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Abstract

We present a new method of fitting an element-free vol-
umetric model to a sequence of deforming surfaces of a
moving object. Given a sequence of visual hulls, we iter-
atively fit an element-free elastic model to the visual hull
in order to extract the optimal pose of the captured vol-
ume. The fitting of the volumetric model is acheived by min-
imizing a combination of elastic potential energy, a surface
distance measure, and a self-intersection penalty for each
frame. A unique aspect of our work is that the model is
mesh free – since the model is represented as a point cloud,
it is easy to construct, manipulate and update the model
as needed. Additionally, linear elasicity with rotation com-
pensation makes it possible to handle local deformations
and large rotations of body parts much more efficiently than
other volume fitting approaches. Our experimental results
for volume fitting and capture in a multi-view camera set-
ting demonstrate the robustness of element-free elastic mod-
els against noise and self-occlusions.

1. Introduction

Silhouettes provide rich information about the shape of
an objects. Silhouettes from multiple viewpoints can be
combined to reconstruct a 3D shape and can also capture
the motion of the shape over time. There is a rich body
of work in this area, starting from the visual hull recon-
struction from different viewpoints [16, 19]. Many exten-
sions have since been proposed to aid in this reconstruction
which include utilizing color information [17, 26], using se-
quence of silhouettes from rigid motion [7, 27], relying on a
skeletal structure [4, 9] and reconstructing shape and motion
from silhouettes from non-rigid motions of articulated body
[6, 15]. However, accurate, efficient and robust reconstruc-
tion of moving 3D shapes still remains a difficult problem.
One reason for this is that volume reconstruction methods
are limited in their ability to deal with large motions, and

most of the existing approaches require a pre-defined mesh
representation.

We begin by calculating silhouettes from the videos from
several calibrated camera. We present a new method of fit-
ting a volumetric model to a sequence of deforming surfaces
that are created from these silhouettes. Our approach relies
on using anelement-free elastic modelwith rotation com-
pensation. Our iterative fitting approach makes it possible
to capture local deformations on the surface and large ro-
tations of body parts which are common in the motions of
articulated body. This point-based model provides a gen-
eral framework for volume fitting and capture that can be
applied to any rigid, non-rigid, or articulated object without
any prior knowledge. Our contributions include

• introduction of an element-free model for volume fit-
ting, which provides a mesh-free and data-driven fit-
ting model

• a new formulation of linear elasticity with rotation
compensation for the element-free model

• a new iterative fitting approach that minimizes a com-
bination of an elastic potential energy, a surface dis-
tance measure and a self-intersection penalty.

Our experimental results demonstrate the robustness
of our element-free elastic model against noise and self-
occlusions that are common in the visual hulls of articulated
objects.

1.1. Related Work

Several researchers have extended the Shape-From-
Silhouette (SFS) approach to temporal volume sequences of
an articulated body such as the motions of a human. Color
information has been successfully incorporated with SFS to
build temporal correspondences and capture the motion.

Cheunget al. [6] uses visual hull alignment technique
and kinetic information to reconstruct the shape and mo-
tion from the volume sequence of a human body. Their
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“temporal SFS” utilizes the consistency of color, assuming
a Lambertian surface. The acquisition of kinematic infor-
mation still remains a challenge since their process is more
aboutmeasuringthan automaticestimation, requiring prior
knowledge and cooperation of the subject.

Chu et al. [9] and Brostowet al. [4] use a skeletal rep-
resentation of each frame in the volume sequence to build
an temporal correspondence and capture the motion of an
articulated body. Even though 1D skeletons simplify the
creation of a mapping from one frame to another, most de-
tail geometric information of the silhouettes is lost in the
skeletal representation. Furthermore, there are objects that
cannot be described by a 1D skeleton because their ‘princi-
pal components’ are 2D manifolds.

