
Learning from One Continuous Video Stream

João Carreira1†, Michael King1†, Viorica Pătrăucean1†, Dilara Gokay1†, Cătălin Ionescu1†,
Yi Yang†, Daniel Zoran†, Joseph Heyward†, Carl Doersch†, Yusuf Aytar†,

Dima Damen†‡, Andrew Zisserman†♢

†Google DeepMind, ‡University of Bristol, ♢University of Oxford

Corresponding author: joaoluis@google.com, 1core contributor

Abstract

We introduce a framework for online learning from a
single continuous video stream – the way people and an-
imals learn, without mini-batches, data augmentation or
shuffling. This poses great challenges given the high corre-
lation between consecutive video frames and there is very
little prior work on it. Our framework allows us to do
a first deep dive into the topic and includes a collection
of streams and tasks composed from two existing video
datasets, plus methodology for performance evaluation that
considers both adaptation and generalization. We employ
pixel-to-pixel modelling as a practical and flexible way to
switch between pre-training and single-stream evaluation
as well as between arbitrary tasks, without ever requiring
changes to models and always using the same pixel loss.
Equipped with this framework we obtained large single-
stream learning gains from pre-training with a novel family
of future prediction tasks, found that momentum hurts, and
that the pace of weight updates matters. The combination
of these insights leads to matching the performance of IID
learning with batch size 1, when using the same architecture
and without costly replay buffers. An overview of the paper
is available online at https://sites.google.com/
view/one-stream-video.

1. Introduction

Humans gather knowledge about themselves and the world
through a continuous stream of observations, from their
early days as infants. Some experiences are seen once in
a lifetime while others are daily repeats. With time, famil-
iarity with environments, objects and experiences form a
base to our knowledge, and memory maintains the most im-
portant experiences from our ever-further past. Learning
successfully adapts to the current surroundings so we can
make better predictions over time, while leading to gener-
alization to unseen environments. Despite the naturalness

of this approach of learning for humans, video understand-
ing approaches have rarely attempted a similar regime.

Figure 1. Top: We introduce a framework for studying continuous
learning in a single video stream. This is a natural yet unstudied
problem, different from standard independent and identically dis-
tributed (IID) learning in video where batches contain clips from
random videos in a random order. Bottom: We propose pixel-
to-pixel models to evaluate our approach across prediction tasks
(prediction of future frames, depth, segmentation). We measure
both adaptation to the video stream – the model here updates its
weights (learns) continuously to improve prediction – as well as
generalization to out-of-stream clips – the model being adapted
on the first stream is now evaluated on a different held-out stream
without being allowed to adapt to it. We propose to maximize both
adaptation and generalization.

The most related fields are continual and lifelong learn-
ing, but these are still deeply fractured – no single problem
formulation or benchmark is widely accepted. They also
mostly focus on simplifications of the problem relative to

ar
X

iv
:2

31
2.

00
59

8v
2 

 [
cs

.C
V

] 
 2

8 
M

ar
 2

02
4

https://sites.google.com/view/one-stream-video
https://sites.google.com/view/one-stream-video


Figure 2. UNet training on ScanNet-stream for the semantic seg-
mentation task. Left: The cosine similarity of consecutive gradi-
ents is normally distributed when training on IID data, but shows
very strong correlations when training on a continuous video
stream. Right: This is reflected in poor training performance. See
the appendix for similar figures for Ego4D-stream.

human and animal experience, for example a popular task
is learning one ImageNet class at a time and minimizing
forgetting of previous classes [38].

But what happens if we attempt to learn continuously
from a single video stream (Figure 1), meaning batch size 1
and high frame rate (e.g. 25 fps)? We do not see thousands
of dogs per second, unlike the standard ImageNet setting,
where images of even a same dog breed are quite uncorre-
lated at several scales – capturing a wide diversity of edges,
textures, etc. Standard deep learning approaches lead to
smooth optimization there, but it is very different from the
setting of learning from a single video stream, where things
happen slowly, at much longer timescales, with great cor-
relation or even no change between frames for periods of
time; see Figure 2. Do standard deep learning tools work in
this setting? This is currently unknown territory, with very
few attempts touching it at all [33] – and it is the focus of
this paper.

We are interested in this problem because models should
be able to adapt after deployment to their environment,
hence receiving a single stream of information. This is
needed for embodied intelligence (robotics), but also for
any type of digital assistant that we would want to be able
to adapt to a specific user’s needs.

A framework. We lay out a framework for learning from a
single video stream, focusing on the entry-level problem of
... learning. Nevermind forgetting, can the models even
learn in the first place? We study how successful learn-
ing is for different optimization settings, models, pretrain-
ing methods and tasks, when done from a single continuous
stream. Our methodology follows the following principles:

• We consider future prediction tasks including pixels-to-
pixels, pixels-to-segmentation and pixels-to-depth, all in
RGB space (i.e. outputs are always 3 dimensional and
with the same shape as the input frames). This way we do
not need to change any parameter in the model between
pretraining and single-stream learning, independently of
what tasks are used in each. It enables using a simple L2
loss between pixel values in all cases.

• We evaluate performance in two ways - in-stream, and

out-of-stream. In-stream measures performance on the
input video stream. For sufficiently difficult prediction
tasks this should be enough. However, it conflates rep-
resentation quality with adaptation to the scene, lighting
condition, etc. For example if the lights in a scene are
turned off for an hour, a model can learn to always predict
black pixels – which is not ideal. To disentangle adapta-
tion and generalization, we also evaluate out-of-stream,
on a second stream on which the model does not learn.
We propose to maximize both.

Contributions. With this methodology in place, we identi-
fied the following new results:
• On the optimization front, we observe that momentum,

widely used in popular optimizers such as Adam, is un-
helpful in highly correlated video streams. Instead meth-
ods without momentum such as RMSprop are more ro-
bust.

• Another result is a trade-off between adaptation and gen-
eralization induced by frequency of weight updates –
slower leads to better generalization.

• We introduce a family of future prediction pretraining
tasks, learnt in the standard independent and identically
distributed (IID) setting, with large batches, and show that
these lead to better single-stream performance compared
to existing ImageNet pretraining tasks.

