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Increasing resilience of power systems using 
intentional islanding; a comparison of Binary 

genetic algorithm and deep learning based method 
 

 
 

 
Abstract— Several algorithms combining qualitative and 

quantitative components are currently used for splitting a large 
interconnected power grid into islands as a measure to provide 
the best reconfiguration option when a fault appears. The aim 
of this article is to compare the clustering results of a binary 
genetic algorithm and a deep learning based method in order to 
identify the differences and to find in which cases it is rather 
better applicable each of the techniques.   
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I. INTRODUCTION 

The electrical grid is a critical infrastructure that needs to 
be resilient, having minimum service disruptions during 
critical events and ensuring the lowest impact on end users. 
The integration of microgrid architectural frameworks in 
electrical grids has urged system operators to design new 
methods towards preserving the stability and reliability of the 
grid. Microgrids allow the smooth incorporation of 
distributed energy resources (DERs) in the system [1], which 
are usually renewable small-scale sources of energy, that can 
be coordinated in a decentralized way, offering modular and 
flexible features [2]. One of the major benefits of microgrids 
is their ability to operate connected to the grid, but also 
disconnected, in an autonomous islanded mode [3]. Courtesy 
of this versatile nature, they have been utilized to enhance 
energy delivery and stability in power systems [4].   

In cases of severe disturbances, caused by unexpected 
physical phenomena or human faults, a possible loss of 
generators can often lead to cascading outages in the grid and 
result in wide area blackouts. Modern electrical grid 

architectures integrate managing mechanisms, that are 
activated in cases of such emergency and allow the power 
system to respond quickly, enabling a rapid restoration back 
to a secure state. Such an efficient control strategy is 
described by the process of intentional islanding, which can 
be implemented in microgrid architectures in order to 
alleviate the effects of major disruptions and protect the grid 
from cascading failures [5].  

Intentional islanding is a procedure during which the grid 
is divided into several partitions, called islands, that are self-
sustainable and isolated from each other. At the core of the 
intentional islanding problem lies the decision of which lines 
to disconnect, so that robust islands are formed, with the 
objective of having minimum loss of load supply. Towards 
the goal of minimizing load shedding and potential 
disruptions, islanding solutions aim to group the available 
generators in a coherent manner [6] and the formed islands 
are determined in a way that allows them to maintain voltage 
and frequency balance through appropriate control strategies. 
As a result, it has been shown to improve reliability since the 
continuity of supply is increased for the loads in the islanded 
areas and is suggested as a mechanism for protection in 
emergency situations. The problem exhibits a non-
deterministic polynomial-time hardness, and most solutions 
are employing optimization methods to select the optimal 
scheme [7]. Several techniques rely on graph theory since the 
grid can be transformed into a graph representation, and the 
scheme can be obtained by then solving a multi-objective 
optimization problem [8].  

This paper examines how methods of distinct nature 
perform when solving the problem of intentional islanding. 
The first proposed technique aims to find the optimal solution 

Pol Paradell 
Electricity and Power Electronics 

Department 
Institute for Energy Research of Catalonia 

(IREC) 
Barcelona, Spain 

pparadell@irec.cat 

Yannis Spyridis 
0 Infinity Ltd., Imperial Offices  

London E6 2JG, UK 
 yannis@0infinity.net 

 

Alba Colet 
Electricity and Power Electronics 

Department 
Institute for Energy Research of 

Catalonia (IREC) 
Barcelona, Spain 
acolet@irec.cat 

Anzhelika Ivanova  
Electricity and Power Electronics 

Department 
Institute for Energy Research of Catalonia 

(IREC) 
Barcelona, Spain 

aivanova@irec.cat 

José Luis Domínguez – García                                          
Electricity and Power Electronics Department 

Institute for Energy Research of Catalonia 
(IREC) 

