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Abstract—Prior research has shown the potential of device-
free WiFi sensing for human activity recognition. In this paper,
we show for the first time WiFi signals can also be used to
uniquely identify people. There is strong evidence that suggests
that all humans have a unique gait. An individual’s gait will thus
create unique perturbations in the WiFi spectrum. We propose a
system called WiFi-ID that analyses the channel state information
to extract unique features that are representative of the walking
style of that individual and thus allow us to uniquely identify
that person. We implement WiFi-ID on commercial off-the-shelf
devices. We conduct extensive experiments to demonstrate that
our system can uniquely identify people with average accuracy
of 93% to 77% from a group of 2 to 6 people, respectively. We
envisage that this technology can find many applications in small
office or smart home settings.

I. INTRODUCTION

Wireless devices are everywhere - our homes, offices, shops,
restaurants and virtually all of our urban spaces. They invisibly
fill the air with a spectrum of Radio Frequency (RF) signals.
When a person walks through these spaces, they create a
perturbation in this RF field. By closely examining these
perturbations using the Channel State Information (CSI), it
is possible to identify basic human activities such as standing,
sitting, walking and running [25] and even hand gestures [19]
and keystrokes typed on a keyboard [3].

In this paper, we show for the first time that WiFi signals can
also be used to uniquely identify people. Everyone’s natural
walking style (i.e. gait) is unique which is characterized by
the differences in the limb (hand and feet) movement patterns
and velocity [15]. These patterns are also highly repetitive.
Our hypothesis is that an individuals gait will thus create a
unique perturbation in the WiFi spectrum. Fig. 1 shows the
spectrogram of the CSI data for two people walking through
the same corridor (scenario depicted at the top of Fig. 1).
One can readily observe the differences manifested by each
persons’ unique gait; particularly in the segment of the data
where the subjects cross the Line of Sight (LoS) path between
the two wireless devices. Prior research has demonstrated that
unique gait signatures can be extracted from video sequences
that capture people walking [22] and from an array of a large
number of pressure-sensitive sensors deployed underneath a
floor for measuring foot pressure patterns [6] [17].

Our work is different, since we rely on passive reception of
WiFi signals from infrastructure which is already ubiquitous
in our surroundings. The device-free and non-intrusive nature
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Fig. 1. Operational Scenario for WiFi-ID

of this approach makes it an attractive alternative to tradi-
tional authentication methods that use cameras, microphones.
biometrics or physical objects (swipe cards, wearable tags,
etc). Camera systems [23] require line of sight and sufficient
ambient light. Audio and visual approaches also give rise to
significant privacy concerns. Wearable sensors [12] [11] rely
on the unique signatures generated by embedded Inertial Mea-
surement Unit (IMU) sensors but often are required to be worn
in a specific manner to ensure accurate operations. Biometric
sensors such as fingerprints are susceptible to hacking. In
contrast, our radio based approach is less intrusive and uses
existing WiFi infrastructure, and thus has broad applications
for authenticating individuals in smart homes, offices and
assisted living facilities.

The general problem of uniquely identifying an individual
from a large user population in any physical setting is arguably
very challenging. To make the problem more tractable, we
consider a setting where the goal is to uniquely a person
from a group of N people. This is representative of a smart
home or small office setting. Consider for example a smart
home where children may be prohibited access by themselves
into the garage or home office. Or a smart office where only
selected staff have access to certain offices (e.g., server room



or file storage). Moreover, we consider a simple yet common
scenario for a home or office setting, wherein a single person
(from a group of N people) walks through a corridor towards
a door as depicted. The goal is to uniquely identify this person
so as to either permit or deny access to the room behind the
door.

In this paper, we propose WiFi-ID, a WiFi based human
identification system that is deployed on commercial off-the-
shelf WiFi devices. A transmitter node (any typical WiFi AP)
continuously sends packets to a receiver node (e.g. laptop)
which passively records CSI data from the received packets.
The CSI data captures the aggregate impact of multi-path,
shadowing and interference on the WiFi signals in a given
environment. When a person walks, their gait impacts the
environment in a unique manner, which changes the effect of
these phenomena on the WiFi signal. It is expected that these
are in turn manifested as unique perturbations in the CSI data.
There are several challenges in realising human identification,
even in this seemingly simplified setting.