• We combine these results into a combo approach that we
call Baby Learning (BL), and compare it to a standard
deep learning setup (STDL) that uses Adam and Ima-
geNet MAE pretraining. We show that BL on a sequen-
tial stream matches STDL on out-of-stream generaliza-
tion when that same stream is permuted to be IID, while
achieving better performance in-stream thanks to adapta-
tion.

2. Related work

Online learning from a single video stream. One of
the few papers dealing with this problem [33] proposed
a minimum-redundancy “replay” buffer [27] to deal with
temporal correlations. Replay buffers are not the sexiest re-
search avenue for continual learning [41] and increase com-
putation proportionally to the size of the buffer used. Ad-
ditionally, in [33] performance on the video streams itself
was never evaluated, only on unrelated image classification
tasks. Test-time training is the next closest problem, such
as presented in TTTVS [45] (also related [48]). TTVS’s
motivation is to “improve inference quality” by leverag-
ing self-supervised test-time optimization. Our motivation
is to propose single-stream learning, which is reflected in
much longer streams (24h in this paper, compared to sec-
onds or few minutes). One challenge in single-stream learn-
ing is how to fully exploit available hardware parallelism in
a batch size 1 setting [6, 23, 24].



Learning from a single video. Also relevant are experi-
ments training ConvNets [21] or ViTs [8] on a single im-
age [1] or a long video [43]. While outside of the stream-
ing setting – using data shuffling, augmentation and large
batches, these papers showed that learning can be quite suc-
cessful in this setting (especially for the shallower layers),
which was quite encouraging.
Continual learning. The continual learning literature (e.g.
EWC [19]) tends to focus on learning a sequence of tasks,
the goal being to learn new tasks as fast as possible without
forgetting previous ones, such as in class incremental learn-
ing (e.g. iCarl [36]) and CLEAR [22]. Most relevant is on-
line continual learning, where models learn from a stream
of data, visited once. One challenge is model cheating by
exploiting labels in the data [15], or by learning spurious
features [46] that have limited generalisation power. Most
of the work in this area has been on collections of images,
rather than video.
Representation learning to the rescue. Recent contin-
ual learning papers reported that some of the challenges
of the problem are partially mitigated by using features
pretrained in IID settings [26, 35, 44]. Various pretrain-
ing strategies exist: self-distillation (e.g. BYOL [13],
BRaVe [37], DINO [4]), contrastive (CLIP [34], Video-
Moco [28], VITO [30]), and masked auto-encoding (e.g.
VideoMAE [42], TubeViT [31], AudioVisualMAE [11],
SiameseMAE [14], [2]). We investigate this aspect in our
setup.

3. The Framework

Overview. The following is repeated throughout a video
stream: a (potentially pretrained) model processes n frames
(a time step) from an input video stream, and predicts
frames for a future time step. Online (in-stream) perfor-
mance metrics as well as an L2 loss function are then
recorded by comparing predicted and target frames. Given
the loss, gradients are computed and the model weights are
updated by an optimizer. The target frames can come from
the input stream itself or from an associated stream (e.g. for
datasets having semantic segmentation or depth). In par-
allel with in-stream evaluation, we periodically assess per-
formance on a held-out stream (composed of clips from the
validation set of the dataset), to assess generalization.

3.1. Unified pixel-to-pixel modelling

We are interested in having a framework where switching
between arbitrary tasks requires no changes to models or
losses so we can abstract away decoder nd loss function de-
sign (large research areas) and focus on the single-stream
learning aspect. To achieve this we map all task target out-
puts to RGB space, so we can have a single pixel-to-pixel
model and a single simple L2 pixel loss.

Models. We use 2 different popular backbones for our
experiments: a UNet with self-attention in the bottleneck
layer [17] and ViT-L [8]. To enable motion understand-
ing, which is important for future prediction, we feed the
models n = 4 consecutive frames stacked along the chan-
nel dimension. We also have the models predict the same
number of frames, so 12 channels in total (4 frames times
3 channels, for RGB). For ViT we decode tokens to pixels
using a channel to space transformation: each token gets
mapped to an appropriate number of channels using a lin-
ear transformation, then gets reshaped into a patch (e.g. a
16x16 grid of 4x3 RGB channels). We provide details of the
models in the Appendix, but it is worth noting that the UNet
is considerably smaller at 8M parameters, compared to the
350M parameters of the ViT model. We always train the
UNet from scratch, whereas we explore various pretraining
schemes for ViT. To accommodate for the 12 input channels
we use, we inflate [5] the first layer of the ViT (replicate the
pretrained weights 4 times).

Memory. We did not explore explicit memory modules
such as memory banks, LSTM cells, or long context in this
paper, but we do think it should be very relevant going for-
ward. In all cases, the model “sees” only a time step of
frames and predicts another time step. Note however that
the model weights are updated as it goes through the video
stream – so both the weights and the optimizer (when state-
ful) provide some memory effects.
Replay buffer. We explored replay buffers [27], which
keep a large cache of previous examples, then form batches
by sampling from it. They have the disadvantage of increas-
ing computational cost significantly over operating with
batch size 1 (increases the theoretical computational cost
of learning K times, where K is the batch size).

3.2. Video streams and tasks

We do not know of public datasets having very long video
streams, for example days-long and beyond1, so we create
two different video streams: Ego4D-stream and ScanNet-
stream, by concatenating videos from, respectively, Ego4D
and ScanNet. We include Ego4D as it is large and has very
long videos, and ScanNet because it has dense semantic
segmentation and depth annotations, allowing us to experi-
ment with different tasks.

Ego4D-stream. We concatenate the raw (un-trimmed)
videos from the Ego4D dataset [12] to create a very long
video stream. We use ∼90% of the data to generate a train-
ing stream and ∼10% for the validation stream. The videos
in Ego4D were collected using a head or glass mounted
camera, capturing activities of daily life. We use this stream
for learning and evaluating future prediction in pixel space –
no annotations are employed. See Table 1 for more details.

1Other than Krishnacam [20], which is only 70 hours long.



