in 3D space
that are (approximately) consistent with the surfaces implied the location of occupied
integer voxels and attributes are interpolated only at these newly created fractional-
voxels. We say that two integer voxels with coordinates vj and vk are neighbors if
their distance is below a threshold ρ. Then, a fractional voxel is created only between
neighbors vj and vk (assumed to be close enough so that they are likely to belong to
the same surface) and the corresponding interpolated color attribute is computed as:

C(vi) =
1

2
(C(vj) + C(vk)) ,

with L(vi) =
1

2
(L(vj) + L(vk)) and dist(vj, vk) ≤ ρ, vj, vk ∈ Vi,

(1)

where vi is a voxel in the fractional-voxel set Vf with color signal C(vi), vj and vk are
voxels in the integer-voxel set Vi with color signal C(vj) and C(vk), respectively. L(·)
represents the coordinates of the voxel. ρ is the distance threshold and dist(vj, vk)
measures the Euclidean distance between the coordinates of vj and vk.

Note that different pairs of integer voxels may produce the same fractional voxel.
Thus, to remove repeated fractional voxels after interpolation, attributes that be-
long to the same fractional voxel and are obtained by interpolation from different
pairs of neighboring voxels are merged by averaging. Fig. 1b shows several exam-
ples of possible fractional-voxels locations, where we can see that interpolation based



on neighboring integer voxels tends to favor increasing the voxel resolution on the
(implicit) surface where the voxels are located.

(a) (b)

Figure 1: Integer and fractional voxels. Figure 1a depicts all possible candidate in-
teger and 1/2-voxels positions Figure 1b shows 3 examples of occupied integer voxel
positions with corresponding fractional voxels obtained from neighboring integer vox-
els. Note that these interpolated fractional voxels are more likely to belong to the
same surface as the neighboring integer voxels they were obtained from.

2.3 ME with fractional-voxel accuracy

Due to the inconsistency of voxel distributions in consecutive frames, it is difficult
to establish exact one-to-one correspondences between the voxels in two matching
blocks. To generalize MC prediction for fractional motion in 3D space, we start by
super-resolving the reference frame as described in Section 2.2. As we can see from
Fig. 2, the continuity among voxels and their corresponding attributes is significantly
increased underlying surfaces, which provide better predictors when high resolution
motion is available. The low pass filtering used for interpolation also contributes to
attribute noise removal.

Figure 2: Comparison between the original and super-resolved reference block.

Next, we estimate MVs in fractional precision for MC. The entire ME process is a
coarse-to-fine procedure, including IvME and FvME. Each estimated MV is obtained
as the sum of an IvMV and a FvMV displacement. Assuming the IvMV MVi is given,
the optimal FvMV MV opt

f is searched from a set of candidate fractional displacements.
Since we super-resolve the reference frame in 1/2-voxel precision, each coordinate of



a fractional displacement MVf can take values in {−1
2
, 0, 1

2
}, resulting in 27 possible

displacements. For a given fractional displacement MVf , we predict each attribute
in the current block from its nearest voxel in the translated super-resolved reference
block, as depicted in Fig. 3. Then the displacement with the smallest prediction error
is chosen, that is,

MV opt
f = arg min

MVf

∑
vi∈V (Bp)

Epred(C(vi), C(vj′)),

s.t. j′ = arg min
j

(dist(vi, vj)), vj ∈ V (Bs
rMC),

Lb(B
s
rMC) = Lb(B

s
r) +MV,

MV = MVf +MVi,

(2)

where Bs
r and Bs

rMC represent the super-resolved reference block before and after
translation with MV , respectively, vi and vj are voxels with color signals C(vi) and
C(vj) in blocks Bp and Bs

rMC , respectively. Epred(·, ·) is the function for measuring the
prediction error. Lb(·) represents the coordinates of the block while V(·) represents
the set of voxels within the block.

Figure 3: Motion-compensated prediction.

