
HAL Id: hal-01628797
https://inria.hal.science/hal-01628797v1

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human Computing for Handling Strong Corruptions in
Authenticated Key Exchange

Alexandra Boldyreva, Shan Chen, Pierre-Alain Dupont, David Pointcheval

To cite this version:
Alexandra Boldyreva, Shan Chen, Pierre-Alain Dupont, David Pointcheval. Human Computing for
Handling Strong Corruptions in Authenticated Key Exchange. CSF 2017 - 30th IEEE Computer
Security Foundations Symposium, Aug 2017, Santa Barbara, CA, United States. pp.159 - 175,
�10.1109/CSF.2017.31�. �hal-01628797�

https://inria.hal.science/hal-01628797v1
https://hal.archives-ouvertes.fr

A preliminary version of this paper appears in the 30th IEEE Computer Security Foundations Sympo-
sium, CSF 2017.

Human Computing for Handling Strong Corruptions in
Authenticated Key Exchange

Alexandra Boldyreva1, Shan Chen1, Pierre-Alain Dupont2,3, and David Pointcheval2,3

1 School of Computer Science, Georgia Institute of Technology
266 Ferst Dr., Atlanta, GA 30332, USA

{sasha,shanchen}@gatech.edu
2 Département d’informatique de l’ENS, École Normale Supérieure

CNRS, PSL Research University, 75005 Paris, France
3 INRIA

{pierre-alain.dupont,David.Pointcheval}@ens.fr

Abstract. We propose the first user authentication and key exchange protocols that can tolerate strong
corruptions on the client-side. If a user happens to log in to a server from a terminal that has been
fully compromised, then the other past and future user’s sessions initiated from honest terminals stay
secure. We define the security model for Human Authenticated Key Exchange (HAKE) protocols and first
propose two generic protocols based on human-compatible (HC) function family, password-authenticated
key exchange (PAKE), commitment, and authenticated encryption. We prove our HAKE protocols secure
under reasonable assumptions and discuss efficient instantiations. We thereafter propose a variant where
the human gets help from a small device such as RSA SecurID. This permits to implement an HC function
family with stronger security and thus allows to weaken required assumptions on the PAKE. This leads to
the very efficient HAKE which is still secure in case of strong corruptions. We believe that our work will
promote further developments in the area of human-oriented cryptography.

1 Introduction

Motivation and Focus. Consider a very common scenario when a user needs to log in to and
securely communicate to a server, with which she shares a secret. This problem has been extensively
studied under the name of Password-Authenticated Key Exchange (or PAKE), since the seminal paper
by Bellovin and Merritt [BM92]. But what happens if the client terminal the user logs in from has
been compromised? The machine may have a spyware keylogger recording the user’s keystrokes and
sending them to the attacker. A session hijacking malware may alter the legitimate computation and
impersonate the user or the server.
The existing security definitions for PAKE acknowledge the problem by modeling strong corruptions
when the adversary learns all the current state of the machine. However, none of the existing protocols
try to offer any solution in this case. Basically, the consensus is that in case of strong corruption, all is
lost to the user, and the only thing guaranteed is that this should not violate security of other users.
Indeed, cryptography cannot do much since the attacker invading a machine would know everything,
as it can read all secrets being stored or typed.
In this paper, we take a fresh look at this problem of strong corruptions with the intention of providing
a solution. The informal goal is as follows. Given fully untrusted machines, a user’s sessions (past and
future) from other trusted terminals are still protected, even though the same long-term secret is used.
As we said, it seems like nothing can be done cryptographically. But there are possibilities. The basic
idea is to store no long-term secrets on the machines, and instead, employ human computation or an
additional secure device such as RSA SecurID to boost security. (We think it is much more reasonable
to assume that the human or the small device not connected to a network stays uncompromised, than
terminals and other devices used for connecting to servers.) In a bit more detail, we ask the human
user to log in by computing (in her head or with an additional device) a function of the memorized

2

long-term secret and a challenge sent by the server, and entering it into the terminal. Then we can use
a PAKE-like protocol ran on the response as a common ephemeral secret, also known as a one-time
password.
A PAKE, that is usually used to prevent off-line dictionary attacks, here provides the guarantee that no
information is leaked about the one-time passwords in passive and even active sessions. It is important
to limit the information leakage about the long-term secret of the user, since one-time passwords, were
they in the clear, could have helped recovering the long-term secret. This is unfortunately the case
when they are generated with functions that are easy enough to be computed by a human. On the
other hand, if an additional device is used to derive the one-time passwords, their privacy may be less
critical, and so resistance to off-line dictionary attacks is not required anymore, which allows the use
of a weaker variant of PAKE. To make these ideas “work”, numerous problems need to be resolved to
finalize the solutions. We discuss these after we describe our security model.

Protocol and Security Definitions. The novelty behind our definitions is the unavoidable in-
corporation of a human player. We define a human authenticated key exchange (or HAKE) protocol as
an interactive protocol between a human user U and a server S, via a terminal T . The server can only
directly communicate with the terminal, and the user can only directly communicate with the terminal.
In addition, the messages sent by the terminal to the user must be human-readable, the messages sent
by the user to the terminal must be human-writable, and the long-term secret of the user must be
human-memorizable, unless an additional device is used for computing the ephemeral secrets.
Our security model is a non-trivial extension of the security model for PAKE protocols by Bellare,
Pointcheval, and Rogaway [BPR00], later called BPR, as we take into account really strong corruptions
and model human computations/interactions. As already mentioned, the goal of a HAKE protocol is to
ensure that a human user sharing the long-term secret with a server can establish a secure channel with
the server, in presence of a very strong attacker. Our model takes into account various types of attacks
possible in practice. As usual, to model a network compromise (e.g., taking advantage of an insecure
Wi-Fi), we allow the adversary to control the messages parties exchange. The attacker can read and
modify the communication between a server and a terminal. However, we assume that the channel
between the human user and the honest terminal is secure, since this is a direct communication from
the keyboard and the screen. At least, it is authentic and private, unless the terminal is compromised.
We thus also have to model malicious terminals and this, in fact, is the gist of our work. Even though
taking the full control of a computer is an extremely hard job, compromising its parts, such as a browser,
is very common. And such compromises can be of various strengths. Using a keylogger, screen capture
or similar malware the adversary can learn the terminal’s inputs/outputs. The attacker may also
learn some random coins or intermediate values from the internal state of the compromised computer.
This also models human “over-the-shoulder” attacks. Even though such compromise can be referred to
as honest-but-curious, the existing protocols, such as PAKE, do not offer protection against it. The
existing protocols only protect against weak corruptions, where the attacker just learns the session key
(with reveal-queries). This models the misuse of the session key, rather than the terminal compromise.
Even if security models for PAKE allow the attacker to learn the long-term secrets [BPR00] (with
corrupt-queries), or the internal states (in the UC framework [Can01]), this is only to model forward
secrecy, and so the security of past sessions, but nothing is guaranteed anymore for future sessions.
In our model, we let the adversary compromise terminals and learn all their inputs and the internal
state. Moreover, we consider an even more powerful adversary, who takes full control of the terminal’s
browser and can display outputs of its choice to be shown to the human user. Hence, the adversary can
interact with the human user, but is never given the long-term secret key memorized by the human
user (or stored on her secondary device).
The security goals are, to the most part, the standard privacy and authentication for key exchange
protocols: we want to make sure that an attacker cannot learn any information about the session key
nor make a party agree on a session key without the other party completing the protocol. Of course, if

3

a terminal is compromised, it is unreasonable to expect security of the current session. But this should
not compromise security of other sessions (past or future), even involving the same user.

HAKE Protocol: Generic Constructions and Instantiations. Let us assume we have a
human-compatible function family F (we will discuss it in more detail shortly). Let the server pick a
random challenge x (or increment a counter) and display it to the human user via the user’s terminal.
The user can compute (in her head or using a device) and enter the response r = FK(x), where K is the
long-term secret shared between the user and the server. The server can compute r on its end the same
way. Then, the terminal and the server execute a PAKE protocol on r (i.e., the response r plays the role
of the password in PAKE), and thus agree on a session key. Even though human-computable responses
may have low entropy, PAKE ensures security against off-line dictionary attacks, which guarantees
no information leakage about the ephemeral secret r in passive sessions, and even in active sessions,
excepted possibly the exclusion of one candidate per session. If the attacker compromises the terminal,
a suitable “unforgeability” property of F would prevent the adversary from breaking security of other
sessions.
But still, this protocol is not secure under our definition. An attacker, who learns an ephemeral secret
r = FK(x) for a given challenge x can later use it to successfully impersonate the server, by forcing
the same challenge. To prevent such replay attacks, we let the terminal and the server to jointly pick a
challenge using a coin-flipping protocol, that we implement using a commitment scheme with specific
properties. This is our first proposal, which we call the Basic HAKE : using a coin-flipping, we avoid
replay attacks, and with a suitable unforgeability’ property on the function family F we can guarantee
the security of the global process.
However, a malicious terminal can still ask specific (not necessarily random) challenges to the human
user, while impersonating the server, and the user has no way to detect such a malicious behavior.
Therefore security of the Basic HAKE requires that the HC function unforgeability holds even in
presence of multiple adaptive challenges. This may be too strong of a requirement in practice. We
thereafter enhance Basic HAKE and propose the Confirmed HAKE protocol, which allows parties to
detect potential bad behaviors, in order to react appropriately, and thus the construction tolerates
weaker HC function families. Requirements on HC function families then become more compatible
with functions that can be evaluated by human being without external help. The Confirmed HAKE
also provides explicit authentication of the parties.
Finally, we consider the case of a device-assisted protocol: with such an additional device, one can
implement more complex computations, and thus use stronger HC function families. This leads to less
critical ephemeral secrets: leaking information about several (x, FK(x)) pairs might not endanger the
long-term secret K. This allows us to rely on a weaker variant of PAKE, and hence get a device-assisted
HAKE that is more efficient.

Human-Compatible Function Family. We now turn our attention to the inner part of the con-
struction, the human-compatible function family. Security-wise, the adversary should be able to see
multiple challenge-response pairs, among which some of the challenges could be chosen by the attacker
(adaptive queries vs. non-adaptive queries). This is because the attacker, who compromises a terminal,
can eavesdrop on the communication with the human user. And an active attacker who took control
of the terminal can impersonate the server and ask the user to answer maliciously chosen challenges.
But still, the adversary should not be able to forge a valid response for a new random challenge, so
that future sessions remain safe.
Finding such a function family would be easy if we did not have the human-computability restrictions.
We survey some works on secure human-based computation later, but they are not directly suitable
for us. Luckily, a recent paper “Towards human computable passwords” by Blocki, Blum, Datta, and
Vempala [BBDV16] (almost) provides a solution. The paper proposes a way for a human user to
authenticate to a computer that does not offer privacy (honest-but-curious). Such a computer stores
a set of challenges and the user authenticates by providing a response to a random challenge. In their
concrete construction, a challenge is a set of images, the secret user memorizes is a correspondence
between images and numbers and the response is some basic function using addition of the digits

4

(modulo 10). The authors provide experimental evidence that their scheme can be used by a human
user. Namely, the secret can be memorized and the response can be computed within reasonable time
by an average human user. The authors also propose a tool to help secret memorization. While the
usability of their solution is not perfect, it is definitely a start and further research will hopefully yield
protocols with better usability.
Security-wise, the authors prove that recovering the user’s long-term secret from a number (below a
certain bound) of random challenge-response pairs (non-adaptive queries) is equivalent to solving the
random planted constraint satisfiability problem, and they state a conjecture about security of the
latter. To support the conjecture, the authors prove the hardness of the problem for any statistical
attacker, extending the results of [FPV15a]. Finally, it is proven that forging a response for a random
challenge is equivalent to recovering the secret. The bound on the number of revealed challenge-response
pairs corresponds to the maximum number of logins a user can execute, without endangering future
sessions.
The construction and security results from [BBDV16] are very useful for our work, but we cannot
use them as is. The problem is that it is not known whether security of their scheme holds when
the attacker can see responses to maliciously chosen challenges (adaptive queries). We extend their
analysis and prove a second conjecture that the unforgeability of their HC function family still holds
if the adversary can make very few adaptive queries. Our Confirmed HAKE is designed to rely on
such HC functions (whose security can tolerate very few adaptive queries): after the PAKE completion
using the first response, the human user selects a random challenge and enters it into the terminal,
who encrypts the challenge under the recently established session key and forwards the result to the
server. The server decrypts, computes the response, and sends it, also encrypted to the terminal. The
terminal decrypts and displays the response and the human user verifies it. If verification fails, the user
needs to take measures against suspected terminal infection and possibly abort the long-term secret.
Encrypting the terminal-server communication here is needed for authenticity in case of an honest
terminal, to prevent a network adversary to ask the server maliciously chosen challenges. We show
that this extended protocol limits the number of responses the attacker infecting the terminal can
obtain for malicious challenges of its choice (in that case, the adversary will not be able to make the
user pass the connection confirmation step). We argue that this addition, while adds a little bit more
work for the human user, does not violate human computability for our instantiation, i.e., that the
user can select a random challenge and verify the response. Furthermore, we show that the Confirmed
HAKE provides explicit authentication assuming that the encryption scheme is secure authenticated
encryption.
Our formal analysis on the HC function [BBDV16] demands a stronger conjecture stating one-more
unforgeability. This is similar to the analysis of blind signatures that relies on the one-more unforge-
ability of RSA [BNPS03], but we consider a sequential version of the one-more security definition, that
is weaker than the original one.
We want to note that, unlike [BBDV16], in our analysis, the bound on the number of challenge-response
pairs the attacker can see does not correspond to the total number of logins, but only to the number
of logins via compromised terminals, which is much more practical. This is because PAKE guarantees
security against network attackers when end-points are secure: responses remain completely hidden to
external players.
Unfortunately, it is not clear how to extend the results of [BBDV16] to expect resistance to many
adaptive queries (so that we could have a simpler protocol without the confirmation step). The only
possibility is the use of a pseudo-random function: after many adaptive queries, the response to a new
challenge is still random-looking to any adversary. But for such functions, one needs additional help,
hence our device-assisted scenario. One important advantage of such a stronger HC function family
(tolerating many adaptive challenges, and thus also many non-adaptive challenges) is that responses
are ephemeral secrets used once for authentication, but that can be revealed after use: as a consequence,
a weaker variant of PAKE is enough, since resistance to off-line dictionary attacks is not required any
more. We can expect more efficient constructions. Hence is our first construction in the device-assisted

5

context. But to limit interactions with the device and avoid collisions on the inputs, we thereafter adopt
a time-based challenge: r = FK(t), with an increasing counter t, based on an internal clock. While one
cannot guarantee perfect synchronization between the device and the server, we can tolerate a slight
time-shift since we anyway use timeframes that are long enough for the human to enter the response
read on the device (e.g., 30 seconds or 1 minute).