The CSI time series constitutes data from multiple trans-
mit (Nt) and receive (Nr) antenna pairs each comprised of
multiple subcarriers (e.g., 30 OFDM subcarriers for 802.11n).
The first technical challenge is to determine if the CSI data
is rich enough to capture unique signatures of a person’s gait.
Prior work [24] has suggested that the perturbations caused
by the motion of human limbs (hand and feet) while walking
is typically concentrated in certain specific RF bands. Using
empirical measurements we demonstrate that the effects of
human gait are most pronounced in the 20-80 Hz frequency
bands for 5GHz WiFi. We adopt the FFT based Continuous
Wavelet Transformation (CWT) method for extracting the
signals in the different frequency bands.

The second challenge is to find distinguishing features that
can be used to uniquely identify an individual. In order to
find the unique patterns of each person we compute multiple
features from the CSI data. These features preserve both time
and frequency domain information of the CSI time series in
order to capture the effects of the gait patterns on an individual.
However, given the dimension of the CSI data, the resulting
feature set is very large. We apply ReliefF, an efficient feature
selection algorithm to rank the various features.

The third challenge is to segment the CSI time series data to
extract the part of the signal which has the most pronounced
effect due to the motion of the person, i.e. which corresponds
to the effective region in Figure 1. We design a silence removal
method which analyse the short time energy of the CSI time
series data to determine the start and end points of the effective
region.

We conduct extensive experiments to evaluate performance
of WiFI-ID using 20 subjects in a scenario consistent with
Figure 1. Our system can uniquely identify a person with an
average accuracy from 93% to 77% from a group size of 2-6
people, respectively.

The remaining paper is organised as follows. Section II
discuss the related work and introduce CSI in details in
Section III. Section V shows the silence removal for movement

extractions. The signal separation is described in Section VI.
Section VII introduces the feature extractions and hybrid
feature selection approach. Section VIII shows SAC classi-
fication. Section IX shows the implementation and compre-
hensively evaluate the system. Section X concludes the paper.

II. RELATED WORK

Human identification has been researched for a decade. [23]
and [22] all use video cameras to record people walking and
extract patterns from images. [23] and [22] both capture the
silhouette of persons and extract the gait motions of persons
for identifications. While the above camera-based approaches
achieve good accuracy in identifying individual’s they could
be considered to be too intrusive (from the perspective of
privacy) for use in offices and homes. Moreover, their results
are dependent on good lighting conditions. Other works ex-
ploit fingerprints [2], iris [13] or sclera [30] biometrics for
identifications. The accuracy of these approaches is higher
than using video cameras. However collecting biometric data
often makes users uncomfortable and limit their applications.
Moreover, several researchers have demonstrated that such
biometric systems can faked [1]. [12] and [11] use wearable
sensors and derive signatures that are unique to an individual’s
activity, which in turn can be used to identify people. However,
these methods require that the sensors must be worn in a
specific manner to ensure accurate operations. Moreover, not
everyone is comfortable wearing such sensors on their body at
all times. Our work is different in that it leverages the existing
WiFi infrastructures for human identifications without the need
for additional sensors and intrusive monitoring.

Recently many works use wireless radio for human body
sensing. [16] considers the micro Doppler detected by radars
for human gait recognitions. However the utilisation of radars
is limited due to high costs and regulations. [25], [29] and
[24] utilise channel state information (CSI) reported from
WiFi cards for human activity recognition. Unlike RSSI which
provides the coarse information about the received signal
strength, CSI data contain rich information from every wireless
sub-channels. Various human activities such as siting, walking
and running create unique perturbations in the CSI data and
can thus be used to recognise these activities [25]. In [29],
the authors propose a CSI-speed model that establishes a
relationship between the CSI variations and the speed of
human movement. CSI data has also be used to recognise
hand gestures [19] and keystrokes [3] typed on a keyboard.
Our work is a natural evolution of this prior work. We show
for the first time that CSI data can be used to uniquely identify
individuals.