Stream name # videos train # frames train # videos val # frames val Max. length Median length
Ego4D-stream 21,704 294M (3,265h) 2302 31M (348h) 1.95h 8.8 minutes
ScanNet-stream 1,199 1.8M (20h) 312 0.5M (5.7h) 5.5 minutes 1 minute

Table 1. The two streams we consider, formed out of Ego4D and ScanNet, together with properties of their original video clips.

ScanNet-stream. We use the videos from ScanNetV2 [7] to
define 3 different prediction tasks, of pixels, semantic seg-
mentation labels (40 classes) and depth. The availability of
these additional target streams makes it possible for us to
measure more explicitly higher-level understanding, which
may not be clear from pixel prediction alone. The videos
in this dataset were filmed with a camera navigating indoor
scenes with one or more rooms. See Table 1 for more de-
tails.

Tasks. Overall we consider the following tasks across the
two stream types: Ego4D-stream pixel prediction, ScanNet-
stream pixel, semantic segmentation and depth prediction.
The difficulty of most of these tasks can be controlled us-
ing a time displacement parameter ∆ – how many steps in
advance should the models predict. We consider 0, 1, and
4 time steps. A displacement of 0 only makes sense for se-
mantic tasks as otherwise it corresponds to auto-encoding,
which is easy. Note that this task is related to the near-future
accuracy metric proposed in [15] to measure (forward trans-
fer) adaptation in a more robust way.

RGB-fication. There is some hand design involved in map-
ping tasks into RGB space. For depth and semantic segmen-
tation we use standard color maps typical for those tasks
in ScanNet: the Viridis color map and the ScanNet label
color map, respectively. We provide details of these map-
pings in the Appendix. For computing metrics other than
the L2 pixel distance, we compute the nearest neighbor la-
bel / depth for each pixel color (e.g. a pixel’s color may not
correspond exactly to one of the semantic segmentation la-
bels, so we assume the predicted class is the label associated
with the nearest color on the color map).

3.3. Evaluation

Learning a video stream task with a continuously updated
model can be seen to decompose into: 1) discovering strong
features that are general, for example learning that certain
configuration of edges correspond to chair legs for semantic
segmentation (generalization), which is likely to happen
over long timescales. 2) by specializing to the particular
scene being seen in the video, e.g. learning that the chair is
the only red object in the scene and using redness to label
the chair pixels (adaptation), which can happen over short
timescales. Adaptation can be quite useful and lead to ef-
ficient visual mechanisms, but may not necessarily lead to
generalization. Dummy models that only e.g. exploit tem-
poral correlations in the target stream could misleadingly
appear to perform very well [15]; see Table 4, Blind model.

We propose to evaluate both aspects by computing a
score continuously in-stream, on the video stream task the
model is learning from, to measure adaptation. Separately
and periodically we compute the same score out-of-stream,
on a held-out stream with the optimizer disabled (out-of-
stream). We use the training sets of Ego4D and ScanNet to
do in-stream evaluation, and the validation sets for out-of-
stream evaluation.

Cumulative scores. Comparing single-stream learning
models and approaches can be difficult if done naively. On
the training stream, difficulty of the task may vary over
time, for example certain parts of a stream may be more un-
predictable due to camera motion or other factors, leading
to natural oscillations. On the generalization side we care
not just about performance at a particular moment in time,
but also how fast it ramps up as training on the sequential
video stream progresses. With this in mind, we use a global
score over the whole stream – we do this by averaging the
performance over 10,000 evenly-spaced points interpolated
from the steps in both in-stream and out-of-stream settings.

Task-specific evaluation. We evaluate pixel prediction
with average L2 pixelwise distance, the same that we use as
loss for training. For semantic segmentation we use mean
per-frame IoU and recall [3, 32] and depth using log relative
mean square error (logRMSE) [9]. For both segmentation
and depth we mask out pixels that were not annotated from
the evaluation and loss.

4. Generalized Future Prediction

One of the most promising directions for continual learn-
ing, as identified in prior work, is representation learning.
We are particularly interested in pixel-to-pixel approaches
keeping consistent with the overall proposed framework
where we never change neither the architecture nor the loss.
We propose a family of pretraining methods that generalize
future video prediction [40], and that follow a same pattern:
given one input video clip the model is trained to predict
a future clip from the same video (both clips are 4 frames
long). We consider three variants, illustrated in Fig. 3:

• The easiest one, Guided future prediction, replaces a few
patches from the input clip with patches in the same posi-
tion from the future clip, hence narrowing down the range
of possibilities.

• The intermediate one, Vanilla future prediction is just the
standard task of predicting the future.

• Masked future prediction is a variation of Masked Auto-



t+Δ

Guided future prediction

t

Vanilla future prediction

input targetprediction

t+Δt

input targetprediction

t+Δt

input targetprediction

Masked future prediction

Figure 3. Video pretraining tasks we consider, sorted from easiest to hardest, left to right – guided future prediction, vanilla future
prediction, and masked future prediction. Each column shows 4 consecutive frames vertically. For each method we show left-to-right:
input frames, predictions from the model, target frames. We use a displacement (∆) of 16 frames (0.64s) between input and target clips.

Encoding where the model must predict the future clip
based on a partial view of the current clip.
Guided future prediction is related to Siamese MAE [2,

14, 47], but simpler, requiring a single forward pass over
one model. Masked future prediction is related to video
MAE-type approaches [10, 42] but with a strict separation
between disjoint input and output clips, whereas in tradi-
tional video MAE there is a single clip that gets uniformly
corrupted as part of denoising auto-encoding.
Hyperparameters. There are two hyperparameters: the
fraction of guiding patches / masked patches and the shape
of these patches (we use a constant square shape in all ex-
periments). Vanilla future prediction is a special case of the
other two in the case where there is no masked nor guiding
patches. A general way to increase the difficulty of any of
the variants is to increase the displacement (∆) between the
input and the target clips.

5. Results
Our goal is to achieve similar (or better) learning efficiency
from a single continuous video stream as we expect from
the standard deep learning setting – using sequences of
batches of well shuffled examples. Here is a summary of
the main results of our experiments on learning from a con-
tinuous video stream:
• Momentum, widely used in optimizers such as Adam,

hurts performance in single-stream learning.
• Less frequent weight updates (e.g. every 2.5 seconds),

helps generalization while sacrificing some adaptation.
• Pretraining the models on IID data before single-stream

learning is quite impactful. While popular ImageNet-
based pretraining helps, we found future-prediction based
video pretraining to be vastly superior.

