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ABSTRACT

Vision (image and video) - Language (VL) pre-training is the recent popular
paradigm that achieved state-of-the-art results on multi-modal tasks like image-
retrieval, video-retrieval, visual question answering etc. These models are trained
in an unsupervised way and greatly benefit from the complementary modality su-
pervision. In this paper, we explore if the language representations trained using
vision supervision perform better than vanilla language representations on Natu-
ral Language Understanding and commonsense reasoning benchmarks. We ex-
periment with a diverse set of image-text models such as ALBEF, BLIP, METER
and video-text models like ALPRO, Frozen-in-Time (FiT), VIOLET. We com-
pare the performance of language representations of stand-alone text encoders
of these models to the language representations of text encoders learnt through
vision supervision. Our experiments suggest that vanilla language representa-
tions show superior performance on most of the tasks. These results shed light
on the current drawbacks of the vision-language models. The code is available at
https://github.com/avinashsai/MML

1 INTRODUCTION

Vision-language (VL) pre-training Radford et al. (2021); Li et al. (2021; 2022b); Bain et al. (2021);
Fu et al. (2021) has shown tremendous success in the areas of image-text retrieval Li et al. (2021;
2022b), visual question answering Wang et al. (2021); Dou et al. (2022), video retrieval Bain et al.
(2021); Fu et al. (2021); Madasu et al. (2022; 2023). These models benefit from the mutual super-
vision of vision and language leading to the superior results on multi-modal tasks. So, the natural
question arises: “Are vision supervised language representations beneficial compared to vanilla lan-
guage representations on Natural Language Understanding (NLU) tasks?” To understand this, we
conduct a study comparing the language representations trained using only the text to the language
representations trained using vision supervision. More specifically, we compare the performance of
the text encoders used in vision-language models to the vanilla pre-trained text encoders.

Few works Iki & Aizawa (2021); Singh et al. (2022) evaluated the performance of vision-language
and vanilla language models on GLUE. However, there exists a data discrepancy as these models are
pre-trained on different domains of data making the comparisons unfair. To overcome this, we pre-
train all the vanilla language models with the text captions used in multi-modal pre-training while
keeping the identical training setting. Therefore, the only difference in training between vision-
language and vanilla language models is the use of vision data.

For our experiments we use a diverse set of image-text models: ALBEF Li et al. (2021), BLIP
Li et al. (2022b) and METER Dou et al. (2022) and video-text models: ALPRO Li et al. (2022a),
Frozen-in-time (FiT) Bain et al. (2021) and VIOLET Fu et al. (2021). We evaluate these models on
NLU benchmarks GLUE Wang et al. (2018), Superglue Wang et al. (2019) and Common sense rea-
soning datasets such as SocialIQA Sap et al. (2019), CosmosQA Huang et al. (2019), WinoGrande
Sakaguchi et al. (2021), CODAH Chen et al. (2019) and HellaSwag Zellers et al. (2019).

Our experiments show that (i) vision supervised language representations under perform compared
to vanilla language representations on most of the Natural Language Understanding tasks like Nat-
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Table 1: Comparison among different image-text and video-text models in-terms of pre-training
data, architecture of the text encoders and size of the text encoder. CC denotes Conceptual cap-
tions Bain et al. (2021), SBU denotes SBU captions Ordonez et al. (2011) and VG represents visual
genome Krishna et al. (2017).

Type Model Pre-training Data Text Encoder Num. layers

Image-text
ALBEF CC12M + COCO + SBU + VG (14M) BERT 6
BLIP CC12M + COCO + SBU + VG (14M) BERT 12
METER CC3M + SBU + VG (4M) RoBERTa 6

Video-text
ALPRO CC3M + WebVid-2M (5M) BERT 6
FiT CC3M + WebVid-2M (5M) DistilBERT 6
VIOLET YT180M + CC3M + WebVid-2M (11M) BERT 12

ural Language Inference (NLI), sentence similarity, reading comprehension, linguistic probe and
textual entailment. (ii) A similar trend is observed for commonsense reasoning benchmarks.

2 RELATED WORK

Over the recent years there has been a tremendous progress in training vision and language together
using large-scale multi-modal data. Li et al. (2019); Chen et al.; Li et al. (2020). These models
combine both the modalities into a single input and are trained using objectives similar to masked
language modelling. Another line of work Radford et al. (2021); Li et al. (2021; 2022b); Bain et al.
(2021) explore dual stream architectures in which there is a separate encoder for each of the modal-
ities and the final representations are minimized using contrastive loss.

