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Abstract

In this paper, we present our approach to robust back-
ground modelling which combines visible and thermal in-
frared spectrum data. Our work is based on the non-
parametric background maodel described in [1]. We use a
pedestrian detection module to prevent erroneous data from
becoming part of the background model and this allows us
to initialise our background model, even in the presence of
foreground objects. Visible and infrared features are used
to remove incorrectly detected foreground regions, allow-
ing our model ro quickly recover from ghost regions and
rapid lighting changes. An object-based shadow derecror
also improves our algorithn’s performance.

1. Introduction

Background cstimation is a primary module in many vision
tasks and is used to distinguish important objects from the
normal background scene.  In this paper, we present our
approach to robust background modelling which combines
visible and thermal infrared spectrum data.

The benefits we obtain from using infrared data, as well
as visible information, arc twofold. Firstly, as a comple-
mentary modality to the visible spectrum, detection can be
improved by using the strengths of cach medium. Infrared
detection aids visible analysis in low-lighting conditions
and when an object has similar colour to the background.
Therefore, it has the capability to operate on a 24-hour ba-
sis, as thermal infrared video detects primarily emitted ra-
diation, thus docs not require daylight to function. Visi-
ble spectrum detection has a higher resolution and can de-
tect objects whose lemperature 1s not significantly ditferent
from the background. Secondly, the infrared data provides
extra features that can be used alongside size and cdge fea-
tures to detect errors in the foreground regions and quickly
correct the background model. We use a pixcl-based like-
lihood map to accumulate evidence that a foreground pixcel
should become part of the background. In the initialisation
phase, we usc a pedestrian detection module to prevent er-
roncous data from becoming part of the background model,
allowing our model to initialise correctly, even in the pres-
ence of foreground objects.

Our paper is structured as follows: the following scction
describes previous work in the areas of background mod-
clling and the usc of thermal infrared video. The third scc-
tion describes our algorithm for robust foreground detec-
tion. We show some examplary results in section four and
discuss these results and future work in scction five.

2. Literature Review
2.1. Background Modelling

Background modelling assumes that the video scene is com-
posed of a relatively static model of the background, which
becomes partially occluded by objects that enter the scene.
These objects (usually people or vehicles) arc assumed 10
have features that differ significantly from those of the back-
ground model (their colour, thermal or cdge featurces, for
cxample). Calculating a distance measure between the cur-
rent scene and the modelled background is known as fore-
ground extraction and is usually used to produce a binary
foreground image.

Rcliable background modelling 1s difficult to achiceve in
certain scenarios. For example, in a crowded room with
many pcople, the background may only cver be partially
visible. Another problematic scenario is in a scenc with
low levels of lighting, such as a night-time scene with only
street lighting, or a scene with varying degrees of lighting,
such as when part of the scene is in shadow and the other
part is sunlit. The movement (or apparent movement) of
background objects is problematic 100. Examples of this
include moving trees and vegetation, flickering computer or
TV screens, flags or banners blowing in the wind, cte.

Background modelling is a very active rescarch arca and
has progressed considerably from the carly ‘subtract and
threshold” approaches. The algorithm described in [2] mod-
cls cach pixel as a sum of A Gaussian distributions in RGB
space (1 < K < 5). Each pixel’s background model is up-
dated continuously, using onlinc estimation of the parame-
ters. In [3], an illumination independant background model
is described that uses a correlation measure between im-
age blocks to detect foreground regions. An object-based
foreground extraction scheme is described in [4]. The al-
gorithm used in the 17! 5] system works on monochrome
video and initiates training periods where, for cach pixel,
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its maximum value, minimum valuc and largest interframe
difference arc calculated. These values are used as the
background modcl and the forcground is determined by
straight-forward thresholding and morphological process-
ing. A good review of the most commonly cited background
modclling techniques can be found in [6].

We adopt the non-parametic background model de-
scribed in [1]. The authors of [7] cite this model as supe-
rior o [3] and [ 2], although its storage requircments may be
too great for some systems. We decided to use this model,
as it 1s casily extended to handle the additional thermal in-
frared band. Their method 1s decribed in the section on
background modelling.

2.2, Infrared Imaging

Thermal infrared imaging has long remained a relatively
small academic research area due to the cost of the ther-
mal imaging systems, the low resolution and the noisy im-
ages that are produced. Thankfully, the decreasing costs
and improved oplics are permitting more rescarchers Lo en-
ter the ficld. Thermal imaging is a complementary technol-
ogy to visual imaging, as it relies on cmitted, rather than
reflected radiation. Also, it is of great benefit (o monitor-
ing and surveillance systems, as it can operate on a 24 hour
basis and is most reliable at detecting and tracking hot ob-
jects, such as people and vehicles, which are normally the
primary objects of interest in surveillance. In [8] the appli-
cation of traditional image analysis techniques to infrared is
discussed, as well as conducting a good review of infrared
imaging rescarch. Pedestrian detection approaches using
thermal imaging arc described in [9] and [10].