Figure 4. A sweep over commonly used optimizers. Those with-
out momentum are shown in blue and aid the models adaptability
considerably compared to the more commonly used Adam vari-
ants, which are shown in red.

We ran all in-stream learning for 24 hours of video, and
measured out-of-stream performance from regularly saved
checkpoints on 3h30 of video. Resolution was always
224x224.

5.1. Optimization

Starting from the standard optimizer used in nearly all deep
learning setups, Adam, we observed that it does not train
well with default parameters in the continuous video stream
setting compared to the IID setting; see Fig. 2, right. To
understand the differences between the two settings, we an-
alyzed the temporal correlation between consecutive gradi-
ents. We found that the norm and variance of the gradients
do not reveal strong differences. However, their orienta-
tion reveals strong correlations between pairs of consecutive
gradients in the continuous case; see Fig. 2, left, where we
plot the distribution of the cosine similarity between con-
secutive gradients in the continuous vs IID case.

To investigate the optimization further we performed
a large sweep over commonly used optimizers, shown in
Fig. 4. Results are averaged over 8 settings: 2 tasks



Figure 5. Reducing momentum with the AdamW optimizer helps
to recover some of the performance of RMSProp.

(Ego4D-stream and ScanNet-stream segmentation predic-
tion), 2 models (ViT and UNet) and 2 displacements (1
step and 4 steps). RMS Prop significantly outperformed the
more commonly used Adam variants.

Momentum hurts. To scrutinize the difference between
AdamW and RMSProp, we looked at the impact of momen-
tum. We found that lowering the momentum of the AdamW
optimizer recovered some of the performance of RMSProp
(as shown in Fig. 5). One possible explanation is that mo-
mentum exacerbates the problem of correlated consecutive
gradients (that differ from the underlying gradient of the
loss function over the whole stream) and makes the weights
accelerate too much in the wrong direction. We stick with
RMSProp for the rest of the paper, as it is more memory
efficient due to not using the average of past gradients.

Infrequent weight updates help generalization, hurt
adaptation. We also observed an interesting effect asso-
ciated to the frequency of weight updates: doing it less
frequently tends to benefit generalization at some cost to
adaptation (since the model cannot adapt as frequently or
as strongly to any particular time step). We found that up-
dating weights every 16 frames (or 0.64s) provided a de-
cent trade-off between adaptation and generalization across
models, tasks and datasets as shown in Tab. 2

Constant learning rate helps adaptation. We tested a
range of common learning rate schedules including con-
stant, linear, cosine and exponential decay, “1cycle” and co-
sine decay with restarts. The main finding was that decaying
learning rates over the course of training, in particular co-
sine decay with exponent 2.0, helps generalization but sig-
nificantly hurts adaptation as shown in Fig. 7. We therefore
used a constant learning rate, with a linear warmup period
of 1k steps, in our experiments.

Replay buffer batches can be small. We focus most of our
exploration on the case without replay buffers, but did check
what happens when we add a replay buffer to our very best
setting - which slows the experiment down proportionally

input

target

3h

3h20

3h40

4h

1 4 16 64aggregated steps

Figure 6. ScanNet-stream segmentation task generalization re-
sults on the exact same out-of-stream clip after different number of
hours of exposure to a same stream for 4 model runs. The models
differ only by the length of the interval between weight updates /
number of steps of gradient aggregation (horizontal axis). Mod-
els with less frequent updates tend to generalize better (rightmost
column), whereas models with more frequent updates tend to have
strong priors about which objects are currently in the scene, lead-
ing to hallucinations (leftmost 3 columns in this case).

Figure 7. In-stream and out-of-stream results for a learning rate
schedule using cosine decay with exponent 2.0 vs a constant learn-
ing rate (both with a linear warmup phase of 1k steps. The decay-
ing learning rate is able to generalise more quickly but at a signif-
icant cost to adaptation.

to the batch size employed. Over 11 hours of wall-clock
training on the ScanNet-stream segmentation task with pre-
diction displacement of 1 time step, an experiment with a
replay buffer containing 10,000 samples (circular writing,
random reading) and batch size 4 reached mean IoU only
2% superior to a model trained without replay buffer. Batch
size 16 did not improve over batch size 4 and we did not use
replay buffers in any other experiments.

5.2. Pretraining

For pretraining we did not learn from a single continu-
ous stream, but instead formed big well-shuffled batches of
1024 clips using 8x8 slices of TPU-v5-lite, used AdamW
and updated weights every step, for 150k steps. We pre-
trained on the Kinetics-700-2020 dataset [39], which is
composed of 10s clips. We found that initializing with the
ImageNet-MAE checkpoint led to much quicker optimiza-
tion, so used that in all cases. More details can be found in
the Appendix.

We pretrained ViT-L models on the future prediction
tasks from sec. 4 and monitored their representation learn-



n steps per update
Stream dataset model 1 4 16 64

In
Ego4D (↓)

UNet .036 .038 .037 .039
ViT .035 .037 .039 .047

Segm (↑)
UNet .420 .292 .211 .195
ViT .457 .395 .302 .232

Out-of
Ego4D (↓)

UNet .095 .051 .047 .042
ViT .076 .062 .046 .044

Segm (↑)
UNet .176 .179 .205 .183
ViT .251 .272 .280 .274

Table 2. Results on video streams from two datasets, two mod-
els, different numbers of steps per gradient update (horizontal),
and evaluated in-stream and out-of-stream, showing the impact of
accumulating gradients over multiple steps. Results are averaged
over 1 and 4 displacement steps. For Ego4D-stream we report av-
erage L2 pixelwise distance (lower is better), for ScanNet-stream
Segm we report mean per-frame IoU (higher is better). Bold marks
the best result for each model-stream pair.

