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Abstract

Aligning image and text encoders from
scratch using contrastive learning requires
large amounts of paired image-text data. We
alleviate this need by aligning individually
pre-trained language and vision representa-
tion models using a much smaller amount
of paired data, augmented with a curriculum
learning algorithm to learn fine-grained vision-
language alignments. TOnICS (Training with
Ontology-Informed Contrastive Sampling)
initially samples minibatches whose image-
text pairs contain a wide variety of objects
to learn object-level alignment, and progres-
sively samples minibatches where all image-
text pairs contain the same object to learn finer-
grained contextual alignment. Aligning pre-
trained BERT and VinVL models to each other
using TOnICS outperforms CLIP on down-
stream zero-shot image retrieval while using
less than 1% as much training data.

1 Introduction

Aligned representations for language and vision—
which encode texts and corresponding images in a
common latent space—are necessary to perform ef-
fective cross-modal retrieval. CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) train individ-
ual text and image encoders from scratch to pro-
duce aligned image-text representations. Their en-
coders demonstrate strong cross-modal alignment,
evidenced by strong performance on zero-shot re-
trieval tasks. However, these models were trained
on proprietary datasets of 400M and 1B image-text
pairs respectively, on hundreds of GPUs and TPUs,
which is infeasible for non-industry practitioners.

CLIP and ALIGN align their encoders using the
contrastive InfoNCE objective (Oord et al., 2018),
which seeks to maximize the mutual information
between image and text representations. In the In-
foNCE objective, the model must correctly identify
the positive image-text pair from among a set of
negatives formed by the other minibatch pairs.
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Figure 1: We propose TOnICS, a curriculum learning
algorithm for contrastive alignment of language and vi-
sion encoders.

Since samples within a minibatch act as negative
samples for each other in the InfoNCE objective,
the minibatch determines the granularity of align-
ment that is learned. Minibatches constructed by
random sampling contain a large variety of objects
in the images and texts (Figure 1, top). To cor-
rectly match a dog-related caption to its image,
it is sufficient to identify that the retrieved image
must contain a dog, since the vast majority of ran-
domly sampled negative images will not contain
a dog. Thus, random minibatch sampling reduces
the contrastive task to object-matching, for which
object-level vision-language alignment suffices.

When minibatches are sampled such that the
images contain the same objects, object-level align-
ments no longer suffice (Figure 1, bottom). The
contrastive task can no longer be solved by identi-
fying that the retrieved image must contain a dog,
since all the negative images will also have a dog.
The model must produce language and vision rep-
resentations that encode shared context-level infor-
mation, resulting in a finer-grained alignment.
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In this work, rather than training our image and
text encoders from scratch, we leverage rich single-
modality pre-trained models—BERT (Devlin et al.,
2019) for language, VinVL (Zhang et al., 2021)1

for vision—and align them to each other using
the InfoNCE contrastive objective. We perform
the vision-language alignment using TOnICS, a
novel ontology-based curriculum learning algo-
rithm. TOnICS initiates training with an easy con-
trastive task by sampling minibatches randomly
and progressively makes the contrastive task harder
by constructing minibatches containing the same
object class in the image and text inputs. We show
that our learned representations have strong cross-
modal alignment—outperforming CLIP on zero-
shot Flickr30K image retrieval—while using less
than 1% as much paired image-text training data.

2 Contrastive Vision-Language
Alignment

We align language representations from BERT (De-
vlin et al., 2019) and visual representations from
a VinVL object detector (Zhang et al., 2021).
Our BERT-VinVL Aligner model is similar to the
phrase grounding model from Gupta et al. (2020).

At every training step, the input to the model
is a minibatch of NB triplets, where each triplet
Xi = {ti, vi, w} comes from an image-text pair.
Each image caption ti is encoded using BERT. The
caption contains a noun w, whose word representa-
tion is denoted as hi. For the corresponding image,
vi is a set of region features extracted from a frozen
pre-trained VinVL object detector.2 We add a learn-
able linear projection atop these region features.