III. CHANNEL STATE INFORMATION

In this section, we provide a short overview of Channel State
Information (CSI). Most modern off-the-shelf WiFi devices
support the IEEE 802.11n/ac standard and typically include
multiple antennas for MIMO communications. These devices
operate on both the 2.4GhZ and 5 Ghz bands and employ
OFDM at the PHY layer. The WiFi NICs continuously monitor



the frequency response of OFDM subcarriers as Channel State
Information (CSI) [28]. Unlike RSSI that represent the total
received signal strength at the receiver, CSI contains informa-
tion of individual subcarriers between each pair of transmit
and receive antenna. Therefore the CSI can capture the effects
of multiple wireless phenomena such as frequency selective
fading, shadowing, multipath, destructive and constructive
interference. The CSI information is very useful and can be
used for improving the link quality of WiFi connections.

Let Nt and Nr represent the number of transmit and receive
antennas. Thus the MIMO system constitute Nt×Nr antenna
pairs. Let Y pi and Xp

i represent the frequency response for
subcarrier i and antenna pair p. Let Hp

i denote the Channel
Frequency Response (CFR) at any time instant. Then,

Y pi = Hp
i ×X

p
i i ∈ [1, C] p ∈ [1, Nt ×Nr] (1)

Hp
i is a complex value and ‖Hp

i ‖ simplified as hpi denote its
amplitude. In this work we focus on amplitude. In our future
work, we plan to explore phase information. The time series
of hpi are called CSI streams. The customised driver of the
Intel 5300 NIC [5] which is used in our experiments reports
30 OFDM subcarriers of 802.11n between each antenna pair
(i.e. C = 30). Thus the total dimension of the CSI time series
is 30×Nt ×Nr.

IV. OVERVIEW OF WIFI-ID

We consider the scenario depicted in Fig. 1 as the opera-
tional setting for our system. Our system, WiFi-ID consists of
a transmitter (typically an AP) which periodically transmits
(or are these broadcast) packets which are captured by a
receiver which is capable of extracting the CSI information
as discussed in Section III. Our system has two operational
phases - training and testing. In each phase we ask the same
set of individuals to walk normally along the corridor (depicted
in Section III) in a straight line by themselves. The CSI data
collected during the training phase is used to identify features
that are unique to each individuals’ gait, which in turn are
stored in a database. The CSI data collected during the testing
phase are processed in a similar manner to extract the same set
of features which are then matched with those in the database
to uniquely identify the test subjects.

Fig. 2 depicts the basic building blocks of WiFi-ID. In
the first step, WiFi-ID segments the CSI time series data to
extract the portion of the signal which corresponds to the
effective region depicted in Section III. This portion of the
signal has the most pronounced impact of the human gait
and is thus most interesting to analyze. We employ a silence
removal algorithm that uses the short time energy of the CSI
signal for this purpose (see Section V). As will be explained
in Section VI, we analyzed the CSI data to determine if
the influence of the human gait is particularly pronounced
in specific frequency bands. Our investigation revealed that
the CSI data in the 20 - 80 Hz frequency band for 5GHz
WiFi contained the most unique features that are representative
of the individual’s gait (see Section IX). Hence, WiFi-ID
employs a signal separation module (see Section VI) that

uses Continuous Wavelet Transformation (CWT) to extract
signals in different frequency bands. Next, WiFi-ID uses
the RelieF feature selection algorithm to compute various
time and frequency domain features from the CSI data in
the selected frequency bands (see Section VII). We use a
subset of the feature set to represent the fingerprint of each
individual. Finally, WiFi-ID uses Sparse Approximation based
Classification (SAC) to determine the identity of the subject
(see Section VIII).