Figure 8. Linear top-1 accuracy in Kinetics during pretraining
for different forms of future prediction tasks: Vanilla, Guided,
Masked, and different displacements. The longer the displace-
ment the better the accuracy is. Note that this is an online eval-
uation where the model only sees 4 frames (that for ”Masked”
and ”Guided” are distorted) hence performance is far below mod-
els evaluated on the whole 10s of video (250 frames), often with
plenty of test time augmentation, but the relative performance be-
tween the various curves is informative.

ing performance during training by adding a linear head to
the model just before the decoder (we use a stack of 4 self-
attention layers on top of the ViT-L encoder). For this moni-
toring, we employed a standard cross-entropy loss between
logits and ground truth labels in conjunction with a stop-
gradient so the supervision would not influence the back-
bone weights.

We experimented with different input-target clip tempo-
ral displacements and observed the interesting effect that
the longer the displacement the better the classification per-
formance is as shown in Fig. 8, even for masked future
prediction, which reduces to the popular Masked Auto-
encoding [16] when displacement is 0. Our experiments
suggest that 0 may be a sub-optimal choice. For the longest
displacement the best method for top-1 accuracy emerged
as Guided Future Prediction. The top result shown in the
plot also used fewer guiding patches, 5% instead of 10% –
we used this best model for the rest of our evaluations. We
show example video predictions for the various models on-
line at https://sites.google.com/view/one-
stream-video.

Table 3 has results on in/out-of-stream evaluation, show-
ing large benefits over ImageNet classification pretraining
and using no pretraining (training from scratch). ImageNet-
MAE also does considerably better than classification-
based pretraining. The same ViT-L architecture was used
in all cases.

5.3. IID vs Continuous Learning

We compare our best setup, which we call, for no particu-
larly technical reason, “Baby Learning” (BL), to a standard
deep learning setup (STDL). STDL uses AdamW with stan-
dard parameters (learning rate 1e-4, momentum b1 as 0.9),
with weight updates after each batch, the same ViT-L model
but with the popular ImageNet MAE checkpoint. We im-
plement the IID setting by sampling a sequence of random
time steps (and associated target time steps) from random
videos of the same base dataset. Note that while most ap-
proaches employ large batches, SGD with mini-batch size 1
is well known to work well [25] and is even said to general-
ize better than using large batches. We match the number of
frames that each method sees – namely for batch size > 1,
the total number of learning steps is reduced proportionally.

Dummy baseline. For reference, we also include a
dummy blind baseline, proposed in previous online learn-
ing works [15], which exploits the temporal correlations in
the target stream without seeing the input frames at all: this
”model” outputs the mean of the previously seen pixels at
the same locations for depth and pixel, and the most fre-
quent colors for segmentation, for the previous target. It
produces random performance for out-of-stream evaluation
where consecutive targets are unrelated2.

Results on all tasks are shown in Table 4. We show visual
results of a subset of these tasks in Fig. 9. It is visible that
our approach BL matches STDL with batch size 1 out-of-
stream while outperforming it in-stream. In fig. 11 in the
Appendix we also report results for STDL on a continuous
stream, which does not work at all, and for BL on an IID
stream which does best – this shows that there are still many
more improvements possible for learning from continuous
streams.

6. Conclusion
We have presented a different perspective on continual
learning by defining prediction tasks on a single very long
stream of video and by proposing evaluations that measure
both adaptation and generalization. We show that there is
a permanent tension between the two aspects, but that it
is possible to improve both by specializing the optimizer
(lowering momentum, increasing the number of gradient

2Another baseline that may be of interest is one that copies the previous
input frames instead of target frames – this could do well for both train and
eval for pixels, but poorly for segmentation and depth

https://sites.google.com/view/one-stream-video
https://sites.google.com/view/one-stream-video


Pretraining Checkpoint Ego4D (↓) ScanNet Depth (↓) ScanNet Segm (↑) ScanNet (↓)
None .074 / .105 1.969 / 2.163 .177 / .188 .083 / .083
ViT-L-I1K-CLS .043 / .048 1.821 / 2.040 .288 / .234 .040 / .042
ViT-L-I21K-CLS .042 / .048 1.735 / 2.013 .244 / .192 .039 / .040
ViT-L-I1K-MAE .040 / .044 1.806 / 2.045 .360 / .320 .037 / .038
Guided Future Prediction .036 / .043 1.622 / 1.990 .390 / .313 .032 / .034

Table 3. Table comparing performance of models pretrained on ImageNet-1K and 21K using MAE or classification, and models pretrained
on our video tasks in Kinetics. The results are averaged over two sets of experiments, with displacements of 1 and 4 time steps and are
shown in the format in-stream / out-of-stream.

input prediction target input prediction target input prediction target
Ego4D-stream ScanNet-stream Segm ScanNet-stream Depth

STDL-IID bs 1

BL-Cont. bs 1

Blind (dummy)

Figure 9. Future prediction results for video streams from Ego4D-stream, ScanNet-stream Segm, and ScanNet-stream Depth.

Ego4D (↓) ScanNet (↓) ScanNet Segm (↑) ScanNet Depth (↓)
displacement (∆) t+1 t+4 t+1 t+4 t+1 t+4 t+1 t+4
STDL (IID) bs 16 .023/.019 .060/0̇55 .014/0̇13 .042/.061 .495/.398 .382/.295 1.798/2.01 1.838/2.038
STDL (IID) bs 1 .019/.018 .057/.056 .010/.013 .051/.060 .376/.302 .276/.227 1.722/2.012 1.759/2.034
BL (Cont.) bs 1 .018/.021 .055/.066 .011/.012 .055/.061 .463/.312 .328/.241 1.595/2.038 1.655/2.097
Blind (dummy) .038 / - .086 / - .032/ - .109/ - .547/ - .307/ - 1.256 / - 1.649 / -

Table 4. Future prediction results for video streams from various datasets for two different temporal displacements (horizontal). We show
results for the standard deep learning approach (STDL) on IID data with batch size 16 and 1, and for our approach (BL) when using a
continuous video stream (Cont.). Two numbers are reported for every cell, corresponding to in-stream / out-of-stream performance. We
highlight which of the two batch size 1 approaches performs best for each number. The Blind (dummy) model exploits correlations in
the target stream which is available in-stream and used for learning, hence performs very well in-stream, but has random performance in
evaluation where the target stream is not available. This shows the necessity to measure both adaptation and generalization performance.

aggregation steps between weight updates) and by pretrain-
ing the model appropriately. Conversely, we show that just
using Adam with default parameters performs poorly on
single-stream learning, due to the large correlations in the
data. This makes the proposed setting different from popu-
lar ImageNet-based continual learning setups where batches
are employed, and the data is significantly uncorrelated -
for example in class-by-class learning, seeing different web
images of dogs will not break Adam the way consecutive
frames in a video does.