In the cross-modal interaction, we employ a
single Transformer (Vaswani et al., 2017) layer
that uses i-th noun representation hi as the query
and j-th image features vi as the keys and values.
This layer outputs a visual representation vatt(i, j),
which is an attended representation of the j-th im-
age, conditioned on the noun from the i-th caption.
We then compute a dot product between the i-th
noun representation hi and the attended represen-
tation of j-th image vatt(i, j) to get an image-text
score s(i, j) = φ(hi, vatt(i, j)) (Figure 2).

To align the noun representation hi to its corre-
sponding image vi, we use the InfoNCE loss (Oord
et al., 2018) which maximizes a lower bound of

1We use VinVL to refer to their pre-trained object detector.
2Region features provided at https://github.com/

pzzhang/VinVL/blob/main/DOWNLOAD.md
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Figure 2: Our BERT-VinVL Aligner model scores ev-
ery image-text combination (ti, vj) in the minibatch.

the mutual information between hi and vatt(i, i).
InfoNCE minimizes the cross-entropy of correctly
retrieving an image vi from the set of all minibatch
images, given the query noun representation hi,
with other instances in the minibatch acting as neg-
ative samples. We refer to the objective in this
setup as the image retrieval loss, LIR:

LIR(i) = − log
exp(s(i, i))∑NB
j=1 exp(s(i, j))

The training loss LIR is the mean loss LIR(i) over
all images i = {1...NB} in the minibatch B. We
also similarly define a text retrieval loss, LTR,
where the image vi is used to retrieve the correct
noun representation hi:

LTR(i) = − log
exp(s(i, i))∑NB
j=1 exp(s(j, i))

We experiment with training our model using
just the image retrieval loss LIR, as well as the
sum of the two losses LIR + LTR.

3 TOnICS: Training with Ontology
Informed Contrastive Sampling

As noted above, negative samples for the con-
trastive learning objective come from other pairs
in the minibatch. Therefore, the minibatch sam-
pling itself influences the alignment learned by the
model. We hypothesize that sampling minibatches
randomly will yield object-level alignments, while
sampling harder minibatches containing the same
object in the image may result in fine-grained con-
textual alignments.

We introduce TOnICS, Training with Ontology-
Informed Contrastive Sampling (Figure 3), a cur-
riculum learning algorithm that initially seeks to
align vision and language representations at the
object level, and later learns contextual alignments.

https://github.com/pzzhang/VinVL/blob/main/DOWNLOAD.md
https://github.com/pzzhang/VinVL/blob/main/DOWNLOAD.md
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Figure 3: TOnICS selects image-text pairs for the minibatch by first sampling a node η from an ontology, according
to a distribution PS(η). Sampling the root entity node yields easy minibatches containing pairs with a variety of
objects, whereas sampling one of its children object nodes yields harder minibatches containing pairs sharing a
common object, such as apple or dog, in a variety of contexts (left). TOnICS performs curriculum learning by
moving node sampling mass away from the root entity node to the object nodes as training progresses (right).

TOnICS initiates the training by generating mini-
batches with randomly sampled image-text-noun
triplets. As training progresses, TOnICS samples
harder minibatches whose instances share the same
object class in the image.

Ontology Construction We begin by extracting
object detections from our training images using
the pre-trained VinVL model. We next map each
noun in the training data to an object class, wher-
ever possible, resulting in a set of object classes Θ.
Every object class o ∈ Θ has a corresponding set
of nouns w(o). For instance, the object class dog’s
noun set w(o) = {dog, dogs, puppy}.

We construct the ontology (Figure 3, left), which
contains an entity root node and its children object
nodes ηo, each corresponding to an object class o.
Every object node ηo has a corresponding set of
triplet instances X(ηo), a subset of the full training
dataset whose triplet instances all contain the same
object class o in the image, and all containing a
noun from the noun set w(o) in the caption.

TOnICS Minibatch Sampling At every train-
ing step, TOnICS proceeds in two stages. First,
a node η is sampled from the ontology, according
to a sampling probability distribution PS(η). Sec-
ond, we sample a minibatch according to the node
that was just sampled. If we sample the entity node
ηe, we sample the minibatch by sampling NB in-
stances from the full training data at random. If we
sample an object node ηo, we sample NB instances
from the corresponding set X(ηo), ensuring the
minibatch contains images with the same object.