Barcelona, Spain 
jldominguez@irec.cat 

Achilleas Sesis 
0 Infinity Ltd., Imperial Offices  

London E6 2JG, UK 
 achilleas@0infinity.net 

 Georgios Efstathopoulos 
0 Infinity Ltd., Imperial Offices  

London E6 2JG, UK 
 george@0infinity.net 

 



that will guarantee the grid stability, relying on a binary 
genetic algorithm (BGA). Following a contrasting approach, 
the second method is based on a deep learning architecture 
that utilizes graph convolutional neural networks (CNN) and 
addresses large and complex power systems, with an 
increased efficiency. The investigated approaches are 
evaluated on several test cases that involve grids of varying 
size and topology, demonstrating their effectiveness in 
solving the intentional islanding problem by examining the 
power imbalance, the response time, the number of clusters 
and line disconnections that are required. 

 

II. TECHNIQUES FOR POWER GRID 

CLUSTERIZATION 

Common approaches model intentional islanding as a 
combinatorial optimization problem, with objective functions 
aiming to minimize the supply and load imbalance, or the 
power flow disruption [9]. When it comes to the second 
objective, islanding solutions rely on a technique called 
spectral clustering, with roots in graph theory. Using this 
method allows to calculate the isolated segments through the 
corresponding eigen-values and eigen-vectors of a matrix that 
represents the graph of the electrical grid [10]. This technique 
is demonstrated in [11] by introducing a two-step clustering 
algorithm that groups the generators so that islands with 
isolated loads are avoided. At the first step the grouping is 
achieved using a normalized clustering method and the 
islanding is completed at the second step through constrained 
spectral clustering. A similar solution is presented in [12] 
where the algorithm relies on constrained spectral clustering 
to form the islands, ensuring minimum power flow disruption 
on the process. The method manages to achieve high 
efficiency in large grids, by requiring to solve the eigen-
problem only once, for any given number of islands. 

Using the graph representation of the electrical grid, the 
islanding method proposed in [13] determines the Laplacian 
and the weight matrices and solves the generalized eigen-
value problem. The islands are determined based on the 
coherency of the available generators, using a spectral k-
embedded clustering algorithm. The final solution is given 
after the normalization of the corresponding eigen-vectors, by 
applying the algorithm on the k-1 lowest eigen-values. 

The intentional islanding problem is often formulated as a 
mixed-integer linear programming (MILP) problem. Relying 
on the graph representation of the electrical grid, the splitting 
process is transformed into a graph partition problem, aiming 
to disconnect the minimum number of lines. This approach is 
described in [14], where the proposed algorithm adds the 
objective of minimizing the power flow disruption at the 
formed islands. The complexity of the problem is first reduced 
through a pre-processing method and afterwards the trees that 
connect every generator to the minimum quantity of nodes are 
calculated to provide the final solution. 

A. Deep Learning Based Method for Intentional Islanding 

Traditional methods are often unable to offer a quick solution 
for intentional islanding that minimizes the load-generation 
imbalance at the islanded segments. By relying on their strong 
generalization capacity, deep learning architectures can 
potentially provide an efficient and reliable solution to this 
problem. The advent of deep learning has recently led to 
significant breakthroughs in several areas, and especially in 

computer vision, targeting various smart applications. 
However, the structures that are utilized in most use cases rely 
on Euclidean distance data and cannot be easily applied in 
graph models. By investigating methods of integrating graph 
data inside deep architectures, the class of graph convolutional 
networks (GCNs) has emerged. These networks allow the 
capture of patterns inside graphs through the encoding of 
elements as vertices and their correlation as edges.  
 
Our deep learning approach for the intentional islanding 
problem is thoroughly presented in [15] and relies in a GCN 
architecture to determine the splitting strategy. The electrical 
grid is modeled by a graph representation, which allows us to 
employ GCN layers in our deep learning model. This 
representation depicts each bus in the grid as a vertex in the 
graph, and each transmission line and transformer as an edge. 
The edges have weights attached to them, representing either 
the active power flow or adjacency information. By running a 
power flow analysis on this model, we extract the required 
information, such as angle, voltage magnitude, and power 
demand for the buses, and active, reactive power flow, as well 
as adjacency information for the lines. 
 