We admit that the motivation for the research direction
laid out in this paper may not be immediately crystal clear
to everyone, particularly in the context of the current re-
search landscape, that focuses on fitting larger and larger
models to the whole internet. We are motivated by a pos-
sible future where people have their models in physical de-
vices they carry around and train them via natural interac-

tion – by showing them the world from their perspective –
and teach them only the things that they believe the models
should be taught, similar to the way we teach children. It is
likely that such models, by not having to know everything,
can be smaller, more efficient, have fewer internet biases
and be more privacy-friendly.

Acknowledgments. We would like to thank Ross
Goroshin and Ali Eslami for reviewing the paper
and providing helpful comments, and Razvan Pas-
canu and Simon Osindero for insightful advice and
interesting pointers into the literature and background
work.

References
[1] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi.

A critical analysis of self-supervision, or what we can learn



from a single image. In International Conference on Learn-
ing Representations, 2020. 3

[2] Daniel Bear, Kevin T. Feigelis, Honglin Chen, Wanhee Lee,
Rahul Venkatesh, Klemen Kotar, Alex Durango, and Daniel
L. K. Yamins. Unifying (machine) vision via counterfactual
world modeling. ArXiv, abs/2306.01828, 2023. 3, 5

[3] Sergi Caelles, Jordi Pont-Tuset, Federico Perazzi, Alberto
Montes, Kevis-Kokitsi Maninis, and Luc Van Gool. The
2019 davis challenge on vos: Unsupervised multi-object seg-
mentation. arXiv, 2019. 4

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing Properties in Self-Supervised Vision Transformers. In
ICCV 2021 - International Conference on Computer Vision,
pages 1–21, Virtual, France, 2021. 3

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 3

[6] Joao Carreira, Viorica Patraucean, Laurent Mazare, Andrew
Zisserman, and Simon Osindero. Massively parallel video
networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 649–666, 2018. 2

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 4, 1

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3, 1

[9] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. Advances in neural information processing systems,
27, 2014. 4

[10] Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al.
Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946–35958,
2022. 5

[11] Mariana-Iuliana Georgescu, Eduardo Fonseca, Radu Tudor
Ionescu, Mario Lucic, Cordelia Schmid, and Anurag Arnab.
Audiovisual masked autoencoders. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 16144–16154, 2023. 3

[12] Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jack-
son Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel
Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Ku-
mar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael
Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao,
Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean
Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph
Feichtenhofer, Adriano Fragomeni, Qichen Fu, Christian
Fuegen, Abrham Gebreselasie, Cristina Gonzalez, James

Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo,
Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Lan-
dini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Man-
galam, Raghava Modhugu, Jonathan Munro, Tullie Mur-
rell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes,
Merey Ramazanova, Leda Sari, Kiran Somasundaram, Au-
drey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo,
Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo
Arbelaez, David Crandall, Dima Damen, Giovanni Maria
Farinella, Bernard Ghanem, Vamsi Krishna Ithapu, C. V.
Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard
Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg,
Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Tor-
ralba, Lorenzo Torresani, Mingfei Yan, and Jitendra Ma-
lik. Ego4d: Around the World in 3,000 Hours of Egocentric
Video. In IEEE/CVF Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 3

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent a new
approach to self-supervised learning. In Proceedings of the
34th International Conference on Neural Information Pro-
cessing Systems, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. 3

[14] Agrim Gupta, Jiajun Wu, Jia Deng, and Li Fei-Fei. Siamese
masked autoencoders, 2023. 3, 5

[15] Hasan Abed Al Kader Hammoud, Ameya Prabhu, Ser-Nam
Lim, Philip H. S. Torr, Adel Bibi, and Bernard Ghanem.
Rapid adaptation in online continual learning: Are we eval-
uating it right? In 2023 International Conference on Com-
puter Vision (ICCV), 2023. 3, 4, 7

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16000–
16009, 2022. 7

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Infor-
mation Processing Systems, pages 6840–6851. Curran Asso-
ciates, Inc., 2020. 3, 1

[18] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. 1

[19] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114:3521 – 3526, 2016. 3, 2

[20] Alexei A. Efros Krishna Kumar Singh, Kayvon Fatahalian.
Krishnacam: Using a longitudinal, single-person, egocentric
dataset for scene understanding tasks. In IEEE Winter Con-
ference on Applications of Computer Vision (WACV), 2016.
3

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-



nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
3

[22] Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The
clear benchmark: Continual learning on real-world imagery.
In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2021. 3

[23] Mateusz Malinowski, Grzegorz Swirszcz, Joao Carreira, and
Viorica Patraucean. Sideways: Depth-parallel training of
video models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11834–
11843, 2020. 2

[24] Mateusz Malinowski, Dimitrios Vytiniotis, Grzegorz
Swirszcz, Viorica Patraucean, and Joao Carreira. Gra-
dient forward-propagation for large-scale temporal video
modelling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
9249–9259, 2021. 2

[25] Dominic Masters and Carlo Luschi. Revisiting small
batch training for deep neural networks. arXiv preprint
arXiv:1804.07612, 2018. 7

[26] Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and
Emma Strubell. An empirical investigation of the role of pre-
training in lifelong learning. Journal of Machine Learning
Research, 24(214):1–50, 2023. 3

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostro-
vski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015. 2, 3

[28] Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei
Liu. Videomoco: Contrastive video representation learn-
ing with temporally adversarial examples. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11205–11214, 2021. 3

[29] pandas development team. pandas.dataframe.ewm. https:
//pandas.pydata.org/docs/reference/api/
pandas.DataFrame.ewm.html, Accessed: 2023-11-
24. Online documentation. 1

[30] Nikhil Parthasarathy, SM Ali Eslami, Joao Carreira, and
Olivier J Henaff. Self-supervised video pretraining yields
robust and more human-aligned visual representations. In
Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023. 3