TOnICS Curriculum Refresh The curriculum
is formed by varying the nodes’ sampling probabil-
ity distribution throughout training. We initialize
training by setting PS(ηe) = 1 and PS(ηo) = 0 for

all object nodes. After every fixed number of train-
ing steps, we evaluate the model’s image retrieval
performance on a set of 100 held-out instances. If
the held-out retrieval accuracy is greater than a cer-
tain threshold, we say that the model has learned
the object-level alignment task, and we can start
introducing harder minibatches in the training by
refreshing the curriculum. The refresh step is per-
formed by multiplying the entity node’s current
sampling probability PS(ηe) by a factor α;α < 1.
The remaining probability mass (1− α)× PS(ηe)
is distributed among the object nodes. For each
object node ηo, we update its sampling probability:

PS(ηo) = PS(ηo) + (1− α)PS(ηe)×
|X(ηo)|∑
|X(ηo)|

.

Object classes that are more common in the train-
ing data have more sampling probability mass dis-
tributed to their object node ηo, by weighting mass
according to the size of the node’s instance set,
|X(ηo)|. With each curriculum refresh, sampling
mass is pushed down from the entity node to the ob-
ject nodes, as long as PS(ηe) does not fall below a
fixed threshold β. Thresholding PS(ηe) ensures the
model still sees random minibatches and does not
forget the initially learned object-level alignments.

4 Experiment Details

We train our BERT-VinVL model on MS-COCO
and Conceptual Captions. We compare our model
against CLIP on downstream retrieval tasks.

4.1 Training Data and Ontology
We train our model on image-text pairs from a
combination of MS-COCO (Chen et al., 2015) and
Conceptual Captions (Sharma et al., 2018). Our
triplet instances only contain nouns which we wish



Minibatch
Sampling
Method

Zero-Shot Flickr30K MS-COCO
# Image-
Text Pairs

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
Model LTR R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CLIP-ViT-B/32 400M Random - 58.66 83.38 79.2 95 30.45 56.02 50.12 75.02

BERT-VinVL
Aligner

2.84M Random 7 58.18 84.24 22.2 47.9 42.67 74.43 15.5 37.7
2.84M TOnICS 7 60.32 85.14 24.4 49 47.94 77.38 16.1 35.1
2.84M Random 3 58.9 84.6 76.1 93.3 42.74 74.37 59.84 86.46
2.84M TOnICS 3 59.7 85.24 76.6 94.1 48.26 77.87 65.44 89.36

Table 1: Results of our BERT-VinVL Aligner model on image and text retrieval, compared to a CLIP model.
Numbers in bold represent the best results among our model and CLIP.

to explicitly align with the visual modality. Each
noun in the training data is initially mapped to the
object class with maximum noun-object PMI, cal-
culated over training pairs with object detections,
and then adjusted by hand to correct erroneous
mappings. Object classes containing fewer than
5000 instances in the training dataset are filtered
out. This finally results in a set of 406 nouns, each
noun corresponding to one of the 244 object cate-
gories Θ. For every image-text pair in the original
training dataset, we create one triplet for each noun
in our set of 406 nouns that the text contains.

Our final training data consists of 5.8M triplet
instances corresponding to 2.84M image-text pairs
(2.26M from Conceptual Captions, 580K from MS-
COCO) from 2.4M unique images. The ontology
for TOnICS is constructed by creating an object
node for each of the 244 object categories, which
are children of the root entity node.

4.2 Implementation Details

We use pre-trained BERT-base as our text encoder.
For our image encoder, we use VinVL, a pre-
trained object detector that detects regions of inter-
est (ROIs) in the image and outputs pooled CNN
features for all ROIs. We use pre-extracted ROI fea-
tures and treat the VinVL encoder as frozen, as we
cannot backpropagate through the object detector.

All our models are trained for 500K iterations
with a batch size of NB = 256, yielding 255 nega-
tive pairs for every positive pair. Each model was
trained on a single V100 GPU for 6 days, compared
to CLIP which used 256 V100 GPUs for 12 days.