V. SILENCE REMOVAL AND SEGMENTATION

Note that, the transmitter and receiver in WiFi-ID are
operating continuously, i.e. the transmitter repeatedly sends
packets and the receiver extracts the CSI data from the received
packets. In the absence of people moving along the corridor,
the CSI data will capture the effect of the ambient noise from
other RF transmissions in the vicinity. This data is not useful
and must be discarded. On the contrary, when a person walks
along the corridor, the corresponding CSI data is used for
identifying the individual. In particular, we are interested in
the CSI data that corresponds with the motion of the person
in the effective region depicted in Fig. 1, since this where
their motion would have the most pronounced impact on the
WiFi spectrum. There are two key challenges here. The first
challenge is determining the length (or duration in terms of
time) of this effective region. If the region is set to be too
short, then the corresponding CSI stream may not capture
sufficient information that is representative of a person’s gait.
On the other hand, if the region is too large, then the CSI
stream will also include parts of the signal which are not
impacted by the human motion. We use the parameter T to
represent the duration of the effective region. In Section IX we
comprehensively evaluate the impact of varying the duration
of T .

The second challenge is to determine the start point of the
effective region. An error in determining this will result in
the exclusion of some part of the useful signal that contains
representative information and instead include parts of the CSI
stream that are not as meaningful. Observe from Fig. 1, that the
CSI data does not exhibit abrupt changes as a person enters
the effective region. Hence, a simple thresholding approach
is unlikely to work. Moreover, such a threshold may not be
uniformly applicable to all people as each person may impact
the CSI data in a unique manner. In addition, such a threshold
may not be robust to changing environmental conditions.

In the following, we outline our approach to addressing
these two challenges. Observe from Fig. 1 that when the per-
son is directly crossing the LoS path between the transmitter
and receiver, the impact of their motion is most pronounced
on the CSI data. We refer to this part of the effective region as
the central area. In our silence removal approach (outlined in
Algorithm 1), we aim to identify the approximate mid point
of this central area and then back track and determine the
start point of the effective region. As discussed in Section III,
the CSI data consists of 30 × Nt × Nr streams all of which
exhibit similar perturbations due to the human motion. We
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Fig. 2. Overview of the WiFi-ID system.

select one arbitrary stream hpi . A Butterworth filter is applied
on hpi to remove the high frequency noise. Next, we partition
the stream into short frames Sj of duration 0.05 seconds and
calculate the short time energy Ej for each frame. A median
filter and log calculation are used to smooth the vector E,
which represents the short time energy of all frames S. The
average value of E is determined and used as a threshold to
identify the central region. Precisely, a contiguous block of
frames Smid, for which the energy of each frame is above
the threshold is chosen. The portion of the original signal
hpi that corresponds to the frames Smid is selected to be the
central region, hmid. Next we determine the mid-point of this
region, m, as the instantaneous signal which has the maximum
deviation form the average in hmid. Since the duration of the
effective region is T , the start point can be located at m−T/2.
The selected CSI data of duration T , H, represents the dataset
from one walking experiment.

Algorithm 1 Silence Removal
1: Input: An arbitrary CSI stream hpi filtered by butterworth

and duration T
2: partitioned into a sequence of frames Sj(n), j ∈ [1, Z],
n ∈ [1, N ], where Z is the total number of frames, each
frame has N CSI values

3: for each frame j = 1 : Z do

4: Ej =
1
N

N∑
n=1

|Sj(n)|2

5: end for
6: E = log(MedianFilter(E))
7: select Smid which Ej > mean(E) and map to hmid
8: calculate the mid point m with maximum deviations and

the Start Point is m− T/2 in hpi
9: apply Start Point to other CSI streams h

10: Output: One walk observation dataset H

VI. SIGNAL SEPARATION

The output of the silence removal, H, corresponds to the CSI
data consisting of 30 × Nt × Nr time streams that captures
the impact of a person walking through the effective region.
In this section, we analyze H to understand how a person’s
gait uniquely impacts the CSI signal. This will offer insights
on how we can find distinguishing features that allow us to
uniquely identify an individual. To observe the signal energy
in different frequency bands as a function of time, we plot
the spectrogram for walk observations from two different
people in Fig. 3. It is evident that the spectrograms have some
similarities and differences at the same time. Both observations
exhibit strong energy in the low frequency bands (<30Hz)
and lower energy in higher frequency bands (>100Hz). At the
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(a) Spectrogram of 1st Person
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(b) Spectrogram of 2nd Person