The graph partitioning strategy is based on the normalized 
min-cut problem [16], which was formulated as follows: 
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where || || is the Frobenius norm, S represents the result 
regarding which cluster the node should belong to, A and D 
indicate the adjacency and degree matrices, respectively. IK is 
the multiplication of S with its transpose matrix and Tr() is the 
average operation. L represents the total loss function for the 
minimum cut and Lc is the cut loss term. Lc might result in a 
local minima solution, meaning that after the optimisation, Lc 
tends to assign all vertices in a binary cluster result, regardless 
of how many classes are assigned as the desired outcome. Lo 
represents the orthogonality penalty term so that nodes from 
different clusters are orthogonal and the number of nodes is 
the same in each cluster. 
 
The above method is incorporated in our approach to the 
problem of intentional islanding, allowing as to offer an and-
to-end deep learning solution that ensures minimum load-
generation imbalance at the formed islands, with as few line 
disconnections as possible, while satisfying the requirement 
for coherent grouping of the generators. In order to minimise 
the power imbalance, the following loss function is used: 
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where Y is the output matrix from the GCN with dimensions 
n*g and contains the associations between the nodes and the 
partitions. B is the n dimensions vector for the load-generation 
result, as approximated from the state estimation process. 
 
To avoid situations where there is no supply of power after the 
islanding and enhance the stability of the electrical grid, we 
set a requirement that each cluster should contain at least one 



generator. The corresponding loss function is defined as 
follows: 
 
𝐿௚௘௡ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥_𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦൫𝑝, 𝑌௚௘௡൯,                       (3) 
 
where Ygen represents the matrix that indicates the buses 
connected to the source generators, p is a vector that ranges 
from 0 to g, and softmax_cross_entropy represents the 
classical function for multi-class optimisation loss. 
 
In order to train and evaluate our solution, we used PyTorch 
as the main deep learning platform, along TensorFlow and 
Mxnet. This platform allows us to utilise a GPU with cuda 
cores, to significantly accelerate the whole process, with a 
GTX-2060 GPU in our case achieving the solution in less than 
a second. However, the model was also evaluated on a CPU 
to examine the performance when GPUs are not available. 

B. Binary genetic algorithm 

Genetic algorithms, a type of evolutionary algorithm (EA), 
can be very effective at solving non-convex optimization 
problems, particularly when solutions can be represented as 
strings of numbers, and the quality of solutions can be 
represented using a single objective [17].  It uses the clustering 
quality measure given by a combined fitness function for a 
genetic algorithm (GA). To implement this GA, we represent 
a solution to the clustering problem as a string of binary 
variables, with each bit representing the status of a branch in 
the network.  

The chromosome of this algorithm is a binary array with 
all the elements that can be connected or disconnected. To 
create the chromosome, the BGA uses the lines and loads that 
are present in the grid. This creates a relation between the 
binary value and the element in the grid to apply the changes 
to the system.  

The cost function is determined using four different 
criteria to have a consistent solution. Each criterion helps to 
determine the best solution. The criteria are described in the 
following list:  

C1: Minimum number of disconnected lines. Penalization 
for each power line disconnected and the quantity of this 
penalization is the power flow in the disconnected line. 

C2: Minimum number of disconnected loads. Similar to 
the previous criterion but with the electric loads that can be 
disconnected.  

C3: This criterion sets the minimum number of islands that 
will be formed. This value is set as an input in the 
configuration. For the evaluation scenarios evaluation, this 
value is set to 2. 

C4: Energy balance on each island. On the evaluation of 
this criterion is performed a simple power balance, generation 
less consumption, if there is not enough power to maintain the 
island then it penalizes the solution.  

Finally, the four criteria are summed together with a 
configured weight for each criteria.  

The network-partitioning problem is turned into a graph – 
cut problem, related to the graph theory.  A system with n 
buses corresponds to a graph model G (V, E). The node set V 
and the edge set E correspond to the buses and the lines of the 

network respectively. The edge weight matrix W = 
(Wij), i,j=1,2,…n, can also be defined. In case Wij=0, then the 
nodes i and j are not connected. Otherwise, they are 
connected. 