Kehl et al. [15] use a template model of human skin and
skeletons to track human motion. Their fitting approach is
based on gradient descent for an objective function defined
as the sum of distances between model and the observed
surface. Stochastic sampling is used to speed up the com-
putation. Since their goal is to find the optimal configura-
tion of the skeleton of a generalized model, all the subject-
specific features and geometric details on the surface are
lost.

To the best of our knowledge, all the previous work on
the reconstruction of 3D shape and motion from a volume
sequence used segmentation and/or skeletal information of
the model to deal with large rotations of body parts. This
means that they assume prior knowledge of a skeletal struc-
ture or they have to estimate it somehow. Furthermore,
purely skeleton-based motion estimation loses details such
as the deformation of the skin and muscles. Our approach to
attack this problem is to use a volumetric, deformable and
energy minimizing model.

Energy minimizing models [5, 11, 14] and deformable
models [20, 22, 23, 24] have a long history in computer vi-
sion. These models are based on the minimization of a com-
bination of internal potential energy and external data er-
ror, with additional geometric/topological constraints. Our
approach using an element-free elastic model is based on
the same principle, but significantly differs in that it allows
large deformations and rotational movements of body parts
while preserving their volume as much as possible.

We have studied the issue of rotation compensation and
iterative fitting based on the minimization of elastic poten-
tial energy and surface distance in our previous work [8].
However, in that effort, elasticity was simulated by the Fi-
nite Element Method (FEM). Use of FEM was restrictive as
the generation and maintainance of the high quality mesh
is a big challenge, especially for a highly deforming ob-
jects. The element-free elastic models proposed in this pa-
per make the generation and modification of the model rel-
atively easy. We also extend the iterative fitting approach to
include a self-intersection penalty, which can be identified

and evaluated efficiently using spatial hashing.

2. Overview

In this paper, we concentrate on element-free elastic
models and their use for finding the optimal pose that min-
imizes a combination of elastic potential energy and geo-
metric errors. As the input, we take segmented videos of a
moving object captured using multi-view calibrated cam-
eras. We construct a sequence of visual hulls from the
segmented video frames, and one of the frames is selected
to build the initial model that also serves as the rest-state.
Then, the initial model is fit to the visual hull by minimizing
a quadratic objective function frame by frame. The same fit-
ting approach can be applied to a sequence of 2D profiles.

The basic representation of the element-free elastic
model is a point cloud. Additionally, we need boundary rep-
resentation of the model and local neighborhood informa-
tion of the points in the model (section 3.1). The boundary
information is needed for fitting (section 4), and the neigh-
borhood information is used to compute the shape functions
that lead to the displacement field inside the model (section
3.2) and elastic potential energy (section 3.3). We use lin-
ear elasticity for its simplicity, and the instability of linear
elasticity for large rotational movement and deformation is
resolved by compensating for local rotations (section 3.4).

Our iterative fitting procedure finds the optimal pose of
the model by minimizing the weighted sum of the elastic
potential energy, a surface distance measure (section 4.1)
and the self-intersection penalty (section 4.2). Each itera-
tion of the optimization is reduced to a linear system that is
solved efficiently by the conjugate gradient method using a
small number of iterations (section 4.3).

3. Element-Free Elastic Model

Element-free methods have been successfully used in en-
gineering fields such as structural mechanics for the analy-
sis of deformation and strain/stress tensors. A survey on
mesh-free methods can be found in Fries and Matthies [13].
Even though element-free approaches are generally a con-
stant factor slower than the Finite Element Methods, they
have an advantage because they do not require high-quality
finite element meshes whose construction and modification
is difficult, especially for an animated sequence of a de-
forming object.

3.1. Representation of the Model

Each point in the model can be thought of as a sample
of the object that represents the physical properties of the
object in its Voronoi region. The points are organized in a
data structure that allows us to find neighbors efficiently. In
our implementation, we use the spatial hashing technique



[25] to accelerate such queries as well as to detect self-
intersections. The domain of influence (the size of neigh-
borhood) of a point may vary to allow adaptive sampling
and to make sure that each point has enough neighbors to
estimate the displacement field inside the model in order to
compute the elastic potential energy. We assume the neigh-
bors do not change during deformation, and keep the list of
neighbors for each point in the rest-state model.