Related Work. As we mentioned, there are numerous results about PAKE, from the seminal paper
of Bellovin and Merritt [BM92,BPR00], but they offer no practical solutions for strong corruptions, in
order to protect future sessions. There are various cryptographic schemes involving human participants,
using graphical identification [vABHL03,KI96,KPZ98,JMM+99,DP00,TvO04,BCVO12,WK04], some
of them offer security against shoulder surfing. But they offer no security if the terminal is fully
compromised.
Matsumoto and Imai [MI91] proposed the first scheme to deal with human identification through
insecure channels (and via untrusted machines). The scheme has been improved by the follow up
works [WHT95,Mat96, LT99]. However, the schemes are only secure given very few login sessions or
require the human to memorize a long bitstring. We view the aforementioned paper by Blocki et
al. [BBDV16] as an improvement over the results of this line of work.
Dziembowski [Dzi10] also considers the problem of human-based key-exchange, but in a setting where
both parties are human and his scheme is only secure against a machine adversary assumed to be
unable to solve CAPTCHAs.
There is a long sequence of papers [JW05,BC08,BCD06,MP07,LMM08,Kho14,Kho15] following the
work by Hopper and Blum [HB01] offering protocols for the same problem of secure human identifica-
tion over insecure channels, whose security is based on the Learning Parity with Noise problem. With
error-correcting codes, such protocols could be adapted to generate deterministic responses (which is
required by our HC function definition), but usability will not be good for the same reason as most
HB-type protocols are not really suitable for humans. Personal devices generating one-time passwords
have been commercially available for years [RSA], motivating IETF to standardize their constructions
and use in many protocols [Hal95,HMNS98,Nys07,MBH+05,MMPR11]. The work [MMPR11] is par-
ticularly relevant as it defined a time-based one-time password algorithm based on HMAC [MBH+05].
Interestingly, while dedicated token generators are the most secure, software applications running on
mobile phones are now commonly used [Goo].
Some papers also explore PAKE schemes with one-time passwords. Paterson and Stebila [PS10] define
a security model for one-time PAKE, explicitly considering the compromise of past (and future) one-
time passwords, but still recovering the security after a compromise, thanks to the ephemeral property
of the one-time password and its change over the time. Unfortunately, their construction is a generic
one, using a PAKE as a black-box. It thus cannot be more efficient than a PAKE, whereas preventing
off-line dictionary attacks is not required in this setting. Our goal is to get a more efficient construction
than any PAKE protocol, which we achieve with our device-assisted HAKE in Section 6. The authors
of [PS10] mention the possibility of using a secure token to generate the one-time passwords and then
running one-time-PAKE on it, but they did not provide an explicit protocol or security analysis.

Open Problems. We hope that our work will stimulate further results about secure human-compatible
cryptographic function families. We leave to future works to formally prove the unforgeability property
(against several adaptive queries) of the HC function from [BBDV16], and possibly finding other HC
function families with such security. Those would allow to avoid additional devices and still have a
completely proven efficient HAKE protocol. Improving the usability of the scheme from [BBDV16]
will indeed imply improved HAKE protocols, and may have other applications. Another interesting
question is to design a coin-flipping protocol with a human participant. Such protocol could be used
within HAKE to prevent the attacker to ask malicious challenges. Eventually, after this first step of
modeling HAKE protocols with symmetric long-term secrets shared between the user and the server,
asymmetric secrets would be important to consider. This would be similar to the so-called verifier-based
PAKE that helps moderate the impact of corruption of the server.

6

2 Human Authenticated Key Exchange (HAKE)

2.1 HAKE Definitions

In this section, we define a human authenticated key exchange (HAKE) protocol, as an extension
of [BPR00].

Protocol Participants. We fix the set of participants to be ID = {U`}`∪{T}∪{S}, which contains
finite number of human users U`, one terminal T and one server S. And we assume that each member is
uniquely described by a bitstring. In the real life, each user U` can communicate with multiple servers
via multiple terminals. But we justify below why considering a single terminal and a single server is
sufficient.

Human-Compatible Communication. Here we present several notions that our protocol definition
will use. Since it is hard to formalize human computational abilities, our definitions are not mathe-
matically precise.
We say a message is human-readable if this is a short sequence of ASCII symbols, or images; human-
writable if this is a short sequence of ASCII symbols1; human-memorizable if this is simple enough to
be memorized by an average human, e.g., a simple arithmetic rule like “plus 3 modulo 10”. A function
is human-computable if an average human can evaluate it without help of additional resources other
than his head, e.g., simple additions modulo 10. A set is human-sampleable if an average human can
choose a message from the set at random according to the appropriate distribution without help of
additional resources other than his head.

HAKE Syntax. We now formally describe a HAKE protocol.

Definition 1 (HAKE Protocol). A human authenticated key exchange protocol is an interactive
protocol between a human user denoted U ∈ {U`}` and the server S, via the terminal T . It consists of
two algorithms:

– A long-term key generation algorithm LKG which takes as input the security parameter and outputs
a long-term key.

– An interactive key-exchange algorithm KE which is ran between U , T , and S. At the beginning,
only U and S take as input the same long-term secret key and, at the end, T and S each outputs
a session key skT and skS respectively. In case of additional explicit authentication, U and/or S
may either accept or reject the connection.

The above algorithms must satisfy the following constraints:

– S can only communicate with T ;
– U can only communicate with T , and
• the message sent by T to U must be human-readable, and
• the message sent by U to T must be human-writable;

– The long term secret and the state of U , if any, must be human-memorizable for the duration
necessary.

The correctness condition requires that for every security parameter and for every long-term key
output by LKG, in any execution of KE , U and S both accept the connection (in case of explicit
authentication), T and S complete the protocol with the same session key (skT = skS).

2.2 Formal Security Model

In this section, we formally define the security model for a HAKE protocol, which is part of our main
contributions. As already mentioned, the goal of a HAKE protocol is to ensure that a human user
1 It is also possible to incorporate mouse clicks into that, but we do not deal with it for simplicity.

7

sharing the long-term secret with a server can help a terminal to establish a secure channel with the
server, in presence of a very powerful attacker, including strong corruptions of terminals.
As usual, to model multiple and possibly concurrent (except for the human users) sessions we consider
oracles πjP , where j ∈ N and P ∈ ID. For human oracles, sessions can only be sequential, and not
concurrent, meaning that humans are not allowed to run several sessions concurrently (a new session
starts after the previous one ends). This is a reasonable assumption for human users. We note that
since terminals do not store long-term secrets and do not preserve state between sessions, multiple
terminal oracles model both multiple sessions ran from the same or different terminals.
Hence, in the following, we will consider several human users U` with different long-term secret keys,
one terminal T , and one server S, with all the users’ long-term secret keys. For all of them, multiple
instances will model the multiple sessions (either sequential for U`, or possibly concurrent for T and
S). However, while the server can concurrently run several sessions, we will also limit it to one session
at a time with each user: the server will not start a new session with a user until it finishes the previous
session with the same user.
Because of our specific context with a human user, there is a direct communication link between the
user and the terminal, and so we can assume that the channels between instances πiU`

and πjT are
authenticated and even private (unless the terminal oracle is compromised, as defined below), whereas
the communication between the terminal and the server is over the internet, and so the channels
between instances πjT and πkS are neither authenticated nor private.

Security Experiments. We consider the following security experiments associated with a given
HAKE protocol and an adversary A, to define the two classical security notions for authenticated key
exchange: privacy (or semantic security of the session key) and authentication. In these experiments,
the adversary A can make the following queries:

– Compromise(j, `), where j, ` ∈ N – As the result of this query, the terminal-oracle πjT is considered
to be compromised, and the adversary gets its internal state, i.e. the random tape, temporary
variables, etc. If the terminal-oracle πjT is not linked yet to a user, it is linked to user U` with the
user oracle πiU`

for a new index i, otherwise ` is ignored;
– Infect(j), where j ∈ N – As the result of this query, the terminal-oracle πjT is considered to be

infected. WLOG, we limit this query to compromised terminals only;
– SendTerm(j,M), where j ∈ N and M ∈ {0, 1}∗ ∪ {Start(`)} – This sends message M to πjT . A

specific Start(`) message asks the terminal to initiate a session, to be done with a user oracle
πiU`

for a new index i. But only if the terminal-oracle πjT is not linked yet to a user, otherwise
` is ignored. To compute its response to A, πjT may internally talk to its linked human oracle
according to the protocol. In addition, if πjT is compromised, it will additionally give to A the
messages exchanged with its linked human oracle2.

– SendServ(k,M), where k ∈ N and M ∈ {0, 1}∗ – This sends message M to oracle πkS . The oracle
computes the response according to the corresponding algorithm and sends the reply to A.

– SendHum(j,M) where j ∈ N and M ∈ {0, 1}∗ (and human-readable) – This sends a message to
the πjT -linked human oracle πiU`

on behalf of πjT . This is allowed only if the terminal πjT is infected
(and thus compromised, which implies the existence of a partenered human oracle). The oracle
computes the response according to the corresponding algorithm and sends the reply to A.

– Test(j, P), where j ∈ N and P ∈ {T} ∪ {S} – If skP has been output by πjP , then one looks at
the internal bit b (flipped once for all at the beginning of the privacy experiment, while b = 1 in
the authentication experiment). If b = 1, then A gets the real session key skP , otherwise it gets a
uniformly random session key. This query is only allowed if πjP is fresh (defined below).

In the privacy experiment, after having adaptively asked several of these oracle queries, the adversary
A outputs a bit b′ (a guess on the bit b involved in the Test-queries). The intuition is that the adversary
2 The messages to the human oracle can be already known to the adversary as they are a function of the oracle’s random
tape. But we give the adversary the whole communication for convenience.

8

should not be able to distinguish the real session keys from independent random strings. While in the
authentication experiment, the goal of the adversary is to make an honest party to successfully
complete the protocol execution thinking it “built a secure session” with the right party, whereas that
is not the case. In order to formally define the goals and the advantages of the adversary, we present
the notions of partnering and freshness, as well as the flags accept and terminate.

Flags. In order to model authentication, we follow BPR [BPR00], who defined two flags: accept
essentially means that a party has all the material to compute the session key while terminate means
that a party thinks that it completes the protocol execution thinking it communicates with the expected
other party (a human user in our case). These two flags are initially set to False, and they are explicitly
set to True in the description of the protocol. Note that in Definition 1 U and/or S accept if and only
if in the end the terminate flag is set to True, otherwise, U and/or S reject.

Partnering. Whereas πiU`
and πjT are declared as linked at the initialization of the communication

because of the authenticated channels between users and the terminal, partnering between πiU`
and πkS

is a posteriori : they are indeed declared partners in the end of the protocol execution if they use the
same long-term key and both accept. Then we define partnering between πjT and πkS , by saying that
they are declared partners if πkS and U i` are partners and U i` is linked to πjT .

Freshness. Informally, the freshness denotes oracles that hold sessions keys that are not trivially
known to the adversary.
For P ∈ {T} ∪ {S}, the oracle πjP is fresh, if no Test-query has been asked to πjP nor its partner, and
none of πjP or its partner have been compromised (πjT is fresh if it has not been compromised, and πkS
is fresh if the terminal linked to the partner human user has not been compromised.)

Security Notions. In the privacy security game, the goal of the adversary is to guess the bit b
involved in the Test-queries. Then we measure the success of an adversary A, that outputs a bit b′, by
AdvprivHAKE(A) = 2 · Pr[b′ = b]− 1. This notion implies implicit authentication, which essentially means
that no one else than the expected partners share the session key material.
For explicit authentication, we define the authentication security game: the goal of the adversary is
essentially to make a player terminate (flag terminate set to true) without an accepting partner (flag
accept set to true). But in our case with compromised or even infected terminals, this is a bit more
complex than usual. We thus split the authentication security in two parts:

– Server-authentication: a user oracle should not successfully terminate a session if there is not
exactly one partner server oracle that has accepted. Then, we denote Advs-authHAKE(A) the probability
the adversary A makes such a bad event happens;

– User-authentication: a server oracle should not successfully terminate a session if there is not
exactly one partner user oracle that has accepted. Then, we denote Advu-authHAKE(A) the probability
the adversary A makes such a bad event happens.