The BGA represents variables as an encoded binary string 
and uses the binary strings to minimize the cost. It begins by 
defining the optimization variables, the cost function, and the 
cost. Then it ends by testing for convergence [17, 18].  

III. SCENARIO DEFINITION 

Both clustering techniques use the same grid model input 
using pandapower [19] library, as well as the same output 
format.  

The grid model uses the pandapower data format to 
describe the topology and the elements on the grid. This 
format contains the electric elements that can be found in the 
electric infrastructure, such as buses, lines, loads, generation, 
load switches or shunts.  

The results obtained from both techniques are represented 
in a diagram with the proposed islands, a summary of the KPI 
proposed and a pandapower format with the results. 

To compare the results, a set of grid models had been used: 
- Scenario 1: simple case including 9 buses, IEEE9 [20]. 

- Scenario 2: A distributed and quite mesh grid including 
15 buses MV CIGRE [21]. 

- Scenario 3: and a large grid 179 buses: MV Oberrhein 
[19]. These cases represent various scenarios from small to 
large power grids. 

In each scenario has been created a fault in a bus that 
should be isolated. The fault could come from different 
natures, for example a device malfunction or an intrusion.  

 

Figure 1: First scenario IEEE9, fault located at bus 4. 

 The first scenario, depicted in Figure 1 has been chosen 
for the low number of buses and the islanding possibilities 
with the three available generation points. This electric grid is 
a standard case provided by several electric calculation tools. 
It has one external connection and two generators, each one 
connected at the end edges of the grid. On the other side, the 
loads are in the middle busses, this allows different 
possibilities to supply the consumptions. The fault in the first 
scenario is located in bus 4, this bus connects the external grid 



with the rest of the buses. This fault provides a solution in case 
of the main grid failure. 

 

Figure 2: Second scenario MV CIGRE with all DERs, fault located 
at Bus 3. 

The second scenario, depicted in Figure 2, has a medium size, 
some distributed generation and several possibilities to supply 
all the consumptions. Into this electric grid, there is only one 
external connection and 15 generations distributed overall the 
grid. This distribution of resources allows the creation of new 
electric islands sectorising the electric grid in small parts. In 
this scenario, the fault is located at Bus 3. On this bus, there 
are two loads connected that cannot be supplied due to the 
isolation of this bus. Also, the faulty bus is considered a 
transmission bus that supplies the downstream buses, the 
proposed methods must find another way to maintain the 
supply. 

The third scenario, depicted in Figure 3 is a big grid 
composed of 179 buses, 2 transformers, 149 loads and 153 
generators distributed overall the grid. This scenario has 
slight modifications from the original to have enough 
distributed power, with these modifications allows supplying 
most of the consumptions close with the distributed 
resources. In this scenario, the fault is located at bus_84. On 
this bus, there is connected a generator that should be isolated 
due to the fault. Also, this bus connects two parts of the grid 
forcing the proposed methods to find another way to supply 
all the consumptions. 
 

The key performance indicators to compare the techniques 
presented are the following: 

 Number of disconnected lines: the lines that have to 
be disconnected to perform the new topology. This 
value means changes to do on the grid to create the 
new topology. Depending on the infrastructure, these 
changes can be done automatically or manually. 

 
Figure 3: Third scenario MV Oberrhein, fault located at 

bus_84. 

 The number of islands generated: the number of 
generated islands. For one side, if this indicator is high 
means that there are small clusters, which can be 
translated to an increase of resilience of the entire 
system, but on the contrary, this system is more 
complex to maintain each island.  

 Power imbalance in all the islands: this value is the 
sum of the imbalance on each island. Imbalance 
means the power that cannot be supplied using the 
generators located on each island. The intention is to 
have this value as closes to zero as possible.  

 Algorithm time: The sent time for each method to 
find a solution. Time is important when an incident 
appears on the grid and needs to be solved as soon as 
possible. 

 

To be able to compare the described techniques the scenarios 
have been performed using similar machines. This allows 
comparing the time needed for the calculations. The machine 
characteristics where the tests have been performed are Intel 
i5 8th Gen of CPU and 8 GB of RAM.  