While the internal elastic force is computed from the dis-
placements of interior points in the model, the external fit-
ting force results from the input data acts on the boundary
surface of the model. In our fitting approach, the represen-
tation of the boundary must allow: (a) quick tests for the
points on the boundary and (b) efficient queries of the sur-
face normal. We use a triangular mesh for this purpose,
which can be generated automatically using alpha shapes
[10] from all the sample points in the model.

3.2. MLS Approximation of Displacement Field

One of the driving forces in our fitting approach is the
elastic potential energy, which is computed from the dis-
placement field inside the model. The continuous displace-
ment field is obtained from the displacement data available
at the points of the model (let ‘nodes’ denote those discrete
samples1) using the Moving Least Squares (MLS) approx-
imation. In this section, we treat a displacement vector as
a scalar value, and briefly summarize the form of the MLS
approximation.

To obtain a continuous scalar fieldu(x) from the discrete
sampleui at each node, we use the MLS method, which was
originally developed for surface approximation [18] and ap-
plied later in Element-Free Galerkin (EFG) methods [3]. In
this method,u(x) is approximated by the result of a scalar
product ofΦ(x) , the vector of shape function, andu, the
vector of scalar values of all the nodes. The functionΦ(x)
is computed by minimizing a discreteL2 norm of sample
values over the coefficients of a given basis.

Letp(x) be a linear basis for the approximation,p(x) =
[1, x, y, z]T , wherex = [x, y, z]. The scalar fieldu(x) at an
arbitrary 3D pointx is approximated by

u(x) ' uh(x) =
∑

k

pk(x)ak(x) = pT (x)a(x). (1)

The coefficientsa(x) are functions ofx and are obtained by
minimizing a weighted, discreteL2 norm given by

J =
∑

i

w(x− xi)[pT (xi)a(x)− ui]2, (2)

1Each point in the model has one corresponding node, but the displace-
ment at a point is not exactly equal to the displacement of the correspond-
ing node becauseΦ does not satisfy Kronecker delta property [3]. Nodes
can be thought of as control points as in splines.

wherei enumerates all the nodes in the neighborhood (the
domain of influence) ofx, where the given weight function
w(x− xi) is nonzero.

The minimization ofJ with respect toa(x) leads to

a(x) = A−1(x)B(x) u, (3)

where

A(x) = Σi[w(x− xi)p(xi)pT (xi)],
B(x) = [w(x− x1)p(x1) . . . w(x− xn)p(xn)],

u = [u1 u2 . . . un]T ,

andn is the number of nodes in the model.
Now we have

uh(x) = pT (x)A−1(x)B(x) u = ΦT (x)u, (4)

whereΦT (x) is the shape function of the vector of nodal
valuesu.

For the weight functionw(x − xi), we use the tensor
product cubic spline weight [12]

w(x− xi) = w(rx) w(ry) w(rz), (5)

whererx = ||x− xi||/ddmi, with ddmi denoting the size of
the domain of influence, and

w(r) =


2
3 − 4r2 + 4r3 for r ≤ 1

2
4
3 − 4r + 4r2 + 4

3r3 for 1
2 < r ≤ 1

0 for r > 1
. (6)

For the computation of the shape functionΦ(x), ui, the
displacement value of nodei, can be treated as a single
scalar quantity, since the shape functionΦ(x) acts on all
the axes equally. For the rest of the paper, however,ui is
actually a3 × 1 displacement vector. Hence the dimension
of the global displacement vectoru is 3n× 1.

3.3. Linear Elasticity

The displacement field provided by the MLS approxima-
tion can be coupled with elasticity simulation of any order.
In our approach, we use linear elasticity because of its sim-
plicity for the optimization.