[31] A. J. Piergiovanni, Weicheng Kuo, and Anelia Angelova. Re-
thinking video vits: Sparse video tubes for joint image and
video learning. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2023, Vancouver, BC,
Canada, June 17-24, 2023, pages 2214–2224. IEEE, 2023.
3

[32] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alexander Sorkine-Hornung, and Luc Van Gool.
The 2017 davis challenge on video object segmentation.
arXiv:1704.00675, 2017. 4

[33] Senthil Purushwalkam, Pedro Morgado, and Abhinav Gupta.
The challenges of continuous self-supervised learning. In

Computer Vision – ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXVI, page 702–721, Berlin, Heidelberg, 2022. Springer-
Verlag. 2

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 3

[35] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan
Dyer. Effect of scale on catastrophic forgetting in neural net-
works. In International Conference on Learning Represen-
tations, 2022. 3

[36] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. icarl: Incremental clas-
sifier and representation learning. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pages 5533–5542.
IEEE Computer Society, 2017. 3

[37] Adria Recasens, Pauline Luc, Jean-Baptiste Alayrac, Luyu
Wang, Florian Strub, Corentin Tallec, Mateusz Malinowski,
Viorica Patraucean, Florent Altché, Michal Valko, Jean-
Bastien Grill, Aaron Oord, and Andrew Zisserman. Broaden
your views for self-supervised video learning. pages 1235–
1245, 2021. 3

[38] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[39] Lucas Smaira, João Carreira, Eric Noland, Ellen Clancy,
Amy Wu, and Andrew Zisserman. A short note on the
kinetics-700-2020 human action dataset. arXiv preprint
arXiv:2010.10864, 2020. 6

[40] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-
nov. Unsupervised learning of video representations using
lstms. In International conference on machine learning,
pages 843–852. PMLR, 2015. 4

[41] Richard Sutton. Maintaining plasticity in deep continual
learning, 2022. Accessed 11 16, 2023. 2

[42] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked autoencoders are data-efficient learners
for self-supervised video pre-training. In Advances in Neural
Information Processing Systems, 2022. 3, 5

[43] Shashanka Venkataramanan, Mamshad Nayeem Rizve, João
Carreira, Yuki M. Asano, and Yannis Avrithis. Is imagenet
worth 1 video? learning strong image encoders from 1 long
unlabelled video. arXiv:2310.08584, 2023. 3

[44] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A
comprehensive survey of continual learning: Theory, method
and application, 2023. 3

[45] Renhao Wang, Yu Sun, Yossi Gandelsman, Xinlei Chen,
Alexei A Efros, and Xiaolong Wang. Test-time training on
video streams. arXiv preprint arXiv:2307.05014, 2023. 2

[46] Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and
Hongming Shan. Online prototype learning for online con-
tinual learning. In ICCV, 2023. 3

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html


[47] Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Ro-
main Brégier, Yohann Cabon, Vaibhav Arora, Leonid Ants-
feld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Re-
vaud. Croco: Self-supervised pre-training for 3d vision tasks
by cross-view completion. Advances in Neural Information
Processing Systems, 35:3502–3516, 2022. 5

[48] Jay Zhangjie Wu, David Junhao Zhang, Wynne Hsu,
Mengmi Zhang, and Mike Zheng Shou. Label-efficient on-
line continual object detection in streaming video, 2023. 2



Learning from One Continuous Video Stream

Supplementary Material

7. Overview
This section provides additional results that we could not fit
in the main paper, more details about the experiments, and
extra visualizations. It also discusses two negative results
we had along the way. See https://sites.google.
com/view/one-stream-video for videos of future
prediction pretraining and of ScanNet-stream training with
the best models from table 4, in sequential and IID cases.

7.1. Additional results

0 displacement results. We show results for predicting seg-
mentation and depth with no offset in time (the usual seman-
tic segmentation and depth estimation tasks), comparing the
strong standard deep learning (STDL) approach to our ap-
proach (baby learning, BL) on continuous streams and IID
data (Fig. 10). As expected, the standard deep learning ap-
proach performs very poorly on continuous streams. Our
approach improves the performance in this setting and ob-
tains outstanding performance in the IID setting, showing
the effectiveness of pre-training via guided future predic-
tion in both settings. Unless specified otherwise, plots are
shown with exponential smoothing, with α = 1e− 3, using
Pandas [29].

Performance over time in video. Fig.11 shows the aver-
age in-stream performance over 1 training run on sequential
data against the time spent in the video. This shows that the
model performance improves rapidly over the first minute
of each video it sees.

Disaggregated results. In the main body of the paper,
many of our results are aggregated over multiple models,
tasks and displacements so we can be more confident about
their generality. Here we include disaggregated results for
reference. Fig. 17 and Fig. 18 show the in-stream and out-
of-stream evaluation for the 2 different learning rate sched-
ules experimented with in Fig.7 separately for different
datasets, models, and displacements (these were aggregated
over in the main paper). Fig. 19 shows the training loss for
the different optimizers experimented with in Fig. 4 sep-
arately for different datasets, models, and displacements.
Fig. 20 and Fig. 21 show the in-stream and out-of-stream
evaluation for RMS Prop and AdamW with different lev-
els of momentum as in Fig.5, but separately across datasets,
models, and displacements.

7.2. Experimental details

Pretraining. We used the AdamW optimizer with learn-
ing rate 2e-4, weight decay of 0.05 and batch size 1024,

updating the weights every training step. We did 1000
steps of linear warmup and afterwards kept the learning
rate constant for 150k steps. We experimented with dif-
ferent temporal displacements for prediction, from 0.64s to
3.84s observing continuous improvement for all 3 objec-
tives (vanilla, guided and masked future prediction). Guid-
ance and masking are both implemented by splitting the in-
put frames into a regular grid of non-overlapping patches
and replacing a fixed percentage of them, respectively by
patches from the future or by gray. We replaced 5% and
10% of the patches for guiding (5% did better for longer
displacements and overall) and 50% or 75% of the patches
for masking (50% did better for longer displacements and
overall). 32x32 patches did best in both cases, compared to
16x16.