To obtain our video test data, we usc the camera system
described in [ 11] which allows simultancous capture of in-
frared and visible spectrum video. Temporal alignment is
achieved using the cameras’ gen-lock input which allows
their frame clocks to be synchronised. Spatial alignment is
achicved using a planar homography, whose parameters are
calculated by manually selecting numerous corresponding
points in both modalities and computing the homography
with least mean squared error.

3. Algorithm

Figure | shows block-diagrams of our main system compo-
nents.

3.1. Diffusion Filtering

Infrared images contain high noisc duc to the nature of in-
frared radiation, since cvery hot body, including the imaging
device itself, emits non-insignificant amounts of radiation
at this wavelength. We reduce this noisc using anisotropic
diffusion | 12] that inhibits smoothing at edges, thus greatly
reducing the blurring of edges that results from Gaussian
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Figurc 2: (a) Typical infrarcd histogram (b) Associated im-
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smoothing. lterative filtering is performed on an infrared
image, I, by repeating the following steps until conver-
gence:

1. Calculate the magnitude of the gradient of a
smoothened version of I, Al = |VG(I)|, where G is
an isotropic Gaussian smoothing kernel.

1
AT+1

to

Calculate cocfficients for filtering, C' =

3. Multiply cach pixcl in I by its corresponding pixcl in
C'

4. Set I = F(1)/F(C), where F(X) is equivalent to X
when each pixel is replaced by itsell plus the sum of
its eight neighbours.

3.2. Pedestrian Detection

We perform a rough pedestrian detection in the infrared im-
age by first scgmenting the image into regions and then
discard non-pedestrian regions using size, aspect ratio and
thermal features. From obsecrvation of typical infrared im-
agery, we note that the histogram invariably contains a dom-
inant Gaussian distribution which represents the ambicnt
temperature of the environment and is cssentially noise,
such as shown in figure 2(a). This makes sense, as thermal
noisc has a Gaussian distribution [12]. Relevant objects,
such as people, usually consist of brighter pixels that lic
far outside this distribution. Using the histogram, we cre-
alc an importance score (Figure 2(b)) for cach brightness
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value and then replace cach pixel with the importance value
of its brightness. We make the assumption that pedestrians
are warmer than the environment, so we replace with zero
all pixels whose brightness is less than the mean brightness.
The importance function is calculated as follows:

n

1
’Il(.I') = T_H (l)

mae(h)

where r is a pixel brightness, L(x) 1s the histogram of
the image and n is a parameter which deemphasises values
inside the noisc distribution. Experimentation has shown
that n=10 1s a suitablc valuc however slight deviations ci-
ther side of this value do not significantly alter results. After
replacing cach pixel by its importance value, we perform a
hysteresis scgmentation, with a lower and upper threshold,
Ty, and Ty, to obtain regions. In other words, all pixcls
with valucs less than T, arc discarded, then of all remain-
ing connccted-components, only those containing at least
one pixel with a value greater than T;: are considered valid
regions.

For cach region, we extract the following features: s, its
area in pixels, b, the height-to-width ratio of its bounding
box and, using brightness values from the original infrared
imagc (not the importance image), « ., its average brightness
and m,., its maximum brightness. Regions arce classified as
non-pedestrians if any of these statements are true:

L5, < Spin 08 8> Sy

2., <lorb,.>5

(7S}

Aa, —mm)fo <25
4. (m,—m)/o <4

where m and ¢ are the mean and standard deviation
of the pixel brightness in the infrared image and S,
and S, are thresholds on the minimum and maximum
pedestrian sizes. We noted that occasionally, pedestrians
would overlap cach other or be joined to noise. Thus non-
pedestrian regions are classified as pedestrians if (e, —
m)/o > 6, as human skin is usually significantly hotter
than other objects. Finally, the resulting binary image is di-
lated with a large structuring clement to ensure no parts of
pedestrians arc missed.

The goal of this detection module is not to miss any
pedestrians, so that their pixels are not put into the back-
ground model. Therefore the thresholds are set to obtain a
low falsc ncgative rate. The output of the pedestrian detec-
tion is a binary mask, P(x,y), for the image. For our cx-
periments, S,,;, was sct to approximately onc quarter the
size of the smallest expected pedestrian and 5, was set
slightly greater than the larger expected pedestrian size.