Given the displacement field as a function of nodal val-
uesu (Eq. 4), now we can calculate linear strain tensorε
and stress tensorσ. With partial differential operatorL and
shape function matrixH defined as

LT =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

 and

H =

 Φ1 0 0 . . . Φn 0 0
0 Φ1 0 . . . 0 Φn 0
0 0 Φ1 . . . 0 0 Φn

 ,



we get the strain tensor

ε = Luh = LHu (7)

and the stress tensor

σ = Cε = CLHu, (8)

whereu is the nodal displacement vector of size3n × 1
andC is the6× 6 strain-stress matrix defined by two scalar
parameters - Young’s moduluse and Poisson ratioν - as

C =
e

(1 + ν)(1− 2ν)


a b b 0 0 0
b a b 0 0 0
b b a 0 0 0
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 0 0 c

 , (9)

wherea = 1 − ν, b = ν andc = 0.5 − ν. Further details
can be found in textbooks, for example, [1].

Now we can integrate over the entire domain of the
model to get the elastic potential energyE with respect to
nodal displacementsu as

E =
1
2

uT

∫
Ω

LT HT CLH dΩu =
1
2

uT Ku, (10)

whereK is the global stiffness matrix.K is sparse and sym-
metric, and can be built by integrating over the local stiff-
ness matrices. For the integration, we take the nodal inte-
gration approach which uses the weighted sum of the local
stiffness matrices at the node, instead of gaussian quadra-
ture over the domainΩ (the interior of the model) frequently
used in EFG methods. A detailed analysis of the nodal in-
tegration approach can be found in Beissel and Belytschko
[2].

3.4. Rotation Compensation

The drawback of linear elasticity is that linearized
strain/stress tensors are not invariant under rotation, which
is critical for large deformations and rotational movements.
To address this problem, we estimate the rotational part of
the transformation of the neighborhoods from the rest-state
to the current configuration, apply the rotation to the rest-
state neighborhood of the point, and then calculate linear
elasticity based on the new rotated neighborhood. This pro-
cess is illustrated in Figure 1.

To estimate the rotational part of the local transforma-
tion, let ai = xpi

− xp for each pointpi in the neighbor-
hood ofp in the rest-state model and letbi be the same for
the current model. We need to find the optimal linear trans-
formationT that minimizes

∑
i mi||Tai −bi||2, wheremi

is the weight for the neighbori (a gaussian falloff). Setting

Figure 1. Displacement at a point (indicated by a blue arrow)
in the deformed model (bent bar) is calculated based on the ro-
tated version of the neighboring nodes (black circles) of the rest-
state model (straight bar). The blue/red background illustrates the
signed distance field.

its derivatives with respect to all coefficient ofT to zero
leads to the optimal transformaion [21]

T = (
∑

i

miaibT
i )(

∑
i

mibibT
i ) = TabTbb. (11)

The second term is symmetric and contains only scaling but
no rotation. Therefore, the pure rotation can be computed
using singular value decomposition ofTab, Tab = U S V T ,
asU V T .

Inevitably, the new rotated rest-state neighborhoods of
different points do not agree with each other – the pointp′

in the new rotated neighborhoodNp of point p is not at the
same location in general asp′ in Nq of the pointq near
p. Consequently, the displacement values of all the nodes
u = x − xr (with x andxr denoting the nodal coordi-
nate vectors of the current and the rest-state models, respec-
tively) do not form a vector as a single variable, because
values inxNp

r (rotated neighbor locations for nodep) and
xNq

r (rotated neighbor locations for nodeq) do not match.
We resolve this problem by modifying the equation of elas-
tic potential energy (Eq. 10) as

E =
1
2

(xT Kx−2
∑
p∈M

(xNp
r

T
kNpxNp)+

∑
p∈M

(xNp
r

T
kNpxNp

r )),

(12)
wherekNp is the local stiffness matrix at the neighborhood
Np. Strain/stress tensors are also calculated in the same
manner.