Models. Our ViT-L experiments used a standard model as
described in [8] except that we inflated (replicated 4 times)
the first layer when starting from ImageNet-pretrained
checkpoints, to be able to deal with the inputs being 4
frames stacked along the channel dimension (unlike in
training where ImageNet images had only 3 channels).

Our UNet experiments use a variant of the model de-
scribed in [17] processing at 4 resolutions, starting with
224x224. As in that paper, we use group norm through-
out. At each resolution we use 8 residual blocks and 64
channels. At the lowest resolution, 28x28, we apply a self
attention block with 4 heads.
Colormaps. Our models output predictions for all tasks in
RGB space. This is straightforward for the case of future
frame prediction, but for some tasks the outputs are origi-
nally defined in a different space. For example, for Scan-
Net semantic segmentation, outputs are traditionally repre-
sented by 40d one hot vectors. We map such spaces to RGB
using the typical colormaps used by the datasets in their
publications. For segmentation, we use the NYU40 col-
ormap, which was used for visualizing the classes in Scan-
Net [7]. To evaluate, because predicted RGB values may
not match exactly those corresponding to one label, we find
the nearest neighbor color in the colormap, based on L2 dis-
tance and assign that pixel the corresponding label. For the
depth task, we use a Viridis colormap from Matplotlib [18]
which is a perceptually uniform sequential colormap with
256 colors and is commonly used to visualize depth in pa-
pers. We proceed similarly to the segmentation mapping to
obtain the depth value from the rgb prediction. We assume
a maximum depth of 8 and scale it to 1 when colormapping,
then invert this normalization to find the predicted depth
value. The colormaps can be found in Figure 12.

https://sites.google.com/view/one-stream-video
https://sites.google.com/view/one-stream-video


Figure 10. In-stream and out-of-stream performance on segmentation and depth estimation (with no offset in time) comparing a strong
standard deep learning (STDL) approach, which uses an ImageNet-MAE checkpoint with batch size 1 and our approach (BL) when using a
continuous video stream (Cont.) or IID data. STDL fails completely when fed a continuous stream. Note that here, pretraining from MAE
is more closely aligned with the task than the video prediction pretraining objective we use, since displacement is 0 – segmentation and
depth align perfectly with the input frames. Yet, results suggest the video prediction objective leads to significant improvements. These
results also suggest that there is a need for new continual learning techniques for bridging the gap between learning from IID data and a
sequential stream (this becomes apparent when using the same strong pretrained model).

Figure 11. Left: In-stream Mean IoU plotted against time through
the video averaged over all videos in 1 training run on ScanNet-
stream segmentation. Right: The number of videos that ScanNet-
stream is composed of in training, with at least n minutes.

Figure 12. Colormaps that are used for mapping semantic labels
and depth to RGB. Viridis is used for depth estimation task and
NYU40 is used for segmentation.

7.3. Additional visualizations

Gradient correlations. As showed in the main paper for
the semantic segmentation task, Fig. 2, the cosine similar-
ity between consecutive gradients shows very strong cor-
relations when training from a continuous video stream as
opposed to training with IID data. We observed the same
trend when training on Ego4D for the task of future predic-
tion, although in this case the loss seems less impacted by
the correlations; see Fig. 13.

In-stream / out-of-stream performance plots for table 4.
Fig 14 and Fig. 15 show the in-stream and out-of-stream
evaluation curves corresponding to the results in Table 4
(Fig. 16 for version without any smoothing).

7.4. Negative results.

Other things we tried but were inconclusive or did not help:
• Elastic weight consolidation [19] is a well known contin-

Figure 13. UNet training on Ego4D-stream for the future pre-
diction task. Left: The cosine similarity of consecutive gradi-
ents is close to a normal distribution when training on IID data,
but shows very strong correlations when training on a continuous
video stream. Right: L2 loss.

ual learning technique that can be used in an online set-
ting by creating a new copy of the model weights period-
ically, then penalizing certain departures away from these
anchor weights afterwards. We implemented the simple
L2 version of the method also described in the original
paper. While this helped for methods like Adam with
default momentum, it did not provide additional benefit
once we moved to RMSprop.

• Augmentation – random crops + flips per step. We exper-
imented with data augmentation in an attempt to reduce
deviation from IID, but did not observe advantages over
a consistent augmentation for the whole video within a
video stream. This was surprising and perhaps could be
achieved by using more aggressive augmentation. We ex-
perimented with this only for semantic segmentation with
time displacement of 0 (present prediction), as doing this
for future prediction would require feeding in augmenta-
tion parameters to the model (otherwise the model could
not possibly predict the target pixels, since the augmenta-
tion is random).



Figure 14. In-stream performance of a strong standard deep learning (STDL) approach with batch size 1 or 16 on IID data, and our
approach (BL) when using a continuous video stream (Cont.).

Figure 15. Out-of-stream performance of a strong standard deep learning (STDL) approach with batch size 1 or 16 on IID data, and our
approach (BL) when using a continuous video stream (Cont.).

Figure 16. Same as Fig.15 but with no smoothing.



Figure 17. In-stream performance of 2 different learning rate schedules across 2 datasets, 2 displacements and 2 models. Our approach BL
on a continuous stream is generally better than baseline STDL on an IID stream, for same batch size 1.

Figure 18. Out-of-stream performance of 2 different learning rate schedules across 2 datasets, 2 displacements and 2 models. Our approach
BL on a continuous stream is competitive with STDL on an IID stream for the same batch size 1. It does fail badly for Ego4d with large
displacement, but is better on ScanNet segmentation.

Figure 19. Training loss of different optimizers across 2 datasets, 2 displacements and 2 models.

Figure 20. In-stream performance of RMSProp and AdamW with different levels of momentum across 2 datasets, 2 displacements and 2
models.



Figure 21. Out-of-stream performance of RMSProp and AdamW with different levels of momentum across 2 datasets, 2 displacements
and 2 models.


	. Introduction
	. Related work
	. The Framework
	. Unified pixel-to-pixel modelling
	. Video streams and tasks
	. Evaluation

	. Generalized Future Prediction
	. Results
	. Optimization
	. Pretraining
	. IID vs Continuous Learning

	. Conclusion
	. Overview
	. Additional results
	. Experimental details
	. Additional visualizations
	. Negative results.