2.4 MC prediction with fractional-voxel accuracy

Finally, we apply MC prediction using the obtained MVs in fractional precision.
Specifically, once the voxels in the reference block are translated using the integer
motion vector MVi, they are further shifted by the obtained optimal fractional dis-
placement MV opt

f , as shown in (2). Then, temporal correspondence are established
from voxels in the predicted block Bp to their nearest neighbours in the translated
super-resolved reference block Bs

rMC for motion-compensated prediction. The at-
tribute of each voxel in the predicted block is predicted by copying the attribute of
its corresponding voxel in the reference frame, that is,

∀vi ∈ Bp , C(vi) = C(vj′) s.t. j′ = arg min
j

(dist(vi, vj)), vj ∈ Bs
rMC . (3)

3 Experiments

3.1 Dataset

In this section, we evaluate the proposed FvME scheme for compression of color at-
tributes of the dataset of [15], which consists of four sequences: longdress, redandblack,



loot and soldier. Each sequence contains 300 frames.
Note that we assume IvMVs are given and are used to estimate FvMVs. Since

IvMVs derived using different algorithms may lead to different FvMVs with disparate
coding performance, we start from the publicly available 3D motion vector database
[13]. The IvMVs in [13] are selected to minimize a hybrid distance metric, δ =
δg+0.35δc, which combines δg, the average Euclidean distance between the voxels, and
δc, the average color distance in Y-channel1. We only consider motion for 16×16×16
sized blocks. We implement a conventional inter-coding system where previously
decoded frames are used as reference.

3.2 Experimental Settings

Following the MPEG Call for Proposal (CfP) for point cloud compression [17], we
evaluate the proposed block-based FvME scheme (Proposed FvME) in groups of 32
frames, with the first frame coded in intra mode, and the rest coded using inter
prediction. The threshold distance between integer voxels for interpolating fractional
voxels is set to ρ =

√
3 in (1). Colors are transformed from RGB to YUV spaces, and

each of the Y, U, and V channels are processed independently. When searching for
the best candidate FvMV in (2), we use the squared distances to measure prediction
errors. All blocks in the intra-coded frames undergo region adaptive graph Fourier
transform (RA-GFT) [18] while, in the inter-coded frames, all blocks are motion-
compensated. After MC prediction, the residues are transformed using the graph
Fourier transform (GFT) [19]. To compute the GFT, a threshold graph is built inside
every block wherein voxels are connected to each other if their Euclidean distance
is less than or equal to

√
3. If after thresholding, the resulting graph for a block is

not connected, a complete graph is built instead, which results in the transformed
coefficients consisting of a single approximation coefficient (DC) and multiple detail
coefficients (ACs) for each block. The DC coefficients of all blocks are concatenated
and encoded together. Then, the AC coefficients are coded block by block. This
approach is equivalent to a single level RA-GFT [18]. For all transforms, we perform
uniform quantization and entropy code the coefficients using the adaptive run-length
Golomb-Rice algorithm (RLGR) [20]. As for FvMVs overheads, since there are 27
FvMVs in total, 8 bits are used to signal each FvMV. For IvMVs, we use 4 bits to
signal the value and 1 bit to signal sign for each axis and therefore, 15 total bits are
used to represent an IvMV. The overheads of FvMVs and IvMVs are entropy coded
by Lempel–Ziv–Markov chain algorithm [21].

We considered the following schemes as baselines. IvME using the database mo-
tion (DM) for MC prediction and using DM with additional integer local refinement
(DM+RF) for MC prediction. The local refinement uses different criteria that aims

1Note that the resulting IvMVs aim to select matching blocks with similar geometry (δg) and
color attributes (δc) but there is no guarantee that this metric, and in particular the relative weight
between the distances (0.35) is the optimal choice in terms of coding efficiency. Thus, it will be shown
in our motion compensation experiments, that these IvMVs can sometimes lead to performance below
that of encoding methods that do not use motion compensation. In these cases performance can be
improved by local refinement of the IvMVs from the database.



to minimize color errors only, instead of the hybrid errors used in the database. DM
is refined by additional local search in integer precision to improve its matching accu-
racy over the original ones. The locally refined range for each axis is set to be [−1, 1],
which entirely encloses fractional positions searched in the proposed FvME scheme.