Fig. 3. Comparison between spectrograms of two persons.

same time, the first spectrogram appears to have more energy
(i.e. more red regions) across all frequency bands compared to
the second. This initial investigation suggests that there may
be some merit to analyze the CSI data in different frequency
bands.

The authors in [24] conducted experiments in a similar
setting as ours (i.e. Fig. 1) and demonstrated that there is a
correlation between the velocity of movement of human limbs
and the frequency components of the CSI stream where the
impact of this motion is most pronounced. Specifically the
frequency is equal to the velocity of the motion divided by
WiFi carrier wavelength. Prior work [21] has also shown that
different parts of the human body exhibit different velocities.
For example, the average velocity of human limbs (hands
and legs) is around 2m/s whereas the human torso moves
at approximately 1m/s. This suggest that the impact of a
person’s gait is likely to be most pronounced in a specific
frequency band of the CSI data, specifically the band that
maps to velocities in the range of 1m/s to 2m/s. WiFi-ID
uses the 5.18 Ghz band which has a wavelength of 5.79cm.
The corresponding frequency band 20Hz - 80Hz is thus
worth analyzing further. The above also suggests that higher
frequencies are unlikely contain any meaningful information
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(a) CSI Stream 20-80Hz.
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(b) Spectrogram 20-80Hz.
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(c) CSI Stream 0-20Hz.
Time (s)

0 1 2 3 4

Fr
eq

ue
nc

y 
(H

z)

0 

10

20

30

40

50

60

70

80

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-60

-50

-40

-30

-20

-10

0

(d) Spectrogram 0-20Hz.
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(e) CSI Stream 0-80Hz.
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(f) Spectrogram 0-80Hz.

Fig. 4. The three frequency bands of interest. (a)(c)(e) illustrate the CSI
stream and (b)(d)(f) show the spectrograms.

representative of human motion. This is also evident from the
spectrograms in Fig. 3. Hence, we exclude the frequencies
above 80Hz.

Prior work [4] has shown that the human body can be
modelled as a conducting cylinder when studying its impact
on the WiFi spectrum. When a person walks across the central
area (in Fig. 1) and crosses the direct LoS between the
transmitter and receiver, the WiFi spectrum is influenced by a
mixture of multipath and shadowing effects. This is manifested
by the strong energy observed in the lower frequency bands
(<20Hz) as observed in Fig. 3. Thus, the low frequency band
of 0-20Hz is also worth investigating further.

In summary, we consider two specific frequency bands for
further investigation - (i) 20-80Hz and (ii) 0-20 Hz in order
to determine which part of the signal is most likely to exhibit
distinguishing features specific to an individual’s gait. We also
include the combined 0-80Hz frequency band as a baseline.

In order to separate these signals WiFi-ID use FFT based
Continuous Wavelet Transformation (CWT) [20] and Morlet
wavelet [7] to transform CSI streams into wavelet domain.
WiFi-ID then applies Inverse CWT to restore the selected
signal in particular frequency bands. Compared with Short
Time Fourier Transform(STFT) [26], CWT is more effective
in restoring highly varying signals such as impulse and peaks.
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Fig. 5. Weights of all feature attributes

WiFi-ID chooses 6-9, 10-23 and 6-23 wavelet scales combina-
tions for the signals in 20-80Hz, 0-20Hz and 0-80Hz frequency
bands respectively [10].