 

IV. RESULTS 

The solution offered by the GCN deep learning method 
follows the principles of recent intentional islanding 
approaches as proposed by [12] and [22]. The goal of the 
splitting strategy is therefore to group the affected bus in a 
suitable cluster, so that the created islands are as stable and 
reliable as possible and are connected to at least one generator. 
As a result, it defines the island margins in a way that 
cascading failures are avoided in smaller islands and alleviates 
the impact of the disturbance this way. The visual results of 
this solution are depicted in Figure 4: Aggregeted results of 
the GCN deep learning method. and Table 1: Results of the 
two methods on the considered KPIs. shows the numerical 
results for each KPI. 



 
Figure 4: Aggregeted results of the GCN deep learning method. 

The result of the binary generic algorithm are depicted in the 
Figure 5, also the KPI are shown in the Table 1.  

The proposed islanding scheme for the first scenario 
isolates bus 4. Due to the fault, all the lines related to the bus 
have to be disconnected. As a result of these changes, the bus 
linked with the external grid is isolated from the rest because 
the connection has been broken due to the bus isolated. The 
rest of the buses remain connected with two generators that 
have enough power to maintain the supply to the loads.  

The solution of the second scenario creates two islands 
section_0 and section_1. Section_0 connects the external grid 
with most of the buses that have consumptions, maintaining 
the electric supply. Section_1 is an island of three buses self-
sustainable thanks to the energy resources located there. The 
imbalance result is negative because the isolated bus has some 
consumptions that cannot be supplied due to the isolated bus.  

The last scenario creates 13 islands, due to the grid size 
and to achieve the power supply to all the islands. All the 
created islands have enough power supply to maintain to all 
unless one, the section_9. The surrounding buses cannot 
supply this section because there is no enough power to 
sustain its consumption.  

 
Figure 5: Aggregated results of BGA method. 

 

Table 1: Results of the two methods on the considered KPIs. 

KPIs CNN BGA 

Scenario 1 
 

Disconnected lines 2 3 

Number of Islands 2 2 

Total powe imbalance [MW] -4.9547 0 

Time [s] 5.9 8.654 

Scenario 2 

Disconnected lines 5 5 

Number of Islands 3 2 

Total powe imbalance [MW] -3.5565 -0.482 

Time [s] 6.4 13.758 

Scenario 3 

Disconnected lines 19 17 

Number of Islands 8 13 

Total powe imbalance [MW] -3.901 -0.128 

Time [s] 10.3 174.607 

 

V. CONCLUSIONS 

The electric grid is a critical system, and for that reason is 
important to find methods to increase its resilience. When an 
issue appears on the grid, the system operator needs a fast 
solution to know how to react, but also important, how to 
maintain the power supply to all the consumptions. The 
proposed solution is to use an intentional islanding process to 



sectorize the grid in small portions. This article presents two 
methods of intentional islanding using different calculation 
methods where each one has advantages and disadvantages.  

Both methods present a new exploitation scenario 
improving the reliability of the entire system in case of an 
issue. The GCN deep learning method creates clusters, in a 
way that groups the affected bus in an appropriate island, 
aiming to maintain supply throughout the system, and in case 
of potential instability, avoid cascading failures to the rest of 
the grid. On the other hand, the BGA method isolates 
completely the affected bus from the rest of the system and 
sectorize the rest of the grid to improve its resilience for new 
situations.  

The binary genetic algorithm needs more time to find a 
solution, but it always tries to find the best solution for the 
islanding according to its criterion. This method has a strong 
connection between the size of the grid and the needed time. 
With the GCN deep learning method, the solution is faster, 
and can also be significantly improved using a GPU. 
However, the power imbalance on the islands is higher than 
the BGA method, which means that not all the consumptions 
can be supplied after the islanding. 

In conclusion, there are two methods: one that is fast but 
less sensitive to the possible effects, and the other that is 
slower and takes into account all the possibilities by avoiding 
power supply issues. 
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