After every 5K iterations, we evaluate retrieval
over a set of held-out instances and perform a cur-
riculum refresh step if the held-out accuracy is at
least 90%. When performing a refresh step, we
retain α = 90% of entity’s sampling probability, so
long as the probability does not fall below β = 0.2.

4.3 Baselines and Evaluation

To compare the effect of using pre-trained uni-
modal encoders at the start of the alignment pro-
cess, we compare our model against CLIP (Rad-
ford et al., 2021). CLIP also uses separate image
and text encoders, aligned using a contrastive loss
with image-text data. Unlike our BERT-VinVL
Aligner model, CLIP trains the two encoders from
scratch, and uses significantly more paired image-
text data—400M pairs, compared to our 2.84M
pairs. Since we use the base variant of BERT, we
compare against the CLIP-ViT-B/32 variant.3 We
do not compare against ALIGN as they have not
released their base model checkpoint.

To evaluate the utility of our TOnICS algorithm,
we also train our BERT-VinVL Aligner using a
Random minibatch sampling baseline, where the
minibatch instances are always randomly sampled
throughout the training process.

We directly evaluate our trained Aligner model’s
(as well as pre-trained CLIP) on image and text re-
trieval. Specifically, we perform zero-shot retrieval
on the test set of Flickr30K (Plummer et al., 2015),
which contains 1,000 images. We also perform re-
trieval evaluation on the MS-COCO test set, which
contains 5,000 images. This latter evaluation is not
zero-shot since our training data contains images
from the MS-COCO train set. We compare the
Recall@1 and Recall@5 of all models.

5 Results and Discussion

In Table 1, we directly transfer both our trained
BERT-VinVL Aligner model and pre-trained CLIP
to the downstream task of image and text retrieval.
Since our models are trained using retrieval objec-
tives, we perform the retrieval evaluation using the
same setup as training.

3Checkpoint provided at https://huggingface.
co/openai

https://huggingface.co/openai
https://huggingface.co/openai


The Flickr30K evaluation is zero-shot for both
CLIP and our BERT-VinVL Aligner model since
neither model’s training data contains images from
the Flickr30K train set. We see that even with
the Random minibatch sampling and only the im-
age retrieval loss, LIR, our BERT-VinVL Aligner
achieves approximately the same image retrieval
performance as CLIP. When the Aligner is trained
with our TOnICS curriculum learning algorithm,
we get a 1.5% improvement on R@1 over CLIP.

However, this model fails to do well at the text
retrieval task. Adding the text retrieval loss LTR

leads to substantial improvements in downstream
text retrieval, with the Random baseline perform-
ing only 3% worse than CLIP. We further see that
training with TOnICS leads to only slight improve-
ments in Flickr30K text retrieval. Adding the text
retrieval loss slightly hurts image retrieval perfor-
mance, but still does better than CLIP by 1%.

Since our model, unlike CLIP, includes MS-
COCO training images in the training data, it sig-
nificantly outperforms CLIP on the MS-COCO
retrieval evaluation. Hence, we compare our
TOnICS algorithm to the Random baseline on the
MS-COCO evaluation. We see that TOnICS leads
to significant improvements in image retrieval (>
5%), both when the text contrastive loss is and isn’t
used. We once again see that the text retrieval per-
formance is very poor without the text retrieval ob-
jective during training, but improves significantly
with it. TOnICS results in a 5% improvement over
the Random baseline in text retrieval as well.

Minibatch sampling with TOnICS results in
large gains in in-distribution retrieval evaluation
(MS-COCO) as well as small improvements in
zero-shot retrieval (Flickr30K). Training BERT-
VinVL with TOnICS yields better zero-shot im-
age retrieval performance than CLIP, even with
substantially less training data.

6 Conclusions and Future Work

In this work, we align individually pre-trained lan-
guage and vision encoders—BERT and VinVL,
respectively—using a novel curriculum learning
algorithm called TOnICS. Our aligned model is
able to achieve better downstream zero-shot image
retrieval performance than CLIP, in spite of be-
ing trained with less than 1% as many image-text
training pairs. We further show that our TOnICS
algorithm leads to gains in both in-domain and
zero-shot retrieval tasks.
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