Fig. 4 illustrates the three separated signals and their cor-
responding spectrograms. Observe that the 20-80Hz signal
in Fig. 4(a) has little similarity with the 0-80Hz signal in
Fig. 4(e). In contrast the 0-20Hz signal has a similar envelop
as the 0-80Hz signal. As will be elaborated in Section IX, we
observe that the 20-80Hz signal has the most unique features
which are useful for identifying an individual. Hence, WiFi-ID
uses this particular frequency band during its operation. In the
next section, we outline our feature selection procedure.

VII. FEATURE EXTRACTION AND SELECTION

Our goal herein is to analyze the 3 datasets discussed in Sec-
tion VI and identify the features that are most representative of
the individual’s gait and thus help in achieving high accuracy
in uniquely identifying people. In this section we outline how
WiFi-ID accomplishes feature extraction and selection.

Recall that the CSI stream consists of 30 × Nt × Nr sub-
carriers. Prior work on classifying human activities from CSI
data [8] [9] have shown that a part of the subcarriers contain
sufficient information for activity detection. As will be shown
later in this section, this does not hold true for our purposes.
Hence we use the comprehensive data from all subcarriers.
We segment the CSI time series data in each stream using a
window size of 0.1 seconds. For each window we compute
a comprehensive set of statistical features. Specifically WiFi-
ID makes use of 7 time domain features - mean, max, min,
skewness, kurtosis, variance and mean crossing rate and 3
frequency domain features - normalized entropy, normalized
energy and the largest FFT peaks. The time domain features
are able to measure the patterns of the CSI waveform, while
the frequency domain features analyse the energy distribution
information. Similar features have been used in prior work on
human activity recognition using CSI data [29]. and motion
sensors such as accelerometer [14].

The above 10 features are computed for each CSI stream
resulting in a very large feature space of dimension - 10 ×



30 × Nt × Nr × T/0.1. For example, if T = 4 seconds,
then we have 108000 feature attributes. Using the entire
feature set for classification is obviously very time consuming.
Moreover, not all features may be useful for classification
purposes and may thus introduce noise. Hence, we employ
feature selection to identify the most useful features that are
pertinent for uniquely identifying an individual. We adopt
ReliefF, an efficient feature selection algorithm [18]. ReliefF
is a filter-based feature selection method with a low-order
polynomial time complexity. In our context, ReliefF estimates
the qualities of feature attributes, represented by a weight,
based on how well they distinguish multiple individuals. The
feature attributes with high weights are selected and used for
classification.

Fig. 5 shows the feature weights from the 20-80 Hz dataset
of one individual. The y-axis represents the weights while the
x-axis represents the feature categories. Each category consists
of 30×Nt×Nr×T/t points, corresponding to the total number
of streams. We observe that the FFT peaks and mean generally
have higher weights than the other features. Moreover, the
time domain features tend to have higher weights that the
frequency domain features. It is also evident from Fig. 5
that different sub-carriers have high weights across different
feature categories. This confirms that the impact of the gait
is manifested in varying degree by all sub-carriers. This lends
credence to our earlier argument a subset of carriers are not
sufficient for identifying distinct features. Next, we rank the
weights of all attributes in descending order and select the top
R percentage of features. In Section IX we comprehensively
evaluate the impact of R on the detection accuracy.

VIII. CLASSIFICATION

In this section we outline the classification algorithm em-
ployed in WiFi-ID. In [27], Wright et.al. proposed Sparse
Approximation based Classification (SAC) for face recognition
and showed that it is robust to noisy features due to the usage
of `1 minimisation. Even though WiFi-ID employs feature
selection to find representative features, it was shown in Fig.5
that generally all features have low weights, which suggests
that they may include some ineffective information. Hence,
we chose to use SAC as the classifier.