4. Iterative Fitting

Our iterative fitting procedure starts by building the rest-
state modelMR using one of the frames selected by user.
Given a set of silhouettes of segmented videos from cali-
brated cameras, we use voxel carving to create the visual
hull. Then the sample points are placed inside the visual
hull with uniform density, and a triangular mesh for the



surface is created. Alternatively, the surface mesh can be
generated first and then the points can be selected from the
volume bounded by the surface.

We now fitMR to the consecutive frames, both forward
and backward in time. For each frame, the fitting is per-
formed iteratively. LetSf andMf denote the input surface
and the model at thef -th frame, respectively. Assuming
forward fitting, we would like to compute a deformation of
Mf so that it approximates well the input shape ofSf+1.
We useMf as the initial approximationM0

f+1. From the
current approximationMk

f+1 after thek-th iteration, we

computeMk+1
f+1 by minimizing the weighted sum of three

cost functions: the elastic potential energy (described in the
previous section), a surface distance measure (Section 4.1)
and a self-intersection cost (Section 4.2). The optimization
for each frame is iterated until convergence.

To speed up the queries for the closest points onSf , we
calculate a signed distance fielddf for each frame, using a
Dijkstra-style marching front algorithm.

4.1. Fitting based on Surface Distance

With each pointp on the surface∂Mk
f+1 of the model

Mk
f+1, we associate a target positiontp that is the closest

point on the target surfaceSf+1. Given the signed distance
field df+1 of Sf+1, tp can be easily found by following the
gradient ofdf+1 backward ifdf+1(xp) > 0 (like the point
p in Figure 2 (a)), and forward otherwise (like the pointr
in the same figure). We use the sum of the squared distance
between corresponding positions as the distance measure
between the modelMk

f+1 andSf+1:

D =
∑

p∈∂M

wp d2
D(xp, tp). (13)

Since the naive approach of following the gradient of a
distance field does not produce satisfactory results, we add
three modifications to improve the match. First, the squared
distances are weighted by a confidence valuewp for each
association of points, which is defined by

wp = max(0, cos θ), (14)

whereθ is the angle between the surface normalnp and the
gradient of distance functiondf+1 atp onMk

f+1.
Second, we modify the distance functiond2

D to measure
the distance from thesurfaceSf+1 rather than just the Eu-
clidean distance from the target positiontp on Sf+1. We
use a squared anisotropic distance function that penalizes
movement in a tangent direction less than movement along
the normal direction:

d2
D(xp, tp) = (xp−tp)T RT

 s2
D 0 0
0 s2

D 0
0 0 1

R (xp−tp),

(15)

(a)d2
D(xp, tp) (b) d2

I(xp,xp′)

Figure 2. Our surface distance measure (a) and self-intersection
penalty (b) in 2D : the pointp is pushed towardtp, while q is
not pushed at all because its weightwq is zero. The concentric
ellipses represent different isolevels of the distance measure (a) or
the self-intersection penalty (b) for the locationxp of the pointp.
The amount of anisotrophy depends onsD andsI , respectively.

where R is a rotation that maps the gradient vector
∇df+1(xp) to a vector pointing along thez-axis, andsD ∈
[0, 1] defines the amount of anisotropy. Ideally, we could
vary the anisotropy according to the differential properties
of the input surfaceSf+1. However, estimating differential
properties reliably for noisy data is hard and therefore we
usesD = d(x)/ddmi in the maximum range of[0.1, 1] in
all experiments described in this paper. Intuitively speaking,
this method pushes (or pulls) the model towards the target
surface while allowing the model to slide along the surface.