Eventually, for any adversaries A,B there exists an adversary C against the authentication security for
which we define AdvauthHAKE(C) = max{Advs-authHAKE(A),Advu-authHAKE(B)}.
Passive Sessions. We now define a new notion of passive session, which extends the Execute-queries
in the standard BPR model [BPR00]. Recall that Execute-queries allow the adversary to get full
transcripts of communication between honest parties. Even though the same can be achieved via Send-
queries, in the security analyses it is useful to count the number of observed honest sessions and the
number of maliciously altered sessions separately. In addition, we will not limit to full sessions: the
adversary can stop forwarding honest flows, making the session abort. Then, there can be passive
full/partial-sessions:

Definition 2 (Passive Session). A (full or partial) session between oracles πjT and πkS is called
passive, if the messages of all queries SendTerm(j, ·) or SendServ(k, ·) are either Start(·) or themselves
an output of one of these two queries type. If flows are numbered, this also implies that the actual order

9

of flows between T and S has not been modified. If all the outputs have been forwarded as inputs, this
is a passive full-session, otherwise this is a passive partial-session.

Sessions that are not passive are called active, since the adversary altered something in the honest
execution.
We believe this notion is stronger than the Execute-queries defined in the BPR security model, since
the adversary does not need to decide from the beginning if all the exchanges will be passive or not. A
can start with a passive sequence and decide at some point to stop (passive partial-session) or behave
differently in an adaptive way (active session).

Resources of the Adversary. When doing security analyses, for every adversary and its privacy
and authentication advantages, one also has to specify the adversarial resources such as the running
time t, the number of oracle queries, the number of player instances, and the numbers npassive/nactive
of (fully) passive and active sessions the adversary needs.

Discussion. We discuss a bit more about our security definitions to explain why they capture the
practical threats. First, a passive network adversary is able to observe legitimate communications via
SendServ and SendTerm-queries (these will satisfy the passive sessions definition). An active network
adversary can modify legitimate messages or impersonate a terminal or a server by injecting some
messages of its choice, again, via SendServ and SendTerm-queries. This models, in the standard way,
possible insecurity (in terms of privacy or authentication) of the network channel between terminals
and servers.
Passive-insider attacks (such as keylogger and screen capture malware compromising computers or
their browsers) are modeled by Compromise-queries followed by SendTerm-queries. The former gives
the adversary full information about the terminal’s internal state, including its random coins and
registers’ contents, and the latter reveals to the adversary the inputs from the human.
We consider even more powerful attackers who can take full control of the computers or some of their
crucial applications such as browsers. In this case, in addition to learning the internal state and all the
inputs, the adversary can impersonate the honest terminal while sending adaptively selected messages
to the human. We model this by Infect and SendHum-queries.
Our model captures all the above scenarios and moreover, it takes into account the possibility of
multiple simultaneous attacks, such as colluding network and malware adversaries. One can notice that
attacks involving Infect-queries are stronger than those with Compromise-queries: when an adversary
infects a terminal, it takes full control on it, with knowledge of its internal state, and thus plays on its
behalf, using SendServ and SendHum-queries.
Note that in any case, we are concerned with the security of a new session, in terms of privacy and
authentication, over an honest terminal, that is neither compromised nor infected. Such security should
be guaranteed even though the other sessions involving the same human with the same long-term secret
were carried over compromised terminals, and if possible even over infected terminals. We model privacy
via the Test-query and with the appropriate privacy advantage definition. We model authentication
via the corresponding advantage definition.
We also stress that we do not consider corruption of the long-term secrets, since they are known by the
users and the server only, and we do not allow to corrupt them. Would the long-term secret be leaked,
we cannot guarantee any security for future sessions. The interesting open problem of dealing with
such corruptions could be addressed using an asymmetric long-term secret: a verifier-based variant
that would just provide an encoded version of the user’s secret to the server.

3 Building Blocks

For the sake of completeness, the building blocks that will be used in our constructions are detailed in
Appendix A. Since most of the details are useful for the proofs only, we just recall or present here the
most important descriptions.

10

3.1 Human-Compatible Function Family

The protocols we propose in the next sections use special function families, which we call human-
compatible (HC).

Human-Compatible Function Family: Syntax. A human-compatible (HC) function family is
specified by the challenge space C, the key generation algorithm KG, which takes input the security
parameter and outputs a key K , and the challenge-response function F that takes a key K and
a challenge x ∈ C and returns the response r = FK (x). We require that (see Section 2.1 for the
definitions):

1. for every K output by KG and every x ∈ C, both x and FK (x) are human-writable and human-
readable;

2. C is human-sampleable.

We also define the Only-Human HC Function Family (where an additional device is excluded), which
is the human-compatible function family that also has:

1. for every K output by KG, FK (·) is human-computable;
2. every K output by KG is human-memorizable;

Human-Compatible Function Family: Security. In an authentication protocol with challenge-
response pairs, intuitively, we would like that any successful authentication to a server should involve
an evaluation of the function by the human user. So we expect no compromised/infected terminal to
successfully authenticate to the server one more time than it interacted with the human. The security
notion from the function is thus a kind of one-more unforgeability [BNPS03]. But here, any query to
an FK (·)-oracle should help to immediately answer FK (x) to the current challenge x, since a second
challenge will come from a new session that has closed the previous one, and so the previous challenge
is obsolete: the adversary cannot store the n+1 challenges, ask n queries, and answer the n+1 initial
challenges. In our protocols, the adversary gets a random challenge (GetRandChal-query), can ask
any FK (·)-query (GetResp-query), but should answer that challenge (TestResp-query), otherwise the
failure is detected. After too many failures (recorded in the unvalidated-query counter ctr) one may
restrict oracle queries. Hence our following security notion which formalizes these restrictions to the
adversary.

GetRandChal()

GetResp()

TestResp()

if ctr < η

Figure 1. Graph of the sequential oracle calls in the η-unforgeability experiment

η-Unforgeability. As said above, we thus define a kind of sequential one-more unforgeability ex-
periment, with a limit η on the unvalidated-query counter ctr, where the queries follow the graph
presented on Figure 1. Given an HC function family F , an adversary A, and a public parameter η, one

11

first generates K with KG and initializes ctr ← 0. Then the adversary can ask the following queries,
with possible short loops on the GetRandChal-query and direct TestResp-attempt right after getting
the challenge:

1. GetRandChal() – It picks a new x
$← C, marks it fresh and outputs it;

2. GetResp(x∗) – If ctr < η and x∗ ∈ C, it returns FK (x∗) and increments ctr. It also marks the fresh
x as unfresh. Otherwise, it outputs ⊥;

3. TestResp(r) –
– If FK (x) = r and x is fresh, the adversary wins;
– If FK (x) = r and x is unfresh, it decrements ctr, marks x as used, and outputs 1;
– Otherwise, it outputs 0.

Because of the sequential iterations, any TestResp-query relates to the previous GetRandChal-query.
One can thus consider one memory-slot to store the challenges, but one only at a time: any new challenge
replaces the previous one. The dashed line from GetRandChal to GetResp emphases the restriction on
the number of unvalidated queries. When ctr ≥ η, the adversary has no more choice than immediately
trying an answer for the random challenges. The bound η represents the maximum gap that is allowed
at any time between the number of GetResp-queries and the number of correct TestResp-queries. Note
that a random challenge x can only be either fresh, unfresh, or used, and that marking it as one of
those erases the other flags. Intuitively, a fresh challenge has not been compromised in any way, and
succeeding at a TestResp on it would indicate the unforgeability has been breached, hence the winning
status for the adversary, and the experiment stops. A challenge can switch to the unfresh state if the
adversary asks the GetResp-oracle for an answer. There are only two ways for the experiment to stop:
if the adversary wins with a correct TestResp-query on a fresh challenge; or if the adversary aborts, it
then looses the game. We stress that the adversary can query the GetResp-oracle on any x∗ of its choice,
and so possibly different from the current challenge x obtained with the previous GetRandChal-query.
But we give it a chance to still answer correctly to the challenge x with the correct TestResp-query
that, on an unfresh challenge, cancels the increment of the counter ctr. This counter represents the
gap between the number of GetResp-queries and the number of correct TestResp-queries on random
challenges. When one limits ctr to be at most 1, any GetResp-query should be immediately followed
by a correct TestResp-query (one-more unforgeability).
This definition is a weaker notion than the one-more unforgeability [BNPS03], but still allows the
adversary to exploit malleability: For example, with the RSA function, for a random challenge y, the
adversary can ask a GetResp-query on any y′ = y · re mod n, for an r of its choice, so that it can then
extract an e-th root of y. But this would not help it to answer a next fresh challenge.

2-Party η-Unforgeability. Unfortunately, the above clean security notion is not enough for our
applications, as client-server situations and man-in-the-middle attacks allow more complex ordering of
the queries by the adversary. We therefore present a variant of this experiment below, that is suitable
for a protocol involving two parties (hence in the following b ∈ {0, 1}).
Given an HC function family F , an adversary A, and a public parameter η, one first generates K with
KG and initializes ctr← 0. Then the adversary can ask the following queries:

1. GetRandChal(b) – It picks a new xb
$← C, marks it fresh and outputs it;

2. GetResp(x∗) – If ctr < η and x∗ ∈ C, it returns FK (x∗) and increments ctr. It also marks all fresh
xb as unfresh. Otherwise, it outputs ⊥;

3. TestResp(r, b) – If xb exists:
– If FK (xb) = r and xb is fresh, the adversary wins;
– If FK (xb) = r and xb is unfresh, it decrements ctr, marks xb as used and outputs 1;
– Otherwise, it outputs 0.

The main difference with the previous experiment are the two memory-slots for challenges x0 and x1.
But still, any GetResp-query must be followed by a correct TestResp-query to limit ctr from increasing
too much.

12

The advantage of any adversary A against the unforgeability, Advη-ufF (A) is the probability of winning
in the above experiment (with a correct TestResp-query on a fresh challenge). Such a success indeed
means that the adversary found the response for a new random challenge, without having asked for
any GetResp-query.
The resources of the adversary are the polynomial running time and the numbers qc, qr, qt of queries
to GetRandChal, GetResp and TestResp oracles, respectively. Of course it is crucial whether there are
secure instantiations of HC function families. We propose some in Section 5.

Indistinguishability. For some constructions, we will expect the sequence of answers {FK (xi), i =
0, . . . , T} for challenges xi (either adversarially chosen or not) to look random, or at least any new
element in the sequence is not easy to predict from the previous ones.
For the sake of simplicity, we assume that there exists a global distribution D with large enough
entropy D such that any such sequence is computationally indistinguishable from DT+1: We de-
note Advdist-cF (D,A) the advantage the adversary A can get in distinguishing the sequence {y0 =

FK (x0), . . . , yc−1 = FK (xc−1)} for a random K , from (y0, . . . , yc−1)
$← D × . . . × D. For the latter

distribution, the probability to guess yc−1 from the view of (y0, . . . , yc−2) is 1/2D.
(Weakly) pseudo-random functions definitely satisfy this property. But from a more practical point of
view, the function implemented in the RSA SecurID device [RSA] is believed to satisfy it too, with the
xi being a time-based counter.

3.2 Commitment Scheme

We will also use a commitment scheme, a primitive allowing a user to commit on a value x so that the
receiver does not learn any information about x, but with the guarantee that the user will not be able
to change his mind later.

Commitment Scheme: Syntax and Security. A (non-interactive) commitment scheme CS is
defined by Setup that defines the global public parameters, and two other algorithms:

– Com(x): on input a message x, and some internal random coins, it outputs a commitment c together
with an opening value s;

– Open(c, s): on input a commitment c and then opening value s, it outputs either the committed
value x or ⊥ in case of invalid opening value.

The correctness condition requires that for every x, if (c, s) = Com(x), then Open(c, s) outputs x.
The usual security notions for commitment schemes are the hiding property, which says that x is
hidden from c, and the binding property, which says that once c has been sent, no adversary can open
it in more than one way.
For the security of our protocols we will need additional properties, such as extractability (a simulator
can extract the value x to which c will be later opened) and equivocality (a simulator can generate
some fake commitments c it can later open to any x). These features are provided from trapdoors,
generated by an alternative setup algorithm and privately given to the simulator. More details can be
found in Appendix A. But in the following, we will denote AdvCS(A) the advantage an adversary can
get against any of these security notions.

Commitment Scheme: Instantiation. An efficient instantiation, with all our expected security
properties, in the random oracle model [BR93], can be described as follows:
Given a hash function H onto {0, 1}λ,

– Com(x): Generate r $← {0, 1}2λ and output (c← H(x, r), s← (x, r));
– Open(c, s = (x, r)): if H(s) = c, return x, otherwise, return ⊥.

In the random oracle model, this simple scheme is trivially computationally binding (H is collision-
resistant) and statistically hiding (for a large r ∈ {0, 1}2λ, there are almost the same number of possible
r —actually, 2λ— for any x, that would lead to the commitment c) in the ROM.