To model human identification as a sparse representation
problem, we first build a dictionary containing the features
selected in the previous section. Consider the scenario where
we wish to identify a person that belongs to a group of
n people. Assume that we have l walking observations per
person as training samples which collected in training phase
of the system. Each walking observation is a p dimensional
feature vector which are the R percentage features discussed
in the previous section. We assemble the feature vectors of
i-th person in a p × l sub-dictionary Fi. The feature datasets
of n people can be compiled to form a p× ln dictionary F =
[F1, ..., Fi, ..., Fn] i ∈ [1, n]. Let β denotes a test sample (i.e. a
new walk observation) from one of the people from this group.
It can be represented by the following linear equation β = Fα,
where α is an unknown coefficient vector. If β belongs to the

Fig. 6. A corridor where experiments conducted.

i-th person, β can be expressed by the linear combination of
l feature vectors in Fi, and independent of the other n − 1
persons. So α = [0, · · · , 0, αk,1, αk,2, · · · , αk,lk , 0, · · · , 0]T ,
the non-zeros entries of α that are related to the i-th person
encode the identity of the test sample. However, due to the
presence of noise, it is difficult to estimate α. In order to
obtain α, `1 optimisation is used by SAC:

α̂ = argminα‖α‖1 subject to ‖β − Fα‖2 < ε, (2)

where ε denote the noise value. After obtained α̂ from `1
optimisation, we can determine identity of the test sample
by setting the coefficients of the other classes to zeros and
calculating residuals, which is ri =‖ β − Fα̃i ‖2. The i-th
person with the minimum residual will be the classification
result (i.e. the identified person) of the test sample.

IX. EVALUATION

In this section we present a comprehensive evaluation of the
WiFi-ID system. Section IX-A outlines the experimental setup.
Section IX-B compares the different frequency bands outlined
in Section VI to determine which part of the signal contains the
features that are most representative of the individuals’ gait. In
Section IX-C we study the impact of varying the percentage
of features, R and the duration of the effective region T on
the classification accuracy. Finally, Section IX-D evaluates the
classification accuracy of WiFi-ID for varying group sizes.

A. Experiment Setup

We implemented a prototype of WiFi-ID using off-the-shelf
devices. The prototype consists of two devices: one HP 8530p
laptop equiped with an Intel WiFi link 5300 802.11n chipset
which acts as the receiver and one WiFi access point (AP)
Netgear R7000 which serves as the transmitter. We installed
Ubuntu 10.10 with modified Intel NIC driver [5] in the HP
laptop. Both the transmitter and receiver have 3 antennas (i.e.
Nt = 3 and Nr = 3). This gives us 30 (sub-carriers) x 3 x 3 =
270 data streams. Section IX illustrates the corridor scenario
used in our experiments. The two devices were approximately
2 meters apart and placed on tables at a height of 1 meters. The
entire WiFi-ID system depicted in Fig. 1 was implemented on
the laptop in MATLAB.

We use the 5.19 GHz frequency band for all our experi-
ments. The CSI data is recorded at a sampling rate of 800
Hz since we observed that using a lower sampling rate led to
unstable measurements of the CSI data. The CSI data recorded



TABLE I
COMPARISON OF THE SIGNALS IN THREE DIFFERENT FREQUENCY BANDS.

Accuracy (%) Standard Deviation

H1 20-80 Hz 72.70 8.64

H2 0-20 Hz 60.80 16.25

H3 0-80 Hz 54.90 16.31

at the receiver is processed in MATLAB. The experiments
were conducted in the corridor depicted in Section IX in our
building. The campus WiFi network was operational the entire
time. On occasion other building occupants passed by the
vicinity but did not directly interfere with our experiments. We
conducted two sets of experiments - the first with 10 subjects
and the second with 20 subjects. Subjects were both male
and female and aged between 25 to 28 years. The subjects
were asked to walk in both directions through the corridor.
Each subject was asked to walk 10 times thus resulting in
20 walking observations. The data collected from the first
set of experiments was used to feature selection and model
fine-tuning. The data from the second set of experiments was
used for performance evaluation. We employed standard 10-
fold cross validation to evaluate the accuracy. We used two
evaluation metrics - (i) true detection rate (accuracy) and (ii)
confusion matrix.