Natural Language Understanding involves several tasks such as text classification Wang & Manning
(2012); Madasu & Rao (2019), sentence similarity Mueller & Thyagarajan (2016), Natural Lan-
guage Inference Williams et al. (2018) etc. However to evaluate the capability of models towards a
broad range of NLU tasks, benchmarks such as GLUE Wang et al. (2018), Superglue Wang et al.
(2019) are introduced. Since then, these benchmarks are being used to comprehensively evaluate
the performance of language models.

3 EXPERIMENTS

3.1 MODELS

We experiment with a diverse set of image-text and video-text models. These models differ in the
type of pre-training data used, in the architecture of the text encoder and in the sizes the text encoder.
The comparison among the models is shown in the table 1.

3.1.1 ALBEF

ALBEF Li et al. (2021) is an image-text model pretrained on conceptual captions 12M (CC12M)
Sharma et al. (2018), COCO Lin et al. (2014), SBU captions Ordonez et al. (2011) and visual
genome Krishna et al. (2017). It’s text encoder has a pre-trained BERT Kenton & Toutanova (2019)
architecture with six transformer encoder layers.

3.1.2 BLIP

BLIP Li et al. (2022a) is proposed as an extension to ALBEF model pretrained using the same data
albeit with a large text encoder. It’s text encoder has the same configuration as pre-trained BERT.
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3.1.3 METER

METER Dou et al. (2022) is an image-text model pretrained on conceptual captions 3M (CC3M),
SBU captions and visual genome. Pre-trained RoBERTa Liu et al. (2019) with six transformer
encoder layers is used as the text encoder.

3.1.4 ALPRO

ALPRO Li et al. (2021) is a video-text model whose text encoder has a pre-trained BERT architec-
ture with six transformer encoders. It is pre-trained on a combined data of conceptual captions 3M
(CC3M) and WebVid-2M Bain et al. (2021).

3.1.5 FROZEN-IN-TIME (FIT)

Frozen-in-time Bain et al. (2021) is a dual stream transformer model pre-trained on both image
data conceptual captions 3M (CC3M) and video data WebVid-2M. DistillBERT Sanh et al. (2019)
is used as the text encoder.

3.1.6 VIOLET

VIOLET Fu et al. (2021) is a multi-modal transformer model pre-trained end-to-end on YouTube
180M (YT180M) Zellers et al. (2021), conceptual captions 3M (CC3M) and WebVid-2M. The text
encoder follows the BERT architecture.

3.2 DATASETS

For our analysis, we use GLUE, Superglue and commonsense reasoning datasets such as SocialQA,
CosmosQA, WinoGrande, CODAH and HellaSwag. For all these datasets, we evaluate the models
on the dev data.

3.3 IMPLEMENTATION

For fair comparison between the vision supervised text models and vanilla text models, we pre-train
the vanilla text models with the text captions from the datasets used for large scale training of image-
text and video-text models. Now, the only difference between these models is the use of vision data.
We pre-train vanilla text models in the exact setup as vision-language models. We then fine-tune
both the vision supervised text models and vanilla text models on downstream tasks. For GLUE, the
maximum sentence length used is 200 and the models are trained for 5 epochs. In case of superglue,
250 is the maximum sentence length and the model are trained for 25 epochs. For commonsense
reasoning, the models are trained for 10 epochs and 300 is the maximum sentence length. Unless
otherwise stated, the results reported are the average of 5 runs.

4 RESULTS

Table 2 shows the results on GLUE benchmark. From the tables, it is evident that vanilla language
representations show superior performance compared to vision supervised language representations
on most of the tasks across all the models. The drop in performance is significant for NLI tasks
like MNLI and MNLI-mismatched (MNLI-mis). A similar trend is observed for sentence similarity
(QQP), sentiment classification (SST2), reading comprehension (MRPC), linguistic probe (CoLA)
and textual entailment (RTE). However, we see a huge improvement in performance for the Wino-
grad NLI (WNLI) task.

Table 3 illustrates the results on superglue benchmark. From the table, we observe that vision
supervised language representations under perform compared to vanilla language representations.
For the tasks question answering (BoolQ), word in context (WiC), discourse (CB) we see a huge
drop in performance. However, we see a significant improvement in performance for the casual
reasoning (COPA) task. It is worth-noting that the performance is same for both the vanilla and
vision supervised language representations on winograd schema challenge (WSC).