13

3.3 Password-Authenticated Key Exchange

We will also make (black-box) use of a password-authenticated key exchange (PAKE) protocol. A
PAKE protocol is an interactive protocol between two parties who share a common low entropy secret
(a password) for an execution with session id PAKEsid. At the end of the protocol, the parties output a
session key. The correctness requires that any honest PAKE execution with matching passwords results
in the parties outputting the same session key.
The security model can be defined in the UC framework [CHK+05], with an ideal functionality Fpake.
We will denote AdvpakePAKE(S,A,Z) the advantage the distinguisher Z can get in distinguishing the ideal
world with the simulator S and the real world with the adversary A. Again, more details can be
found in Appendix A, but an efficient instantiation, satisfying all our expected security requirements
is the classical EKE [BM92] protocol that encrypts a Diffie-Hellman key exchange, using the password
as encryption key. It has been proven UC-secure [ACCP08], under the Computational Diffie-Hellman
assumption in the ideal-cipher model.

3.4 Authenticated Encryption

Eventually, for explicit authentication of the players, we will make use of an authenticated encryption
scheme [BN00] ES = (Enc,Dec), where decryption should fail when the ciphertext has not been
properly generated under the appropriate key. This will thus provide a kind of key confirmation, as
usually done to achieve explicit authentication. However, some critical data will have to be sent, hence
a simple MAC would not be enough, privacy of the content is important too.
For an authenticated encryption scheme, there are two main security notions: The semantic security,
a.k.a IND-CPA, prevents any information being leaked about the plaintexts, while the integrity of
ciphertexts, a.k.a. INT-CTXT, essentially says that no valid ciphertext can be produced without the key.
The definitions of the corresponding advantages Advint-ctxtES (A) and Advind-cpaES (B), for any adversaries
A,B can be found in [BN00]. In addition, for adversaries A,B there exists an adversary C for which
we define AdvauthencES (C) = max{Advint-ctxtES (A),Advind-cpaES (B)}.
One simple way to achieve secure authenticated encryption is by using a generic Encrypt-then-MAC
approach [BN00] or by using a dedicated scheme such as OCB [RBBK01].

4 Generic HAKE Protocols

In this section, we propose two generic HAKE protocols. They build on a simple idea of composing a
human-compatible (HC) function family with a password authenticated key exchange (PAKE) protocol.
More precisely, a server chooses a random challenge x, the user U`’s response is r = FK`

(x), where F
is an HC function family and K` is the long-term secret shared between the user and the server. And
finally the terminal and the server execute the PAKE on the one-time password r, as in [PS10]. As
already mentioned, whereas the server supports concurrent sessions, since the human does not, there
is no sense in maintaining multiple session states for one human user.
However, a straightforward replay attack is possible. The adversary can first just eavesdrop a session by
compromising a terminal, and then play on behalf of the server with the observed challenge-response
pair (x, r), even when the user uses an honest terminal. The main issue is that there is no reason for the
challenge to be distinct in the various sessions if we do not add a mechanism to enforce it. In [PS10]’s
constructions, they assume the server is stateful to prevent it. However, we can do better.
This is the goal of our first protocol: it adds a coin-flipping protocol between the terminal and the server
to avoid either party to influence the challenge x, and thus to avoid the aforementioned replay attacks.
We prove it secure (in terms of privacy, which implies implicit authentication) assuming security of
commitments (underlying the coin-flipping), HC function family, and PAKE. However, the concrete
security depends on the bound η, which is large enough for our device-based HC function family, but
the Only-Human HC function family construction we will propose in Section 5 (and its underlying
hardness problem) does not tolerate a high η.

14

Human U`(K`) Terminal T Server S(K`)

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT)
`, c−−−−−−−→

x←−−−−−−− x← g(xS + xT)
xS←−−−−−−− xS

$← Z|C|
r ← FK`(x)

r−−−−−−−→ s−−−−−−−→ xT ← Open(c, s)
x← g(xS + xT)

r ← FK`(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁PAKEsid = (`, c, xS , s)

Outputs skT Outputs skS

Figure 2. Basic Generic HAKE Construction

Hence, the goal of our second HAKE protocol is to add explicit authentication, which will help limiting
the number of malicious challenge-response pairs the adversary can see, or at least to detect them: the
user can then suspect the terminal to be infected. We still need the concrete HC function to tolerate
at least one malicious challenge, but this remains a reasonable assumption.

4.1 The Basic Generic HAKE

Our first construction makes use of a commitment scheme, an HC function family, and a PAKE.

Description. Let (KG, F) be a human-compatible function family with challenge space C, let CS =
(Setup,Com,Open) be a commitment scheme, let PAKE be a password authenticated key exchange
protocol and let g : Z|C| → C be a bijection. We construct the Basic HAKE (LKG = KG,KE). Its
interactive KE protocol is described on Figure 2, here are the descriptions.

– KE execution:
1. When the user invokes a terminal to establish a connection with the server, the terminal

chooses its part of the challenge xT , and commits it for the server. It also sends the user’s
identifier `;

2. Upon receiving the commitment, the server waits until any previous session for U` finishes,
then it chooses its part of the challenge xS , and sends it in clear to the terminal;

3. The terminal then combines both parts xT and xS to generate the challenge x = g(xS + xT),
and asks x to the user;

4. Upon reading the challenge x, the user computes and writes down the response r for the
terminal;

5. When the terminal receives the response r from the human user, it opens its commitment to
the server, and can already starts with the PAKE protocol execution;

6. Upon receiving the opening value of the commitment, the server opens the latter to get xT .
It can then combine both parts xT and xS to generate the challenge x = g(xS + xT), and
compute the response r. It can then proceed with the PAKE protocol too.

The terminal and the server both run the PAKE protocol with their (expected) common input
r and session id PAKEsid that is the concatenation of the transcript. At the end of the PAKE
execution, they come up with two session keys, skT and skS , respectively, that will be equal if both
parties used the same r in the PAKE. Since we do not consider explicit authentication, accept and
terminate flags are not set.

Correctness of the HAKE construction follows from correctness of the building blocks.

Security Analysis. For Basic HAKE, we only assess privacy of the session key, since this protocol
does not provide explicit authentication.

Theorem 3. Consider the Basic HAKE protocol defined in Figure 2. Let A be an adversary against
the privacy security game with static compromises, running within a time bound t and using less than
ncomp compromised terminal sessions, nuncomp uncompromised terminal sessions, nserv server sessions

15

Human U`(K`) Terminal T Server S(K`)

accept← False accept← False
terminate← False terminate← False

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT)
`, c−−−−−−−→

x←−−−−−−− x← g(xS + xT)
xS←−−−−−−− xS

$← Z|C|
r ← FK`(x)

r−−−−−−−→ s−−−−−−−→ xT ← Open(c, s)
accept← True x← g(xS + xT)

r ← FK`(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁PAKEsid = (`, c, xS , s)

Parses key: (kT ||skT) Parses key: (kS ||skS)
accept← True

xU
$← C xU−−−−−−−→ XU ← EnckT (xU)

XU−−−−−−−→ xU ← DeckS (XU)
Verifies rU

rU←−−−−−−− rU ← DeckT (RU)
RU←−−−−−−− RU ← EnckS (FK`(xU))

Outputs skT Outputs skS
terminate← True 0/1−−−−−−−→ terminate← True

Figure 3. Confirmed HAKE Construction

and nactive ≤ ncomp + nuncomp + nserv active sessions. Then there exist an adversary B1 attacking the
2-party ncomp-unforgeability of the HC function family with qr, qc, qt queries of the corresponding type,
an adversary B2 and a distinguisher B3 attacking UC-security of the PAKE with a simulator Spake as
well as an adversary B4 against the commitment scheme, all running in time t, such that

AdvprivHAKE(A) ≤ Adv
ncomp-uf
F (B1) + 2 · AdvpakePAKE(Spake,B2,B3) + 6 · AdvCS(B4) ,

where qr ≤ ncomp, qt ≤ nactive, and qc ≤ nuncomp + ncomp + nserv.

The proof is in Appendix C.

Discussion. Concrete security of the HC function family is definitely the most crucial compared to
that of other building blocks, since it is hard to balance strong security and usability. This is why we
emphasize this in the above theorem.
We note that the sessions which lead to TestResp-queries have non-oracle-generated flows and there-
fore correspond to classical on-line dictionary attacks: the adversary simply tries to impersonate the
user/terminal to the server (or vice-versa), with a guess for the answer r (unless the query has been
asked to the GetResp-oracle). Indeed, sessions with GetResp-queries on the exact challenges have com-
promised terminals and correspond to a spyware keylogger that records random challenge-response
pairs. If using such a compromised terminal can be considered rare, this remains reasonable. Eventu-
ally, the sessions which lead to GetResp-queries on different challenges are the most critical, but they
should likely fail. And we expect them to be quite exceptional. As remarked above, such sessions likely
conclude to a failure: no concrete session is established with the server the user wanted to connect to (if
the HC function family is still secure after such adaptive queries). If the user can detect such a failure,
he can run away from this terminal. We now propose a way for the user to detect such a dangerous
terminal, and thereafter take appropriate measures. At the same time, our next proposal will achieve
explicit authentication.

4.2 The Confirmed HAKE

We now enhance the Basic Generic HAKE by adding two confirmation flows (see Figure 3) that allow
the user to detect a bad behavior of the adversary, who compromised the device, and take appropriate
measures. This can happen in two different scenarios: the adversary just compromised a terminal and
additionally plays on behalf of the server, which allows it to ask any query to the user through the
terminal, or the adversary infected a terminal that allows it to directly ask any query to the user.
As said above, such dangerous cases lead to no connection with the expected server. The user will
thus check whether he built a secure session with the expected server, who should be able to answer

16

to a fresh random challenge. This is performed under the fresh key, established with the PAKE, using
a secure authenticated encryption. As shown below, the two additional flows will not only provide
explicit authentication, but also allow the user to detect such bad events and take measures. For this,
it is important that the user does not start multiple sessions concurrently, which is anyway not realistic
for a human (as already noticed above).

Description. The protocol is similar to Basic HAKE, but it uses an additional building block, an
authenticated encryption scheme ES = (Enc,Dec), that is used in the new last stage of the protocol.
The description is in Figure 3.
Since we now consider the authentication of the players, we additionally include accept and terminate
flags in the protocol: The user U` accepts after sending the first response while the server S accepts
after the PAKE. Then both terminate when they have the confirmation of the other partner. More
precisely, the user terminates after sending the last bit (1 for acceptance and 0 for rejection) to the
terminal (thus having verified the server’s response in the last stage), and the server terminates after
sending the encrypted response (thus having checked the terminal can generate a valid ciphertext).
Note that if the protocol terminates, skT and skS must be equal, since our additional flows act as
confirmation flows for the PAKE.

Security Analysis. We now present Theorem 4 regarding the security of our Confirmed HAKE in
the HAKE privacy and authenticity experiment.
While it relies on the same security properties of PAKE, authenticated encryption, commitment scheme
and HC function, a critical parameter is added, the number of human sessions that reject in the end.
Indeed, the explicit authentication property we achieve means that any attempt at issuing an adaptive
query unrelated to the challenge will likely lead to a failure of the PAKE protocol, that can in turn be
detected by the human, as he doesn’t get the answer to xU he looked for. This allows to use a much
stricted η in the HC unforgeability game (even η = 1 for a very strict human user), which is a much
more reasonable goal for an HC function family such as the one derived from [BBDV16], that we will
present in Section 5.2

Theorem 4. Consider the Confirmed HAKE protocol defined in Figure 3. Let A,A′ be adversaries
against the privacy and authenticity security game of HAKE within a time bound t and using less
than ncomp compromised terminal sessions, nuncomp uncompromised terminal sessions, nserv server
sessions, nactive ≤ ncomp+nuncomp+nserv active sessions and nhr human session that reject in the end.
Then there exist two adversaries B1,B′1 attacking the 2-party (nhr + 1)-unforgeability of HC function
family with qr, qc, qt queries of the corresponding type, two adversaries B2,B′2 and two distinguishers
B3,B′3 attacking UC-security of the PAKE with the simulator Spake, two adversaries B4,B′4 against
the authenticated encryption, as well as two adversaries B5,B′5 against the commitment scheme, all
running in time t, such that

AdvprivHAKE(A) ≤ Adv
(nhr+1)-uf
F (B1) + 2 · AdvauthencES (B4) + 6 · AdvCS(B5) + 2 · AdvpakePAKE(Spake,B2,B3),

AdvauthHAKE(A′) ≤ Adv
(nhr+1)-uf
F (B′1) + 2 · AdvauthencES (B′4) + 6 · AdvCS(B′5) + 2 · AdvpakePAKE(Spake,B

′
2,B′3),

where qr ≤ 2ncomp, qt ≤ nactive, qc ≤ ncomp + nuncomp + nserv.

The proof is provided in Appendix D.

Remark 5. We also note that given the confirmation phase, and assuming the strong policy of resetting
all credentials if the confirmation phase fails, the coin-flipping part is no longer necessary for the security
proof: we could let the server choose the challenge during the first phase and the human in the second
one (to avoid one player being to make replay attacks). We chose to keep it as part of the protocol
because, first, this would not reduce the number of flows since the terminal always initiates such a
connection, and second, without coin-flipping a network attacker could test adaptive challenges. The
confirmation phase would fail, but there is no real need for the user to take severe measures and change
the long-term secret in such a weak attack. Hence we prevent adaptive tests (from network attacks)

17

with coin-flipping, which may be useful if a policy a little weaker is in use, such as resetting only if
there is suspicion of terminal infection.