Finally, in some cases where the motion is fast and the
deformation is larger than the size of surface features across
two consecutive frames, the association of target positiontp

to surface pointp may lose continuity and the surface can
be pushed in the wrong direction. (For example, the tip of
a limb may be pushed toward the surface of another limb.)
To prevent this situation, we check every pair(tp, tq) to see
whether or nottp and tq are too close (within a third of
their domain of influence) whilep andq are not neighbors
at all in the rest-state model. In that case, both associations
of target positions forp andq are invalidated and excluded
from the evaluaton ofD (Eq. 13). In this way, the model
is fit using good associations only, and the associations are
improved over subsequent iterations.

4.2. Resolving Self-Intersections

Most of the motions of living creatures with limbs (in-
cluding humans) involve collisions and contacts of dif-
ferent body parts. The distance measure described in
the previous section (together with the simple invalidation
rule) is not sufficient to capture the interaction between
body parts around the contact point, and consequently self-
intersections may occur in the fit models. To resolve this



problem, we use another term in the cost function that is
based on the squared anisotropic distance between the in-
tersected surface points (Figure 2 (b)):

I =
∑

p∈∂M

d2
I(xp,xp′), (16)

wherep is a point on the surface in the intersecting region,
p′ is the closest point top on the other surface, and

d2
I(xp,xp′) = (xp−xp′)T RT

 s2
I 0 0
0 s2

I 0
0 0 1

R (xp−xp′),

(17)
wheresI = 0.1 andR is the rotation that maps the average
vector of the surface normal atp and the negated surface
normal atp′ to a vector pointing along thez-axis. The spa-
tial hashing of the points in the model is used to identify the
points in the intersecting regions efficiently.

This cost function serves as a virtual force that pulls the
surface points in the intersecting region out of the interior
of the other body part. Note that bothD (Eq. 13) andI (Eq.
16) are quadratic functions with respect to the global coor-
dinate vectorx of the model, without any linear or constant
terms.

4.3. Iterative Optimization

With the equations of the elastic potential energyE (Eq.
12), the sum of squared distanceD (Eq. 13) and the self-
intersection costI (Eq. 16) described in the previous sec-
tions, our goal is to find a global coordinate vectorx of the
model which minizes the weighted sum of the three cost
functions:

E = αE + βD + γI = xT Ax− 2bT x + c. (18)

This objective function is quadratic with respect tox, and
its minimun can be found by solving the linear equation

Ax = b. (19)

Note thatA is sparse, symmetric and positive definite. In
particular, the contribution from the surface distance term
D is a block diagonal matrix, which, in all practical cases,
resolves singularities inherent in the stiffness matrixK from
the elastic potential energy termE in the objective function.
Therefore, the final linear equation (Eq. 19) can be solved
efficiently by the conjugate gradient method, allowing us to
obtain the approximationMk+1

f+1 from Mk
f+1.

This process is iterated until convergence, updating the
deformed model as{M1

f+1,M
2
f+1, · · · ,Mkmax

f+1 }. We set
the maximum number of iterations to10, and terminate
early if the decrease ofD is less than 1 percent of the to-
tal decrease from the previous iterations.

There are several parameters to be controlled in our ap-
proach: Young’s moduluse and Poisson ratioν (Eq. 9) of
the model, anisotropy parametersD (Eq. 15) andsI (Eq.
17), and objective function weightsα, β andγ (Eq. 18).
We assume uniform material properties (uniform flexibil-
ity) in the model and setν = 0.3, sD ∈ [0.1, 1], sI = 0.1
andβ = γ in all the experiments in this paper. Sinceα,
β, γ ande are all linear parameters and only the ratio of the
weights in the objective function matters, setting all of them
is equivalent to controlling two parameters – one to balance
between the restoring force from internal elastic potential
and the deforming force from external data conformity, and
the other to control the self-intersection penalty. Our itera-
tive fitting works well over a wide range of parameter values
(Although fails whenβ is too small, due to the singularity),
and the effects of all the forces change gradually with re-
spect to the parameter values.