B. Comparing Different Frequency Bands

As discussed in Section VI, we wish to examine which of
the following frequency bands contains features that are most
representative of the individuals’ motion: (i) 20-80 Hz (ii) 0-
20 Hz and (iii) 0 to 80 Hz. We randomly select data from
5 subjects and produce the CSI data streams corresponding
to these three frequency bands. The experiment are repeated
for 20 times. For this set of evaluations we use all features
(i.e. R from Section VII is equal to 100%). Table I shows
the classification accuracy for the 3 datasets. The 20-80 Hz
data clearly achieves better accuracy. This suggests that the
signal in the 20 to 80Hz frequency band contains the most
informative features for people classification. Hence, we only
use data in this frequency band in the rest of the evaluations.

C. Effect of the duration of the effective region T and the
fraction of features R

Recall that T denotes the duration of the effective region
(Section V) and R represents the top-R % of the feature space
(ordered in decreasing order of weights) that are used for
classification (Section VIII). Herein, we study the impact of
both these parameters on the classification accuracy. We use
CSI data from five randomly chosen subjects in the 20-80 Hz
frequency band for these experiments. We vary R from 1%
to 90% (in increments of 10) and vary T from 1sec to 4 sec.
The experiments are repeated 20 times and we report the mean
accuracy and 95% confidence intervals in Fig. 7. We observe
that the best performance is achieved when R is between 20%
to 40%. and T is 4 seconds. Hence, we use R = 40% and T
= 4 seconds in the rest of the evaluations.
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Fig. 7. Impact of feature selection rate and duration of effective region
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Fig. 8. Impact of group size

D. Effect of group sizes

In this sub-section we evaluate the performance of WIFI-ID
considering a scenario where we wish to identify an individual
that belongs to a group of N people. This is typical of a
small office or home setting. Note that, we do not consider
a scenario where a potential intruder (who does not belong
the group) is trying to gain access. In this setting the intruder
should not be misclassified as a group member. We leave this
for future work. We vary N from 2 to 6. Recall that we have
collected data from 20 subjects in our experiments. For each
value of N we randomly select 20 combinations of groups of
N people from the pool of 20 subjects. As expected, Fig. 8
shows that the accuracy decreases with an increase in group
size. However, this result is consistent with other biometric
authentication schemes such as face recognition. Nevertheless,
the average accuracy is well over 80% for all group prizes.

Fig. 9 showed the confusion matrices for four different
group sizes. Here, we randomly selected a number of (3, 4,
5, 6 respectively) subjects, and repeated experiments with the
same group of people because we need to have the same group
members to produce meaningful results. Therefore, the results
in Fig. 9 could be seen as a subset of those reported in Fig. 8.
We have also produced the confusion matrices with different
group members and found similar results. Fig. 9 shows that
most individuals can be identified uniquely in a group with
high probability.

X. CONCLUSION

In this paper we present WiFi-ID a WiFi-based device-free
human identification system. Each individual has a unique
walking style and body shape. These in turn create unique
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Fig. 9. Confusion matrices of four group sizes (3, 4, 5, 6). They x and y axis indicate the index of the participants.

perturbations when the person walks through the WiFi spec-
trum. WiFi-ID analyses these perturbations observed in the
CSI data to identify unique features that allow identification of
individuals. WiFi-ID achieved 93% to 77% human identifica-
tion accuracy for 2 to 6 individuals in a group, respectively.We
anticipate that WiFi-ID could be used in a small office setting
or a smart home for personalised interaction with smart
devices.

While our preliminary results are promising, we also ac-
knowledge several limitations which need to be addressed to
develop a more generalised solution. First, we have considered
a simple (though practical) scenario wherein the participants
directly cut across the Line of Sight (LoS) path between the
transmitter and receiver. In the future we plan to conduct
additional experiments in other settings such in a home or
office and also consider non-LoS scenarios. Second, in our
experiments we have only considered a simple setting of
identifying a person from a maximum group size of 6 people.
In our future work, we plan to consider larger group sizes
and also robustness to false identification, i.e. incorrectly
identifying a person who does not belong to the original group
to be a part of it.
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