3



Table 2: Results on GLUE benchmark. MNLI-mis refers to the task MNLI mismatched and WNLI
denotes the Winograd Schema Challenge. We see that language representations learnt through vision
supervision under performs compared to vanilla language representations on all the tasks except
WNLI.

Model Type MNLI MNLI-mis QQP SST2 MRPC CoLA RTE WNLI

ALBEF
Text 82.77 82.68 90.54 91.44 72.81 81.50 58.12 46.01
Image-text 61.38 61.68 79.02 80.39 66.49 69.13 50.30 56.34

BLIP
Text 83.04 82.70 90.54 91.44 72.81 81.50 58.12 46.01
Image-text 61.38 61.68 79.02 80.39 66.49 69.13 50.30 56.34

METER
Text 86.59 86.15 90.99 93.27 76.06 82.58 64.02 56.34
Image-text 31.82 31.82 77.91 81.12 66.49 69.13 47.29 56.34

ALPRO
Text 82.96 82.81 90.64 92.05 70.96 79.93 60.41 45.07
Video-text 62.53 63.26 79.35 80.96 66.49 69.13 54.39 56.34

FiT
Text 79.10 80.23 89.51 52.03 72.58 69.13 57.28 48.83
Video-text 59.54 59.45 79.01 52.18 66.78 69.13 48.01 56.34

VIOLET
Text 83.19 83.59 90.68 92.74 71.92 81.66 59.93 52.58
Video-text 61.38 61.68 79.02 80.39 66.49 69.13 50.30 56.34

Table 3: Results on Superglue benchmark. WiC represents Word-in-Context, CB represents Com-
mitmentBank, COPA denotes Choice of Plausible Alternatives and WSC means The Winograd
Schema Challenge.

Model Type BoolQ WiC CB COPA WSC

ALBEF
Text 70.41 63.13 76.79 48.00 63.46
Image-text 63.30 55.02 63.93 51.60 63.46

BLIP
Text 70.41 63.13 76.43 48.00 63.46
Image-text 63.30 55.02 63.93 51.60 63.46

METER
Text 72.40 66.11 75.00 46.80 63.46
Image-text 66.87 53.98 69.64 50.80 63.46

ALPRO
Text 71.16 67.18 76.79 42.20 63.46
Video-text 65.17 53.17 62.50 50.60 62.50

FiT
Text 68.91 62.38 69.29 44.80 63.46
Video-text 64.69 53.20 70.71 53.80 63.46

VIOLET
Text 63.85 57.37 66.07 56.00 63.46
Video-text 63.44 54.11 63.93 52.60 63.46

Table 4: Results on Commonsense reasoning tasks.

Model Type SocialQA CosmosQA WinoGrande CODAH HellaSwag

ALBEF
Text 40.50 26.45 53.12 25.72 25.04
Image-text 33.47 25.24 49.57 25.72 24.48

BLIP
Text 52.27 25.72 56.88 26.02 25.24
Image-text 33.47 25.24 49.57 25.72 24.48

METER
Text 58.39 31.32 59.59 24.40 25.04
Image-text 33.47 25.00 49.57 25.72 24.48

ALPRO
Text 49.90 27.45 56.56 24.10 24.89
Video-text 33.96 25.70 50.28 25.72 24.48

FiT
Text 45.46 30.87 56.75 25.12 26.54
Video-text 33.35 25.77 50.33 24.52 24.59

VIOLET
Text 43.36 33.17 57.09 24.28 25.27
Video-text 33.47 25.24 49.57 25.72 24.48
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Table 4 demonstrates the results on commonsense reasoning datasets. As shown in the table, the
performance of vanilla language representations surpass vision supervised language representations.
There is a notable difference in performance on SocialQA, CosmosQA, WinoGrande and HellaSwag
commonsense tasks. However for the CODA dataset, we observe vision supervised language repre-
sentations outperform vanilla language representations for METER, ALPRO and VIOLET models.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper we comprehensively evaluated if the vision supervised language representations are
beneficial to the language. We experimented with three image-text models ALBEF, BLIP, METER
and three video-text models ALPRO, FiT, VIOLET on NLU benchmarks GLUE, superglue and
commonsense reasoning tasks. Our experiments showed that vanilla language representations sig-
nificantly outperform vision supervised language representations on most of the tasks. We believe
these findings can shed light on the future directions to improve the vision-language pre-training
that is beneficial to understanding the language.
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