5 Human-Compatible Function Family Instantiation

In Section 3, we proposed instantiations for the HAKE building blocks, except for the HC function
family. We now focus on the latter in this section.

5.1 Token-Based HC Function Family Instantiation

First, we introduce a simple token-based HC function family. This assumes that the human is in
possession of a simple device on which it can input challenge x and get the response r ← FK(x).
The device will store K and perform the computation, but the human is still responsible for the
communication with the terminal.
This allows us to use strong cryptographic primitives. For instance, we could set K $← {0, 1}λ and
FK : J0, 9Kt′ → J0, 9Kt a pseudorandom function. In the random oracle model (for modeling H in
FK(x) = H(K‖x)), we have Advη-ufF (A) ≤ 10−t for any adversary and any η, since an adversary can
just guess by chance the answer to a fresh challenge. Note that this function is obviously human-
readable, human-writable and human-sampleable as its input/output are numbers in basis 10 so it is
an HC function family.
Hence this function family is a good candidate to use in our Basic generic HAKE protocol from
Section 4.1 or its simplified version from Section 6.1.

5.2 Only-Human HC Function Family Instantiation

However, avoiding such devices would be much better in practice. We are thus interested in the Only-
Human HC function family that would not require anything beyond simple human memory and brain
computation power. Since such a function is necessarily weaker, we will use it in our confirmed HAKE
protocol from Section 4.2, that has a much tighter control over adaptive queries and therefore requires
weaker security properties from the HC function family.

Construction We present a candidate based on the construction of Blocki et al [BBDV16], which
security is based on [FPV15a]: Consider a challenge space C = X tl ⊆ [n]lt, where [n] = {1, . . . , n} is the
set of n integers each representing one of the n variables and Xl denotes the space of ordered clauses of
l variables without repetition. The parameter t indicates that each challenge consists of t independent
clauses, i.e., “small” challenges. The key generation algorithm KG of our HC function family takes as
input a parameter n, then outputs a random mapping σ : [n]→ Zd as the key K, where the integer d
is a constant. Usually we set d = 10 because most humans are familiar with computations on digits.
Let σl : [n]l → Zld = (σ, · · · , σ) denote the mapping that applies σ to each element of an l-tuple. Using
a public human-computable function f : Zld → Zd that is instantiated later, the challenge-response
function F takes a key K = σ and a challenge x ∈ C as inputs, and returns a response r = FK(x).
Here FK : C → Ztd is defined as a t-tuple (t ≥ 1) (f ◦ σl, · · · , f ◦ σl), where ◦ indicates the function
composition.
For instance, if n = 100, l = 3, d = 10, t = 2, x = ((1, 4, 20), (3, 36, 41)), σ(i) = (i + 3) mod 10 and
f = (x1 − x2 + x3) mod 10, then σ((1, 4, 20)) = (4, 7, 3), σ((3, 36, 41)) = (6, 9, 4) and FK(x) = (0, 1).
Given integers k1, k2 > 0, the function f is instantiated as fk1,k2 : Z10+k1+k2

10 → Z10, which is defined
as follows:

fk1,k2(x0, . . . , x9+k1+k2) = x(∑9+k1
i=10 xi mod 10

) + 9+k1+k2∑
i=10+k1

xi mod 10.

Note that when f is instantiated as fk1,k2 , we have l = 10 + k1 + k2 and d = 10.

18

It is easy to see that such a function family is an Only-Human HC function family apart from the human
memorization property. However, we can allow for images to represent the variables. As illustrated
in [BBDV16], by using mnemonic helpers, humans are able to remember such mappings from images
to digits. As an evidence, the primary author of [BBDV16] was able to memorize a mapping from
n = 100 images to digits in 2 hours.

Security In [BBDV16], the authors proved the intractability to answer to a new random challenge
for the above HC function family instantiation based on the conjecture about the hardness of random
planted constraint satisfiability problems (RP-CSP). We briefly recall a special case of the RP-CSP
conjecture, which we call the RP-CSP* conjecture, and its implied security theorem, both with our
notations. For an in-depth review of those notions, the reader should refer to [BBDV16].

The RP-CSP* Conjecture. Before stating this conjecture, we introduce some notations as in [BBDV16].
Denote H(α1, α2) = |{i ∈ [n] | α1[i] 6= α2[i]}| as the Hamming distance between two strings
α1, α2 ∈ Znd . Use H(α) = H(α,0) to denote the Hamming weight of α. Then we say two mappings
σ1, σ2 ∈ Znd are ε-correlated if H(σ1, σ2)/n ≤ (d− 1)/d− ε.

Conjecture 1 (RP-CSP*) Consider the function fk1,k2 described above, for any ε, ε′ > 0 and any
probabilistic polynomial time (in n) adversary A, there exists an interger N ∈ N, such that for all
n > N , m ≤ nmin{(k2+1)/2,k1+1−ε′}, we have Advrandfk1,k2

(A, ε) = negl(n), where Advrandfk1,k2
(A, ε) is the

probability that A outputs a mapping σ′ that is ε-correlated with the secret mapping σ given m random
“small” challenge-response pairs {(Ci, fk1,k2(σl(Ci)))}1≤i≤m.

Remark 6. The RP-CSP conjecture in [BBDV16] is a general version of the RP-CSP* Conjecture 1,
where f can be instantiated as other functions. Here, for simplicity, we only state the conjecture where
f = fk1,k2 . In [BBDV16], the authors also prove strong evidence in support of the RP-CSP conjecture:
it holds for any statistical adversary and any Gaussian Elimination adversary. As observed in [FPV15b],
most natural algorithmic techniques have statistical analogues except the Gaussian Elimination.

Basic η-Unforgeability. To state the security theorem in [BBDV16], we need the following “basic”
HC security notion that is a “non-malleable” version of the η-unforgeability. It indeed assumes that
asking a GetResp-query with an input different from the current random challenge should not help to
answer this challenge correctly to the TestResp-query. Given an HC function family F , an adversary
A, and a public parameter η, one first generates K with KG and initializes ctr← 0. Then the adversary
can ask the following queries:

1. GetRandChal() – It picks a new x
$← C, marks it fresh and outputs it;

2. GetResp(x∗) – It increments ctr if x∗ 6= x;
– If ctr ≤ η and x∗ ∈ C, it outputs FK (x∗) and marks x as unfresh;
– Otherwise, it outputs ⊥;

3. TestResp(r) –
– If FK (x) = r and x is fresh, the adversary wins;
– If FK (x) = r and x is unfresh, it outputs 1;
– Otherwise, it outputs 0.

Just like the η-unforgeability experiment, the above oracle calls are sequential (similar to Figure 1),
starting with a GetRandChal-query. But since non-malleability is assumed, only GetResp-queries with
inputs different from the current random challenges make the counter increase, and it is never decreased.
The advantage of any adversary A against the above unforgeability, Advη-uf-basicF (A) is the probability
of winning in the above experiment. Such a success indeed means that the adversary found the response
for a new random challenge, without having asked for a GetResp-query. The parameter η restricts the
number of “adaptive” GetResp queries that A can make, where adaptive means “different from the
current random challenge”.

19

The resources of the adversary are the polynomial running time and the numbers q′c, q′r, q′t of queries
to the above GetRandChal, GetResp and TestResp oracles, respectively. For convenience, denote by q′′t
the number of TestResp-queries such that the current random challenge x is fresh. By definition, we
have q′r ≤ q′c, q′t ≤ q′c and q′′t ≤ q′c − q′r.
HC Function Family Security Results. Under Conjecture 1, one can prove the following un-
forgeability result about the HC function family.

Theorem 7 (From [BBDV16]). Given ε, ε′ > 0, t ∈ N+ and δ > (1
10 + ε)t, for any probabilistic

polynomial time (in n, q′c, 1/ε) adversary A against the basic 0-unforgeability security of the HC function
family F constructed above using f = fk1,k2 with

q′′t = 1, q′c ≤
1

t
· nmin{(k2+1)/2,k1+1−ε′} − 1,

under Conjecture 1, we have Adv0-uf-basicF (A) < δ.

Note that in the basic 0-unforgeability security game, the adversary learns nothing from GetResp(x∗)
if x∗ is not the current random challenge x. So if η = 0, the adversary A is only given random
challenge-response pairs.
This result is actually not strictly good-enough, even for our confirmed HAKE. Indeed, if the function
does not allow for at least one adaptive query, an attacker could make it in the first exchange (using
an infected terminal), then break the unforgeability of the function before the confirmation flow and
make the protocol succeed, hence avoiding detection. Thus, we extend the RP-CSP conjecture to allow
log n adaptive “small” challenge-response pairs.

Conjecture 2 Consider the function fk1,k2 described above, for any ε, ε′ > 0, t ∈ N+ and any proba-
bilistic polynomial time (in n) adversary A, there exists an interger N ∈ N, such that for all n > N ,
mr ≤ nmin{(k2+1)/2,k1+1−ε′} and ma ≤ t log n, we have Advadaptfk1,k2

(A, ε) = negl(n), where Advadaptfk1,k2
(A, ε)

is the probability that A outputs a mapping σ′ that is ε-correlated with the secret mapping σ given mr

random “small” challenge-response pairs and the correct responses to ma “small” challenges adaptively
chosen by A.

Proof. For any adversary A we can construct an adversary B such that Advadaptfk1,k2
(A, ε) ≤ 10t logn ×

Advrandfk1,k2
(B, ε).

B simulates A’s view by providing A with the given mr random “small” challenge-response pairs and
randomly guessing the responses to the ma (≤ t log n) adaptive “small” challenges. The probability
of correctly guessing all adaptive ones is 10−t logn (refer to the construction of fk1,k2), hence the
above advantage reduction. One should note that 10t logn × negl(n) = negl(n) and B’s running time is
polynomial in n.

Under this extended conjecture, one can prove the following stronger unforgeability result about the
HC function family, which “almost” suits our confirmed HAKE (see Figure 3):

Theorem 8. Given ε, ε′ > 0, t ∈ N+ and δ > (1
10 + ε)t, for any probabilistic polynomial time (in

n, q′c, 1/ε) adversary A against the basic η-unforgeability security of the HC function family F con-
structed above using f = fk1,k2 with

η ≤ log n, q′c ≤
1

t
· nmin{(k2+1)/2,k1+1−ε′} − 1,

under Conjecture 2, we have Advη-uf-basicF (A) < q′′t · δ.

Proof. The proof is almost the same as that of Theorem 7. Informally, we need to show that any
adversary A that breaks the basic η-unforgeability security of the HC function family can also “recover”

20

the secret mapping σ in Conjecture 2. The reader can refer to the proof of Theorem 5 in [BBDV16],
which we call the “HCP” proof below, for the details.
Nevertheless, here the theorem differs from Theorem 7 in several aspects. First, A can adaptively select
t log n “small” challenges to get the correct responses, while in Theorem 7 only random ones are allowed.
But having adaptive queries does not affect the HCP proof because it only uses A as a blackbox to
predict the responses to any t “small” challenges. Second, we apply an union bound of q′′t queries to
the final advantage.

Remark 9. In the above theorem ε, ε′ are almost 0. We can set n = 100, k1 = 1, k2 = 3 and t = 5,
then η ≤ 6, q′c ≤ n2/t− 1 ≈ 2000 and Advη-uf-basicF (A) < q′′t · 10−t ≤ 1/50.

We believe a similar theorem holds for Advη-ufF (by replacing the oracles with those in the 2-party η-
unforgeability experiment), which our HAKE security can rely on. The intuition is as follows. With the
HC function family instantiation described in this section, a GetResp(x∗) query in the η-unforgeability
experiment should not have x∗ too “far” from the random challenge x output by the latest GetRandChal
query. Otherwise, it is very unlikely for the adversary to guess correctly in the TestResp query. But the
adversary can modify x a little bit to guess the correct response with a smaller failure probability. This
is the difference between the two unforgeability notions: the basic one does not tolerate any malleability,
whereas the other can exploit malleability. Because of the size of the challenge space, that has to be
quite large (it is essentially nt(10+k1+k2), and thus 2465, with the above parameters), the number of
challenges that are “close” to any random challenge accounts for a tiny proportion. Thus, the adversary
should not get much help from such “nearly random” challenges. Besides, such queries risk increasing
the counter in the GetResp oracle without extracting much useful information. In addition, the two
memory slots will not increase much the advantage of an adversary, and so Advη-uf-basicF and Advη-ufF

should be quite close for this specific HC function family instantiation. We leave further studies of
security of the HC function family from [BBDV16] to future works.

6 Device-Assisted HAKE Protocols

In this section, we take a step back from Only-Human HC function family to allow the use of an
additional device that will perform the computations in place of the human. In this setting, the HC
function family can be quite powerful and thus resist to many adaptive queries. We consider it in
two scenarios: first in a similar context as the Basic Generic HAKE, where one can enter a challenge
onto the device to get the response; and second, a time-based token, that outputs the response every
timeframe, with the time as the challenge (without having the user to enter it).