3.3. Background Model

Our background model is based on the non-parametric
modcl described in [1]. For cach pixel, the model storcs
N samples that are assumed to belong to the background
distribution. For a new pixel @y, the probability that it came
from the background distribution is:

1 N d 1 _1 Crey — =i )
Prix) = ~ Z H = 0 (2)
=1 =1 ,/277(7]—

where d is the number of bands in the image. In our
casc, we have 4 bands: L, U, V and infrarcd. These bands
arc less correlaled than RGB and thus the assumptions of
independence are more valid in the model. The variance
for cach band, of, is obtained by calculating the median, ¢,
of |#; — r;4,] for cach consccutive pair in the sample and
seiting o = W A new pixcl is classified as foreground
if its probability of belonging to its background model is
less than a threshold value. Some morphological operations
are then used to remove pixel noise and to close holes in
foreground regions.

We extend this model by allowing a pixel to have an un-
known value; essentially to have zero samples in its back-
ground model. This is useful in the case where we detect
that a pedestrian is occluding a background pixel at this
point and do not want to update the model with erroncous
data. A new pixel is classificd as forcground it its back-
ground model is unknown. Background updating is done
for two rcasons. Firstly, to cope with gradual changes in
lighting, such as the change from day to night, and sccondly,
to place objects in the background that arc determined to
have a high likelihood to be part of it; cither objects that
have remained static for some time or incorrectly labelled
foreground regions, such as those caused by rapid changes
in brightness. The updating procedure must carefully avoid
placing parts of foreground objects in the model, while also
being able to quickly adapt and perform rapid updates in the
presence of ghosts or fast lighting changes. Our background
model is updated continuously, thus it can adapt to gradual
changes in lighting.

In our initialisation phase, cach pixel is added to the
background model if it is not detected as part of a pedes-
trian. In normal operation, the background, £3, is updated
in the following manner:

1. if T'(x.y) > 1, update B(x.y), where T is described
in subsection 3.5.

2. otherwise, if B(w.y) =7 (unknown), updatec B(zr. y)
only if P(x,y) =10

3. otherwise, if this pixel is classified as shadow, it is not
updated
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4. otherwise, update this pixel if it has been detected as
background

For a given pixel, if its background model alrcady has N
samplcs, then updating its background modcl consists of
discarding its oldest sample and inserting the current pixel.
The variance values are also updated periodically.

3.4. Shadow Detection

Shadows arc first crudely detected in cach frame by cal-
culating the decrease in brightness and the chromaticity
change for cach pixel. This is somewhal similar to shadow
detection in [ 1] but we use only the mean values of cach
band and not multiple samples. A binary image is cre-
ated by classifying pixels within certain bounds as potential
shadow pixels. All connected-component regions with an
arca less than T, a size threshold, were discarded. A pixel,
D, 1s a potential shadow pixel if the following conditions all
hold true:

1. 0.8 < ', < 0.98, where the change in Luminance,
= 1,’%
’ L

2. Cirv <20, where the change in Chrominance,
Crvo= /(B —pir)? + (Byv — pv)?

where By, Bi: and By arc the average background values
for cach band. We then compute the detected foreground
regions that overlap with the potential shadow regions and
calculate 8 = |S|/|F|, where |S] is the arca of the shadow
and | F| is the arca of the foreground region. Truc shadows
are determined as those where o« < 8 < 3, o and 3 being
parameters determining the allowed size of a shadow for a
given object size. This object based approach is quite ro-
bust and similarly to [4], associates shadows with detected
objects.

3.5. Background Likelihood

Foreground objccts, such as cars, should be expected to be-
come background if they remain in the same position for a
long period of time. Also, in terms of invalid foreground
rcgions, if there is enough evidence to suggest that they arc
actually caused by background model errors or ghosts, the
background should be updated to include them. We intro-
duce a likelihood image, I, that accumulates cvidence for
cach pixel that it should belong to the background model.
Four features contribute to this likelihood:

1. Time: if an object remains in the same position long
cnough, it should become part of the background.

2. Size: small foreground regions are more likely to be
caused by background crrors.

3. Edge Magnitude: as discussed in [13], edges provide

ge
cvidence that a foreground region is a ghost.