5. Experimental Results

We have implemented our fitting approach in both 2D
and 3D. During the preparation of the input data, silhou-
ettes were extracted from the segmented videos of multi-
view calibrated cameras, and the visual hull for each frame
was created using voxel carving. Then, the model was con-
structed by sampling the interior of the visual hull at a cho-
sen frame, and a signed distance field was created for each
frame. Finally, the model was fit to the visual hull of each
frame by iterative optimization.

Our experiments focus on fitting elastic models to noisy
and ambiguous surfaces of visual hulls. These examples
demonstrate the robustness of our approach and the capa-
bility of handling large rotations and complex motions us-
ing silhouette information only. In practical situations, a
template model can be deformed into an initial pose under
user guidance and more information (color, texture and fea-
ture correspondences) can be incorporated into the fitting
scheme.

The Dance dataset (Figure 3) was synthesized from mo-
tion capture data of a dancing person. We added a simple
skin to each bone of the skeleton, and multi-view videos
were created by putting six virtual cameras around it. The
rest-state model was constructed from the skeletal model
with the skin. It consists of 2465 points, and the domain
of influence was selected so that each point has exactly 20
neighbors. The result shows that the element-free elastic
model closely approximates the actual motion even though
the motion is quite fast and involves large rotations of body
parts. Also note that the visual hulls from six cameras have
considerable amount of incorrectly labelled regions due to
self-occlusion.

It should be noted that the fitted models are the re-
sult of global optimization, therefore some of them may
still have local discrepancies with input surfaces and



(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 3. The Dance dataset: the simulated video capture setup
(a), the initial input surface (b), the rest-state model (c) and models
fitted to some frames in the volume sequence (d)-(h).

self-intersections of the limbs despite the self-intersection
penalty in the objective function.

The Camel dataset provided by Brostowet al. [4] (Figure
4) is a volume sequence of a camel puppet captured from
fourteen calibrated cameras. The videos were segmented
by background subtraction and the resulting visual hull sur-
faces exhibit a significant amount of noise. The rest-state
model was created from the first frame of the sequence. We
observe from the results that the elastic model effectively
smoothes out noise and finds the optimal pose which mini-
mizes both internal deformation potentials and external data
observation errors. The model consists of 3908 points with
20 neighbors per point.

By using the signed distance field, pre-determined neigh-
borhoods and spatial hashing, the objective function can
be evaluated efficiently using local information only, and
the optimal solution is calculated by the conjugate gradi-
ent solver with a sparse matrix representation. The fitting
requires less than 20 seconds for each iteration (a single op-
timization of setting up and solving Eq. 19) on a P4 2.8

GHz desktop PC, and 5 to 10 iterations (about 3 min.) were
performed for each frame in all the experiments.

6. Conclusions

We have presented a new method for fitting an element-
free elastic model to a volume sequence of complex mo-
tions. As a set of sample points with attributes that repre-
sent material properties of an object, an element-free elastic
model is easy to generate and modify, and can describe a
variety of objects including rigid, non-rigid or articulated
objects. Combined with rotation compensation, our method
also allows us to capture large rotations of body parts. Our
iterative fitting procedure efficiently finds the optimal pose
that minimizes a combination of elastic potential energy, a
surface distance measure and a self-intersection penalty.

Our experimental results demonstrate that our element-
free elastic models can be used to capture complex 3D mo-
tions from segmented videos in the presence of noise and
self-occlusions. All the results were generated from the sil-
houette information only.

Simulation of elasticity for volume fitting induces a com-
putational cost that is far from real-time for the comput-
ing power at present, but our approach is effcient enough
for off-line applications such as markerless motion cap-
ture. The analysis of local deformations of fitted models
and refinement of the initial model are among our future re-
search directions toward these off-line applications in com-
puter vision. Another interesting research direction is to use
more information, such as color, texture and feature corre-
spondences along with silhouettes to fit element-free elastic
models.
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