To evaluate the benefits of high resolution references and FvMVs, we propose
two inter coding schemes which are using super-resolved reference blocks, with and
without fractional motion vectors for compensated prediction. First, to evaluate the
super-resolution method, we implement a scheme that considers IvME using integer
local refined DM and super-resolved reference blocks for prediction, which is denoted
by “DM+RF+SR”. The difference between DM+RF and DM+RF+SR is the reso-
lution of the reference block. Then, to evaluate benefits of FvMVs, we implement a
scheme that uses fractional resolution in both reference blocks and motion vectors,
which is denoted by “proposed FvME”. For a fair comparison between inter coding
schemes, all other test conditions are the same.

Additionally, to make our performance evaluation more complete, we include two
state of the art (all intra) anchor solutions, namely, RA-GFT [18] and region adaptive
Haar transform (RAHT) [22]. For RA-GFT, block size 16 is used. The residues are
entropy coded by RLGR.

3.3 Evaluation Metrics

The evaluation metrics are the number of bits per voxel (bpv) and average peak
signal-to-noise ratio over Y component (PSNR-Y),

PSNRY = −10 log10

(
1

T

T∑
t=1

‖Yt − Ŷt‖22
2552Nt

)
, bpv =

∑T
t=1 bt∑T
t=1Nt

, (4)

where Yt and Ŷt represent original and reconstructed signals on the same voxels of t-th
frame respectively, T is the total number of frames, bt is the bits required to encode
YUV components of t-th, including IvMVs and FvMVs overhead when necessary, and
Nt is the total number of occupied voxels in t-th frame. The Bjontegaard-Delta [23]
results for bitrate (BD-rate) are also reported.

3.4 Experimental Results and Analysis

Rate distortion (RD) curves are shown in Fig. 4. We first note that using only the
original IvME from the database [13], results in sub-optimal performance compared
to RAHT and RA-GFT. This is in part due to the criteria used in [13] to choose
the optimal MV based on geometry and color information. After local refinement
with integer precision, the performance of IvME (DM+RF) improves significantly
with respect to IvME (DM) but it is still far from being competitive with other
techniques. Further improvements have been shown to be achievable by using per
block intra/inter mode decision [10].



(a) longdress (b) soldier

(c) redandblack (d) loot

Figure 4: Rate distortion curves of 8iVFBv2 sequences.

anchors \ sequences longdress soldier redandblack loot

IvME(DM+RF) −43.93% −63.96% −57.98% −64.43%

RAHT −39.94% −81.91% −51.10% −73.69%

RA-GFT(b=16) −16.19% −72.46% −24.37% −61.44%

Table 1: The BD-rate performances of the proposed scheme over baselines

After the reference blocks are super-resolved, the performance of the proposed
IvME (DM+RF+SR) is further improved with respect to DM+RF, even without
increasing MV resolution. The DM+RF+SR scheme can be better than the intra
schemes in some cases with the advantage of complexity lower than that of the pro-
posed FvME. Finally, after we increase MV resolution to 1/2-voxel, further coding
gains are obtained, outperforming intra coding baselines, RA-GFT and RAHT, with
average gains of 2.8dB and 4.6dB, respectively. The method is always better than
DM+RF+SR but at the cost of higher complexity due to additional motion search.
The results show that both interpolated fractional voxels and high resolution MVs
lead to higher coding gain and outperform both inter coding with IvME and non
predictive transform based schemes.



Table 1 summarizes the performance of the proposed method over IvME (DM+RF),
RA-GFT, and RAGT in terms of BD-rate. The proposed FvME can achieve 57% av-
erage bitrate reduction over IvME (DM+RF). Compared with the prior arts, the
proposed scheme can achieve 61% and 43% bitrate reduction on average over RAHT
and RA-GFT respectively.

Compared with IvME (DM+RF), the proposed FvME scheme increases the num-
ber of voxels at most eightfold (because of super resolution), and requires evaluating
additional 27 fractional displacements for ME. Therefore, the complexity of the pro-
posed FvME is larger than the complexity of IvME (DM+RF) by a constant factor
(independent of the point cloud size).

4 Conclusions

This paper describes a fractional-voxel motion estimation scheme tailored for attribute
compression in 3D dynamic point clouds. Our scheme defines and identifies fractional
voxels to be interpolated and provides a motion compensation prediction method by
super-resolution and temporal correspondence. Extensive experiments show superior
performance over the prior art. Our work reveals the benefits given by high resolution
references and the further improvements given by fractional-voxel motion vectors for
dynamic point clouds color compression.
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