6.1 Simplified Basic HAKE

According to the security proof of the Basic Generic HAKE, the PAKE has to be instantiated with a
UC-Secure protocol, which turns out to be quite costly. Indeed, the only efficient scheme that achieves
this security level is the encrypted key exchange protocol (EKE) [BM92]. However, the proof holds in
the Ideal-Cipher model, for a symmetric blockcipher that should only output elements in the Diffie-
Hellman group. In practice, the best way to do it is to iterate a large blockcipher until one falls in
the group. First, a large blockcipher from a hash function (modeled as a random oracle) has fueled
a whole line of works [CPS08, HKT11, DS16], and is nevertheless already quite costly: at the time
of writing, at least 8-round Feistel network is required [DS16], with an impossibility result below
6 [CPS08]. Thereafter, additional iterations are required to build a permutation onto the group. This
thus eventually corresponds to dozens of hash function evaluations.
Looking back at the construction, using a full PAKE seems anyway as a bit of an overkill since
the ephemeral secrets are only used once, and need not to be kept secret afterwards. We present in
Appendix B a protocol that uses commitments instead of a full PAKE to achieve better efficiency.

21

Time Human U` Terminal T Server S

≤ t accept← False accept← False
terminate← False

t
`−−−−→ xT

$← Zp, XT ← gxT xS
$← Zp, XS ← gxS

t
pwt−−−−→ (cT , sT)← ComT (XT , pwt)

`,XT , cT−−−−−−−→
t accept← True XS , cS←−−−−−−− (cS , sS)← ComS(XS , pwt)
... Wait for timeframe > t Wait for timeframe > t
> t

sT−−−−−−−→ If OpenT (cT , sT) = (XT , pwt) and
(`, t) 6∈ Λ, store (`, t) in Λ

> t Otherwise reject
> t accept← True
> t Reject if

OpenS(cS , sS) 6= (XS , pwt)

sS←−−−−−−− Outputs (XT)xS

> t Outputs (XS)
xT terminate← True

Figure 4. Time-Based Device-Assisted HAKE Construction

6.2 Time-Based HAKE

Scenario. In this section, we focus on the particular (but quite usual) case where the physical device
does not have a dedicated input but uses time instead to compute its output. More precisely, our
protocol considers a device, such as the RSA-SecurId [RSA] token, that, based on an internal seed (the
long-term key K`), generates a one-time password (the value FK`

(t), based on the time period t), and
displays it on an LCD-Screen. The password is tied to an internal clock, and changes every τ (e.g.
30s). Note that such a password is already human readable and human writable, hence it satisfies our
human-compatible communications.
Building on the security model presented in Section 2.2, we now consider time as a variable, that is
to be segmented into timeframes (each spanning τ seconds). We then number those timeframes and
associate to each message sent between T and S this number, representing the fact that each party
can measure time and identify the timeframe in which the message was sent.
Since the one-time passwords are generated by a secure device implementing FK`

, we can make the
assumption that, for each timeframe, the output is indistinguishable from an element sampled from
the distribution D with entropy greater than D (which increases the advantage of an adversary A by
at most Advdist-TF (A) after T timeframes).
We rely on the requirement that any user U` can only make use of one terminal during a timeframe.
That is, he may not attempt to authenticate using more than one terminal in a single time period.

Protocol. We now propose a protocol for time-based device-assisted HAKE. It is presented on
Figure 4. As in the previous Simplified Basic HAKE, it makes use of a commitment scheme on top of
the unauthenticated Diffie-Hellman scheme to perform authentication.
The commitment scheme CS is initialized twice, with two independent setup, leading to ComT /OpenT
and ComS/OpenS , each of them being used for the commitments generated by the terminal and the
server, respectively. We also setup a group G of prime order p in which the discrete logarithm problem
is believed to be hard. Let g be a generator of G.
The protocol itself is split into two parts: the commitment phase which must happen during a timeframe
t (that we will call the session timeframe) and the verification phase, that must happen later than the
session timeframe.
This delay is a clear limitation on the total speed of the protocol, which on average will take τ/2. It will
however prove necessary, as it allows FK`

(t) to be revealed without compromising the security of the
scheme, therefore building on the one-time specificity of the password. To enforce a unique session in a
timeframe, the server will not accept to run several sessions within the same timeframe, with the same
user, as the latter should not do it anyway (see above). This would thus come from an adversary, and
then allowing multiple sessions in a timeframe t can compromise other sessions in the same timeframe
when FK`

(t) is revealed.

22

Scheme Flows Terminal Server Communication
expon. H eval. expon. H eval. complexity

1(SPAKE1) [PS10,AP05] 4 3 1 3 1 4λ

This work 4 2 2 2 2 10λ

Table 1. Performance of the Time-Based Device-Assisted HAKE

It is interesting to note that this protocol uses the time period t as the HAKE challenge (the challenge is
a counter) and the one-time password (FK`

(t)) read from the device as the human’s response. Therefore,
partnering between U and S is entirely determined at the end of the session timeframe t.

Security Analysis. In the security analysis, as in Section 4, we only consider static compromises.
Hence Compromise(j) can only be the first oracle query of a session, and Infect(j) can only affect
compromised sessions. Since compromises are known before the first flow and partnering between
Human and Server is determined at the end of timeframe t, this means that freshness itself can be
perfectly ascertained in any timeframe > t.
The security of our protocol heavily relies on the strong-security of the commitment scheme (see
Section 3 and Appendix A).

Theorem 10. Consider the Time-Based Device-Assisted HAKE protocol defined in Figure 4. Let A,A′
be an adversaries against the privacy and user authenticity security games with static compromises,
running within time t and using less than nserv non-passive sessions against the server oracle, nterm
non-passive sessions against the terminal oracle, ntotal > nterm + nserv total sessions and T < ntotal
unique timeframes. Then there exist an adversary B1 against the indistinguishability of the password-
distribution D running in time t, an adversary B3 against the DDH experiment running in time t +
8ntotalτexp, and adversary B2 against the commitment scheme running in time t:

AdvprivHAKE(A) ≤ (nserv + nterm) · 2−D + Advdist-TF (B1) + AdvindDDH(B3) + (ntotal + 3) · AdvCS(B2),
Advu-authHAKE(A′) ≤ (nserv + nterm) · 2−D + Advdist-TF (B1) + (ntotal + 2) · AdvCS(B2),

with τexp the time necessary to exponentiate one group element, and ntotal the global number of sessions.

The proof is in Appendix E.

Remark 11. Note that the Time-Based Device-Assisted HAKE only achieves user authentication in
our setting, since server authentication requires the server identity to be approved by the human in
our setting (the terminal could be infected so it cannot be relied on). A similar approach to the one of
the Confirmed HAKE could be used to achieve a full mutual authentication.

Perfomances. We offer in Table 1 a comparison (in terms of numbers of flows, exponentiations, H
evaluations and overall communication complexity) of the performances of our HAKE protocol with
the one-time PAKE 1(P) construction of [PS10], instantiated with SPAKE1 from [AP05] as a reference.
Since SPAKE1 is also proven in the random oracle model, it is fair to use the efficient commitment
scheme described in Section 3. We do not include the redundant XP in sP (it is transmitted at the
commitment stage) for the communication complexity, and for a security parameter λ, we assume the
group elements to be encoded into 2λ-long bit-strings.
While our communication complexity is higher, the computational load is reduced by 30% from [PS10]
with the most efficient PAKE. Relaxing the PAKE security properties allows a significant gain from
the complexity point of view.

7 Conclusion

We proposed the first user authenticated key exchange protocols which can tolerate corrupted terminals:
if a user happens to log in to a server from a terminal that has been fully compromised, then the other

23

past and future user’s sessions initiated from honest terminals stay secure. We formalized security for
Human Authenticated Key Exchange (HAKE) protocols and proposed generic constructions based on
human-compatible (HC) function families or small auxiliary devices such as RSA SecurID, password-
authenticated key exchange (PAKE), commitment, and authenticated encryption. We analyzed security
of our HAKE protocols and discussed their instantiations. We left several interesting open problems and
believe that our work will promote further developments in the area of human-oriented cryptography.

Acknowledgments

We thank the reviewers for insightful comments. Alexandra Boldyreva and Shan Chen are supported
in part by the National Science Foundation under Grants No. CNS-1318511 and CNS-1422794. Pierre-
Alain Dupont and David Pointcheval are supported in part by the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no.
339563 – CryptoCloud).

References

ABB+13. M. Abdalla, F. Benhamouda, O. Blazy, C. Chevalier, and D. Pointcheval. SPHF-friendly non-interactive
commitments. In ASIACRYPT 2013, Part I, LNCS 8269, pages 214–234. Springer, Heidelberg, December
2013. (Page 26.)

ACCP08. M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party password-based key exchange
protocols in the UC framework. In CT-RSA 2008, LNCS 4964, pages 335–351. Springer, Heidelberg, April
2008. (Pages 13 and 27.)

ACP09. M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for conditionally extractable
commitments. In CRYPTO 2009, LNCS 5677, pages 671–689. Springer, Heidelberg, August 2009. (Page 27.)

AP05. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange protocols. In CT-RSA 2005,
LNCS 3376, pages 191–208. Springer, Heidelberg, February 2005. (Page 22.)

BBDV16. J. Blocki, M. Blum, A. Datta, and S. Vempala. Towards human computable passwords. arXiv preprint
arXiv:1404.0024v4, 2016. (Pages 3, 4, 5, 16, 17, 18, 19, and 20.)

BC08. J. Bringer and H. Chabanne. Trusted-HB: a low-cost version of HB+ secure against man-in-the-middle
attacks. Cryptology ePrint Archive, Report 2008/042, 2008. http://eprint.iacr.org/2008/042. (Page 5.)

BCD06. J. Bringer, H. Chabanne, and E. Dottax. HB++: a lightweight authentication protocol secure against some
attacks. In Security, Privacy and Trust in Pervasive and Ubiquitous Computing, 2006. SecPerU 2006. Second
International Workshop on, pages 28–33. IEEE, 2006. (Page 5.)

BCVO12. R. Biddle, S. Chiasson, and P. Van Oorschot. Graphical passwords: Learning from the first twelve years.
ACM Comput. Surv., 44(4):19:1–19:41, September 2012. (Page 5.)

BM92. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure against dictionary
attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer Society Press,
May 1992. (Pages 1, 5, 13, 20, and 27.)

BN00. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm. In ASIACRYPT 2000, LNCS 1976, pages 531–545. Springer, Heidelberg,
December 2000. (Page 13.)

BNPS03. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems and
the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003. (Pages 4,
10, and 11.)

BPR00. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks.
In EUROCRYPT 2000, LNCS 1807, pages 139–155. Springer, Heidelberg, May 2000. (Pages 2, 5, 6, and 8.)

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM CCS 93, pages 62–73. ACM Press, November 1993. (Pages 12 and 26.)

Can00. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint
Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067. (Page 26.)

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001. (Page 2.)

CF01. R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO 2001, LNCS 2139, pages
19–40. Springer, Heidelberg, August 2001. (Page 26.)

CHK+05. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable password-based key
exchange. In EUROCRYPT 2005, LNCS 3494, pages 404–421. Springer, Heidelberg, May 2005. (Pages 13
and 27.)

CPS08. J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher model are equivalent.
In CRYPTO 2008, LNCS 5157, pages 1–20. Springer, Heidelberg, August 2008. (Page 20.)

http://eprint.iacr.org/2008/042
http://eprint.iacr.org/2000/067

24

DP00. R. Dhamija and A. Perrig. Déjà vu: A user study using images for authentication. In Proceedings of the 9th
Conference on USENIX Security Symposium - Volume 9, SSYM’00, pages 4–4, Berkeley, CA, USA, 2000.
USENIX Association. (Page 5.)

DS16. Y. Dai and J. P. Steinberger. Indifferentiability of 8-round feistel networks. In CRYPTO 2016, Part I, LNCS
9814, pages 95–120. Springer, Heidelberg, August 2016. (Page 20.)

Dzi10. S. Dziembowski. How to pair with a human. In SCN 10, LNCS 6280, pages 200–218. Springer, Heidelberg,
September 2010. (Page 5.)

FLM11. M. Fischlin, B. Libert, and M. Manulis. Non-interactive and re-usable universally composable string com-
mitments with adaptive security. In ASIACRYPT 2011, LNCS 7073, pages 468–485. Springer, Heidelberg,
December 2011. (Page 26.)

FPV15a. V. Feldman, W. Perkins, and S. Vempala. On the complexity of random satisfiability problems with planted
solutions. In 47th ACM STOC, pages 77–86. ACM Press, June 2015. (Pages 4 and 17.)

FPV15b. V. Feldman, W. Perkins, and S. Vempala. On the complexity of random satisfiability problems with planted
solutions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
77–86. ACM, 2015. (Page 18.)

Goo. Google Authenticator. Google, Inc. https://support.google.com/accounts/answer/1066447?hl=en&rd=1.
(Page 5.)

Hal95. N. Haller. The s/key one-time password system. RFC 1760, IETF, February 1995. http://tools.ietf.
org/html/rfc1760. (Page 5.)

HB01. N. J. Hopper and M. Blum. Secure human identification protocols. In ASIACRYPT 2001, LNCS 2248, pages
52–66. Springer, Heidelberg, December 2001. (Page 5.)

HKT11. T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle model and the ideal cipher
model, revisited. In 43rd ACM STOC, pages 89–98. ACM Press, June 2011. (Page 20.)