4. Thermal brightness: colder objects are more likely 0
be part of the background.

Therefore, at cach frame, for every pixel, (ir, y), detected as
forcground, I is updated as follows:

r.r.y.[ = I—J'.y.l—l +C'1'+f'l'_,.n'ﬁ (Sr)+f’1',..m. ((’r)"'_f'l},.m,(b)

. 3)
frolo) =C(1 - ———) 4
14+e¢——=—
1 . .
"’r=WZ(W[(’H—WB(I)D (5)

€S

where s, 18 the size of the foreground region containing
(ar, ), b is the maximum thermal brightness in a 7x7 win-
dow around (. y) that is also within the same foreground
region. b is normalised by subtracting the mean brightness
and dividing by the standard deviation. Cp and C' are con-
stants controlling how fast a static object becomes back-
ground. fr, is based on a sigmoid function centred at T
whose transition width is controlled by . dr is the set of
border pixels of region . By using the sigmoid function,
our thresholds do not have to be hard and instecad provide a
smooth output for small changes in feature values. Parame-
ters Ty, 05, Ty, 0., Ty, oy were chosen empirically. In equa-
tion 5, we provide a similar measure of border edge strength
as used in [13]. Their approach was to detect which edges
in the borders of foreground region were different from the
background modcl edges and then to find the average mag-
nitude of thesc edges in the current image. Our metric
does not require the detection of changed edges but uses the
difference between the current edges and the background
cdges on the border to provide cvidence of background like-
lihood, thus removing the need for am cmpirically-chosen
detection threshold.

4. Results

Our pedestrian detection module performs very well on our
dataset and on most images from the OTCBVS test-set, as
shown in figurc 3. The algorithm failed on one sequence
in the OTCBVS test-set, figure 3(c), where our assumption
that pedestrians would appcar brighter than the background
did not hold.

Figurc 4 shows an example of our object based shadow
detection. Note that a significant portion of cach shadow is
detected as forcground. This overlapping allows our detec-
tion (o be more robust by associating shadows with objects.

Figure 5 shows some forcground detection results on
daytime and night-time images. The night-time scenes con-
tain both arcas where visible spectrum information is very
uscful (such as the streetlamp illuminated road in the centre
right part of the image) and where it is not available (path ar-
cas). Our algorithm detects the passing car using primarily
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Figure 3: Pedestrian Detection Results: (a)-(¢) Images from
the 2005 OTCBVS Benchmark Dataset Collection. (d)-(f)
Frames from our video data

visual information and detects the two people using thermal
information.

In figures 6 and 7 we compare the effectiveness of our
algorithm with and without the initial pedestrian detection
and the I" likelihood measure. The graphs were obtained
using a ground-truth obtained by manually marking valid
and invalid regions in every tenth frame. Without our im-
provements, false positives increase quickly as pedestrians
move and leave ghost objects behind. No foreground pixels
are missed by our model, until frame 400 when a person in
a window is accidentally put into the background, as ther-
mal radiation does not travel effectively through glass. Our
pedestrian detection usually overestimates the foreground
pixels, but quickly stabilises, as shown in figure 6 where the
false positives drop quickly as non-pedestrians are put into
the background model.

S. Summary and Conclusions

In this paper, we presented our approach to robust back-
ground modelling in the visible and thermal infrared spec-
tra. We described our pedestrian detection algorithm that
allows our model to initialise in the presence of foreground
objects. We introduced our likelihood map, which accu-
mulates evidence from size, edge and thermal features, sug-
gesting that some foreground objects should be added to the
background model, allowing our model to cope with ghosts
and erroneous regions caused by lighting changes.

Visible spectrum background modelling has some inher-

Figure 4: Shadow Detection: Visible spectrum frame, In-
frared spectrum frame, detected foreground objects and de-
tected shadows

ent weaknesses, in that it relies on reflected light, there-
fore has difficulty in scenarios with uncontrolled lighting.
Thermal infrared video, not only provides a complementary
modality to the visible spectrum, but also provides the ther-
mal features which can aid in the creation of the background
model and verify the extracted foreground regions.

Interestingly, while shadows do not occur generally in
thermal video, a similar feature occurs in infrared that a
person, or any hot object, is surrounded by a dark ‘aura’
due to the chopper within the infrared camera. Some in-
teresting future work will involve detecting and climinating
this ‘aura’ as is currently done with shadows in the visible
spectrum. Also, as our background model initialisation is
quite effective, even with foreground objects in the scene, it
may be beneficial to reinitialise the model at certain points
during the system’s operation. Having the ability to recog-
nise when a large background error has been made, such as
if the camera was moved, could trigger a re-initialisation of
the model. Another additional improvement will be to use
other features, such as motion, to update the background
likelihood map.
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Figure 7: Missed foreground pixels obtained by (A) Back-
ground Model without pedestrian detection and likelihood
accumulation (B) Our Model
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