HMNS98. N. Haller, C. Metz, P. Nesser, and M. Straw. A one-time password system. RFC 2289, IETF, February 1998.
http://tools.ietf.org/html/rfc2289. (Page 5.)

JMM+99. I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter, and A. D. Rubin. The design and analysis of graphical
passwords. In Proceedings of the 8th Conference on USENIX Security Symposium - Volume 8, SSYM’99,
pages 1–1, Berkeley, CA, USA, 1999. USENIX Association. (Page 5.)

JW05. A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols. In CRYPTO 2005, LNCS
3621, pages 293–308. Springer, Heidelberg, August 2005. (Page 5.)

Kho14. K. A. Khoureich. hHB: a harder HB+ protocol. Cryptology ePrint Archive, Report 2014/562, 2014. http:
//eprint.iacr.org/2014/562. (Page 5.)

Kho15. K. A. Khoureich. Light-hHB: A new version of hHB with improved session key exchange. Cryptology ePrint
Archive, Report 2015/713, 2015. http://eprint.iacr.org/2015/713. (Page 5.)

KI96. T. Katoh and H. Imai. An application of visual secret sharing scheme concealing plural secret images to
human identification scheme. In Proc. of SITA, pages 661–664, 1996. (Page 5.)

KPZ98. M.-R. Kim, J.-H. Park, and Y. Zheng. Human-machine identification using visual cryptography. In Proceed-
ings of the 6th IEEE International Workshop on Intelligent Signal Processing and Communication Systems,
pages 178–182, 1998. (Page 5.)

LMM08. X. Leng, K. Mayes, and K. Markantonakis. HB-MP+ protocol: An improvement on the HB-MP protocol.
In RFID, 2008 IEEE International Conference on, pages 118–124. IEEE, 2008. (Page 5.)

LT99. X.-Y. Li and S.-H. Teng. Practical human-machine identification over insecure channels. Journal of Combi-
natorial Optimization, 3(4):347–361, 1999. (Page 5.)

Mat96. T. Matsumoto. Human-computer cryptography: An attempt. In ACM CCS 96, pages 68–75. ACM Press,
March 1996. (Page 5.)

MBH+05. D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. HOTP: An HMAC-based one-time
password algorithm. RFC 4226, IETF, December 2005. https://tools.ietf.org/html/rfc4226. (Page 5.)

MI91. T. Matsumoto and H. Imai. Human identification through insecure channel. In EUROCRYPT’91, LNCS
547, pages 409–421. Springer, Heidelberg, April 1991. (Page 5.)

MMPR11. D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-based one-time password algorithm. RFC
6238, IETF, May 2011. https://tools.ietf.org/html/rfc6238. (Page 5.)

MP07. J. Munilla and A. Peinado. HB-MP: A further step in the HB-family of lightweight authentication protocols.
Computer Networks, 51(9):2262–2267, 2007. (Page 5.)

Nys07. M. Nystroem. The EAP protected one-time password protocol (EAP-POTP). RFC 4793, IETF, February
2007. http://tools.ietf.org/html/rfc4793. (Page 5.)

PS10. K. G. Paterson and D. Stebila. One-time-password-authenticated key exchange. In ACISP 10, LNCS 6168,
pages 264–281. Springer, Heidelberg, July 2010. (Pages 5, 13, and 22.)

RBBK01. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient
authenticated encryption. In ACM CCS 01, pages 196–205. ACM Press, November 2001. (Page 13.)

RSA. RSA SecurId Hardware Tokens. RSA Security. https://www.rsa.com/en-us/products-services/
identity-access-management/securid/hardware-tokens. (Pages 5, 12, and 21.)

TvO04. J. Thorpe and P. C. van Oorschot. Graphical dictionaries and the memorable space of graphical passwords.
In Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages
135–150. USENIX, 2004. (Page 5.)

https://support.google.com/accounts/answer/1066447?hl=en&rd=1
http://tools.ietf.org/html/rfc1760
http://tools.ietf.org/html/rfc1760
http://tools.ietf.org/html/rfc2289
http://eprint.iacr.org/2014/562
http://eprint.iacr.org/2014/562
http://eprint.iacr.org/2015/713
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
http://tools.ietf.org/html/rfc4793
https://www.rsa.com/en-us/products-services/identity-access-management/securid/hardware-tokens
https://www.rsa.com/en-us/products-services/identity-access-management/securid/hardware-tokens

25

vABHL03. L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using hard AI problems for security. In
EUROCRYPT 2003, LNCS 2656, pages 294–311. Springer, Heidelberg, May 2003. (Page 5.)

WHT95. C.-H. Wang, T. Hwang, and J.-J. Tsai. On the Matsumoto and Imai’s human identification scheme. In
EUROCRYPT’95, LNCS 921, pages 382–392. Springer, Heidelberg, May 1995. (Page 5.)

WK04. D. Weinshall and S. Kirkpatrick. Passwords you’ll never forget, but can’t recall. In CHI ’04 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’04, pages 1399–1402, New York, NY, USA,
2004. ACM. (Page 5.)

A Building Blocks

A.1 Commitment Scheme

We first recall the notation, and give more details about the advanced security notions.

Commitment Scheme: Syntax and Security. A (non-interactive) commitment scheme CS is
defined by Setup that defines the global public parameters, and two other algorithms:

– Com(x): on input a message x, and some internal random coins, it outputs a commitment c together
with an opening value s;

– Open(c, s): on input a commitment c and then opening value s, it outputs either the committed
value x or ⊥ in case of invalid opening value.

The correctness condition requires that for every x, if (c, s) = Com(x), then Open(c, s) outputs x.
The usual security notions for commitment schemes are the hiding property, which says that x is
hidden from c, and the binding property, which says that once c has been sent, no adversary can open
it in more than one way. We respectively denote AdvhidingCS (A) (we will not actually use this one) and
AdvbindingCS (A) the advantages an adversary may get against these two notions.
For the additional security notions of extractability and equivocality, we need trapdoors, generated by
an alternative setup algorithm and privately given to the simulator. And then, the hiding and binding
properties are more delicate to be satisfied, hence the additional (probabilistic) algorithms: after a
setup phase Setup′ that defines the global public parameters available to everybody, with additional
trapdoors we consider in the global private parameters, available to the simulator, we have

– SimCom(), that takes as input the trapdoor and outputs a pair (c, eqk) where c is a fake commitment
and eqk is the equivocation key;

– OpenCom(c, eqk,m) that takes as input a fake commitment, its equivocation key and a message,
and outputs an opening value s;

– ExtCom(c) that takes as input a non-fake commitment and outputs the message m it commits to.

These algorithms must first satisfy the two following properties:

– Trapdoor Correctness: (equivocality) for any message m, and any (c, eqk)
$← SimCom() and

s ← OpenCom(c, eqk,m), we have Open(c, s) = m; (extractability) for any message m and any
(c, s)← Com(m), we have ExtCom(c) = m;

– Setup Indistinguishability: the official setup Setup and the new one Setup′ generate indistin-
guishable global public parameters. We denote Advsetup-indCS (A) the advantage an adversary A can
get in distinguishing the global public parameters generated by the two setup phases.

In the trapdoor setting (when Setup′ is used), the adversary is not given the trapdoors but just oracle
access to the equivocation and extraction capabilities:

– GenEquivCommit() generates (c, eqk) $← SimCom(), stores (c, eqk) ∈ Ψ , and outputs c;
– OpenEquivCommit(c,m) first looks whether c ∈ Ω in which case it outputs ⊥, otherwise it searches

for (c, ·) ∈ Ψ , retrieves the matching eqk, stores c ∈ Ω, and outputs s ← OpenCom(c, eqk,m). It
outputs ⊥ if no (c, eqk) was found in Ψ ;

– ExtractCommit(c) first looks whether (c, ·) ∈ Ψ in which case it outputs ⊥, otherwise it outputs
m← ExtCom(c).

26

The list Ψ is to keep track of the fake commitments, to exclude extraction on them, and the list Ω is to
guarantee one opening only for any fake commitment. And then, with unlimited access to these oracles,
we still expect the hiding and the binding properties to hold. They can be more formally modeled by
the two following properties that, together with the setup indistinguishability, imply both the basic
hiding and binding properties (see [ABB+13] for more details):

– (Strong) Commitment Equivocality Indistinguishability: the real commitment algorithms
Com/Open and the fake-commitment algorithms SimCom/OpenCom generate indistinguishable
commitments and opening values. For any adversary A, we denote Advs-eqCS (A) its advantage in
distinguishing the commitments and opening values generated by the two kinds of algorithms (even
with unlimited access to the oracles GenEquivCommit, OpenEquivCommit, and ExtractCommit).

– (Strong) Binding Extractability: one cannot fool the extractor, i.e. produce a commitment c
and a valid opening s to a messagem 6= ExtCom(c). For any adversary A, we denote Advs-bindingCS (A)
its advantage in generating a commitment c that it can open in a different way than the extrac-
tion algorithm (even with unlimited access tothe oracles GenEquivCommit, OpenEquivCommit, and
ExtractCommit).

When a commitment scheme satisfies setup indistinguishability, strong commitment equivocality in-
distinguishability, and strong binding extractability, which additionally imply the basic hiding and
binding properties, we say it is strongly secure.

Commitment Scheme: Instantiation. As shown in [ABB+13], UC-secure commitment schemes [CF01,
Can00] are strongly secure, and so are enough for us. As a consequence, the UC-secure non-interactive
constructions from [FLM11, ABB+13] fulfill all our requirements, in the standard model, with neg-
ligible advantages for any adversary, under the Decisional Diffie-Hellman assumption. However they
will not be efficient enough for our purpose. On the other hand, the simple commitment scheme that
commits m with large enough random coins r into c = H(m, r) is quite efficient and also fulfill all the
above requirements, in the random oracle model [BR93]: Given a hash function H onto {0, 1}λ, the
commitment scheme is defined as follows:

– Com(m): Generate r $← {0, 1}2λ and output (c← H(m, r), s← (m, r));
– Open(c, s = (m, r)): if H(s) = c, return m, otherwise, return ⊥.

In the random oracle model, this simple scheme is trivially computationally binding (H is collision-
resistant) and statistically hiding (for a large r ∈ {0, 1}2λ, there are almost the same number of possible
r —actually, 2λ— for any m, that would lead to the commitment c) in the ROM.
Additionally, we can use the programmability of the random oracle for equivocality and the list of
query-answer for extractability :

– SimCom() : Return c $← {0, 1}λ.
– OpenCom(c, ·,m) : Generate r $← {0, 1}2λ, set H(m, r)← c, and return r.
– ExtCom(c): Search in list of queries to H which was output to c and return the first corresponding
m.

By construction, we have the equivocality correctness, unless the value H(m, r) has already been
asked, which is quite unlikely, since r is a fresh random. Extractability correctness is also ensured,
as the recovered value m effectively commits to c. We also have perfect setup indistinguishability,
so Advsetup-indH (A) = 0 for any adversary A. The only way to distinguish a fake commitment from a
real commitment would be to ask (m, r) to the oracle before OpenCom, hence to guess r. Therefore
Advs-eqH (A) ≤ qH × 2−2λ, for any adversary A asking at most qH oracle queries and the scheme has
strong commitment equivocability indistinguishability.
Moreover, this scheme has strong binding extractability. Suppose an adversary A is able to produce a
tuple (c, s) that breaks the strong binding extractability. Hence if (m′, r′) ← ExtCom(c), H(m, r) =
H(m′, r′). This means that there was a collision between true random values, which is bounded by the
birthday paradox. Hence: Advs-bindingH (A) < q2H × 2−λ.
Therefore, this commitment scheme is strongly secure in the random oracle model.

27

The functionality Fpake is parameterized by a security parameter k. It interacts with an adversary S and a set of
parties P1,. . . ,Pn via the following queries:
– Upon receiving a query (NewSession, sid, Pi, Pj, pw) from party Pi:

Send (NewSession, sid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second NewSession
query and there is a record (sid, Pj , Pi, pw

′), then record (sid, Pi, Pj , pw) and mark this record fresh.
– Upon receiving a query (TestPwd, sid, Pi, pw

′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record compromised
and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

– Upon receiving a query (NewKey, sid, Pi, sk) from the adversary S:
If there is a record of the form (sid, Pi, Pj , pw), and this is the first NewKey query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw, and a key sk′ was sent to Pj ,
and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.
Either way, mark the record (sid, Pi, Pj , pw) as completed.

Figure 5. Ideal Functionality Fpake for PAKE

A.2 Password-Authenticated Key Exchange

A PAKE protocol is an interactive protocol between two parties who share a common low entropy
secret (a password). At the end of the protocol, the parties output a session key, a session id and
partner id. The correctness requires that any honest PAKE execution results in the parties outputting
the same session key and session id, and the partner id being the identity of the other party.
The goal of the protocol is to guarantee privacy and (implicit) authentication of the session key in
the presence of an attacker. Our proofs will use a UC-secure PAKE, whose ideal functionality Fpake is
presented on Figure 5, taken from [CHK+05].
The main idea is the following: If neither party is corrupted and the adversary does not attempt any
password guess, then the two players both end up with either the same uniformly-distributed session
key if the passwords are the same, or uniformly-distributed independent session keys if the passwords
are distinct. However, if one party is corrupted (the adversary was given the password), or if the
adversary successfully guessed the player’s password (the session is then marked as compromised), the
adversary is granted the right to fully determine its session key. In case of wrong guess (the session is
then marked as interrupted), the two players are given independently-chosen random keys. A session
that is nor compromised nor interrupted is called fresh, which is its initial status.
In the UC-framework, the security of a concrete protocol is proven by exhibiting a simulator S such
that, anything an adversary A could do against honest players in the real protocol could be achieved by
the same adversary A against the ideal functionality F , with the simulator S as an interface between
A and F . But the ideal functionality is secure, by definition, and the combination of S and A cannot
do anything harmful against the honest players using F . As a consequence, A cannot do anything
harmful against the honest players in the real protocol execution.
The security of a UC-PAKE PAKE is thus measured by the advantage a distinguisher Z could get in
distinguishing the real world (the interactive protocol between honest players with an adversary A)
and the ideal world (the honest players directly dealing with the ideal functionality Fpake, while the
simulator S makes the interface with the adversary A): AdvpakePAKE(S,A,Z) thus denotes the advantage
the distinguisher Z can get in distinguishing the two worlds.
When using a UC-PAKE in black-box, we will also assume the existence of a simulator S which makes
this advantage negligible for any adversary A, and any distinguisher Z, for the ideal functionality Fpake

recalled on Figure 5.
Note that the classical EKE [BM92] protocol that encrypts a Diffie-Hellman key exchange, using
the password as encryption key, is UC-secure [ACCP08], under the Computational Diffie-Hellman
assumption in the ideal-cipher model. In addition, it is quite efficient. But other constructions also
exist in the standard model [CHK+05,ACP09], under the Decisional Diffie-Hellman assumption.

28

B Simplified Basic HAKE Construction

In section 6.1, we explained that with a device, since the secrecy of the password must be maintained
only temporarily, we can lessen the requirement on the PAKE in order to achieve a better efficiency.
Taking advantage of this, we present, on Figure 6, the simplified basic HAKE, that is very similar to the
basic generic HAKE of Section 4.2. As said above, it does not use a full PAKE, but just commitments
to mutually check the knowledge of the ephemeral secret before it is revealed, which is enough in this
setting.

Human U`(K`) Terminal T Server S(K`)

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT)
`, c−−−−−−−→

x←−−−−−−− x← g(xS ⊕ xT)
xS←−−−−−−− xS

$← Z|C|

r ← FK`(x)
r−−−−−−−→ yT

$← Zp

YT ← gyT yS
$← Zp, YS ← gyS

(cT , sT)← ComT (YT , r)
s, YT , cT−−−−−−−→ xT ← Open(c, s)

x← xS ⊕ xT
r ← FK`(x)YS , cS←−−−−−−− (cS , sS)← ComS(YS , r)

sT−−−−−−−→ If OpenT (cT , sT) 6= (YT , r) then reject
If OpenS(cS , sS) 6= (YS , r)

then reject sS←−−−−−−−
Outputs skT ← (YS)

yT Outputs skS ← (YT)
yS

Figure 6. Simplified Basic HAKE Construction

We do not provide a proof, but it is easy to see that the hiding/binding properties of the commitment
scheme replace the security properties of the PAKE in the proof of the basic HAKE in Appendix C. The
only change from Theorem 3 would be that qr is now only less or equal to ntotal = ncomp+nuncomp+nserv
(the total number of sessions), which is not an issue for a device-assisted HC function.

C Proof of Theorem 3

We recall the protocol on Figure 2, and provide a more precise version of Theorem 3.

Theorem 3. Consider the Basic HAKE protocol defined in Figure 2. Let A be an adversary against
the privacy security game with static compromises, running within a time bound t and using less than
ncomp compromised terminal sessions, nuncomp uncompromised terminal sessions, nserv server sessions
and nactive ≤ ncomp + nuncomp + nserv active sessions. Then there exist an adversary B4 attacking the
2-party ncomp-unforgeability of the HC function family with qr, qc, qt queries of the corresponding type,
an adversary A and a distinguisher B3 attacking UC-security of the PAKE with a simulator Spake as
well as three adversaries D1, D2, and B′2 against the commitment scheme properties, all running in
time t, such that

AdvprivHAKE(A) ≤ Adv
ncomp-uf
F (B4) + 2× AdvpakePAKE(Spake,A,B3)

+ 2×
(
Advsetup-indCS (D1) + Advs-eqCS (D2) + Advs-bindingCS (B′2)

)
,

where qr ≤ ncomp, qt ≤ nactive, and qc ≤ nuncomp + ncomp + nserv.

29

Human U`(K`) Terminal T Server S(K`)

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT)
1.(`, c)−−−−−−−→

3.x←−−−−−−− x← g(xS + xT)
2.xS←−−−−−−− xS

$← Z|C|
r ← FK`(x)

4.r−−−−−−−→ 5.s−−−−−−−→ xT ← Open(c, s)
x← g(xS + xT)

r ← FK`(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁PAKEsid = (`, c, xS , s)

Outputs skT Outputs skS

Figure 2. Basic Generic HAKE Construction (reminder)

Proof. We define a serie of games that aims at bounding the privacy advantage of A. We denote Bi
the simulator for game Gi, that outputs 1 if b ← A (A wins in guessing b) and 0 otherwise. We also
define Di the distinguisher between games Gi and Gi−1, for i > 1. In general, the distinguisher Di
between the two successive games exactly behaves as the simulator inGi−1 with all the secrets, but just
interactions with two distributions to distinguish (either on sets or on oracles). The distributions on
the outputs are thus as close as the input distributions which are close enough under a computational
assumption. We start from G0, the privacy security game, between the adversary A and the challenger.
We re-write it below, with explicit definitions of the queries. Then, in the last game, we explain how
a simulator does without knowing anymore the long-term secret keys but using instead the oracles
GetResp, GetRandChal, and TestResp to replace calls to FK`

.
We stress that the compromises are static, which means that Compromise-queries must happen be-
fore any other flow in a terminal session. However, infections can still be adaptively made (but on
compromised sessions only).
We also require the internal PAKE primitive (denoted by the double-arrow on the Figure 2) to be UC-
secure (see Figure 5), as we will need the ideal functionality Fpake and the simulator Spake in the proof.
In particular, we need to be able to simulate transcripts between honest players, without knowing the
password, and we will need to be able to extract the password tried by the adversary. On the other
hand, we will have to be able to simulate the answers to the TestPwd-queries.

Game G0: In this game, the simulator generates the public pamaters for the HC function, the com-
mitment, and the PAKE. It also knows all the long-term secret keys of the users, which allows it
to simulate every oracle πjP , as the latter would do in the real protocol, with a random bit b:
1. SendServ(k, 1.(`, c)): generate and send xS

$← Z|C|
2. SendServ(k, 5.s): open the value xT ← Open(c, s), set x ← g(xS + xT), and compute r ←
FK`

(x)
3. SendServ-PAKE queries to πkS : run the PAKE protocol on r
4. SendTerm(j, Start(`)):

(a) generate xT
$← Z|C|, commit (c, s)← Com(xT), and send c

(b) If compromised, reveal xT together with the random coins of the commitment
5. SendTerm(j, 2.xS):

(a) Set x← g(xS + xT), compute r ← FK`
(x), and send the opening value s

(b) If compromised, reveal r
6. SendTerm-PAKE queries to πjT : run the PAKE protocol on r
7. SendHum(j, 3.x) (from an infected terminal πjT): Compute and return r ← FK`

(x)

8. Compromise(j, `): Unless a Start-SendTerm-query has already been sent to πjT , mark the in-
stance πjT as compromised and reveal the random tape.

9. Infect(j): mark the session as infected, allowing SendHum
10. Test(j, P): according to b, and whether πiP is fresh or not, the real key skP , or a random key,

or ⊥ is returned.
By definition, AdvprivHAKE(A) = 2× PrG0 [b← A]− 1.

30

Game G1: We now replace the Setup algorithm of the commitment by Setup′, allowing equivocal
commitments and extractability, but without any additional change: |PrG1 [b ← A] − PrG0 [b ←
A]| ≤ Advsetup-indCS (D1), where D1 behaves as B0, with either Setup (which is G0) or Setup′ (which
is G1).

Game G2: We can now enforce random challenges, by extracting the adversary commitments and
generating a commitment on a value that complement appropriately.
In the simulation, several steps will depend on whether the input message is oracle-generated,
meaning it is the output of another oracle and whether the terminal (be it the source of an oracle-
generated message or the local oracle) is compromised or not.
In the case of SendTerm-queries, we will use the terminology compromised or uncompromised to
denote the fact that the local terminal instance was compromised or not, as well as oracle-generated
or non-oracle-generated to denote the fact the input message was generated as output by a server
oracle (from a SendServ-query).
In the case of SendServ-queries, the terminology remote-compromised or remote-uncompromised
will denote the fact that the input message was generated as output by a terminal oracle (from
a SendTerm-query) that is compromised or not. However, when the input message does not come
as an output of a server oracle it is called non-oracle-generated. Therefore there are three cases :
remote-compromised, remote-uncompromised, and non-oracle-generated.
In order to enforce random challenges, in step 1, when c is non-oracle-generated or remote-
compromised (the terminal is compromised or infected), we extract xT and generate xS ← g−1(x)+
xT so that g(xT+xS) is the expected random challenge; in step 4, when the terminal is not compro-
mised, it generates a fake commitment, and in step 5 it opens it to xT that complement correctly
with xS .
If the enforced random challenge does not get the expected value in step 2, the simulator B′2 outputs
(c, s) that breaks the strong binding extractability. Moreover, the strong simulation indistinguisha-
bility ensures that otherwise it is hard to distinguish this game from the previous one, by defining
D2 exactly as the simulator B1, using either Com/Open (which isG1) or SimCom/OpenCom (which
is G2).
Hence, under the strong-security of the commitment scheme, the simulation remains the same to
the adversary:

|Pr
G2

[b← A]− Pr
G1

[b← A]| ≤ Advs-eqCS (D2) + Advs-bindingCS (B′2)

Game G3: We now use Spake to emulate all the messages our simulator should send for the PAKE
protocol: |PrG3 [b← A]− PrG2 [b← A]| ≤ AdvpakePAKE(Spake,A,B3).
Since we are using a UC-secure PAKE, unless that adversary has guessed the password r, it has no
information about the session key. As a consequence, unless the adversary has asked a successful
TestPwd-query (event GuessedPwd), it has no advantage in breaking the privacy of our HAKE:
2× PrG3 [b← A]− 1 ≤ PrG3 [GuessedPwd].
As a consequence,

AdvprivHAKE(A) ≤ Pr
G3

[GuessedPwd] + 2× AdvpakePAKE(Spake,A,B3).

+ 2×
(
Advs-eqCS (D2) + Advs-bindingCS (B′2) + Advsetup-indCS (D1)

)
Game G4: Eventually, we can make use of oracles GetResp, GetRandChal, and TestResp to replace

calls to FK`
: we do not know anymore the long-term keys of the users, and we focus on a user

U = U` (all the other calls can be done as above), but we know the trapdoor for the commitment
scheme.
Thanks to the extractable and equivocal commitment scheme, we can inject random challenges
and use the adversary to break the HC function on one of them. The simulator will indeed be able
to set x of its choice (from the HC function random selection) for either the server oracle or the
terminal oracle, while the adversary has to commit its share and cannot equivocate.

31

Let us now give the details of the final game: the simulator uses the simulator Spake to generate
the public parameters for the PAKE, generates the public parameters for the commitment with
the trapdoors (for extraction and equivocality), and uses the challenge instance of the HC function
family for the parameters of F . It also set Λ to an empty set. It will be used to keep track of the
known challenge-responses. Then it answers the oracle queries as follows:
1. SendServ(k, 1.(`, c)):

– If remote-uncompromised : store b′x ← 1, generate xS
$← Z|C| and send it

– If remote-compromised or non-oracle-generated :
(a) Store b′x ← 0
(b) Generate x← GetRandChal(0).
(c) Using the extraction key of the commitment scheme, open c to learn xT
(d) Compute and send xS ← g−1(x) + xT

2. SendServ(k, 5.s): Do nothing (since the committed value xT is already known)
3. SendServ-PAKE queries to πkS :

– If (x, r) ∈ Λ for some r3: run the PAKE protocol on r and issue a TestResp(r, b′x).
– Otherwise: use the simulator Spake to generate the server flows (for an accepting PAKE

transcript if the flows are oracle-generated). In case of a TestPwd-query on a candidate
rA, run TestResp(rA, b′x)

4. SendTerm(j, Start(`)): Initialize bx ← 0 and
– If uncompromised, generate and send an equivocal commitment c
– If compromised :

(a) generate xT
$← Z|C|, commit (c, s)← Com(xT), and send c

(b) reveal xT together with the random coins of the commitment
5. SendTerm(j, 2.xS):

– If compromised, set x∗ ← g(xS + xT). Compute r ← GetResp(x∗)4. Then, store (x∗, r) in
Λ, send the opening value s and reveal r

– If uncompromised :
(a) Set x← GetRandChal(1), xT

$← xS + g−1(x) and bx ← 1
(b) Generate and send s such that Open(c, s) = xT , using the equivocation key of the

commitment
6. SendTerm-PAKE queries to πjT :

– If compromised, run the PAKE protocol on the known r
– If uncompromised and oracle-generated, use the simulator Spake to generate the terminal

flow (for an accepting PAKE transcript if the flows remain oracle-generated)
– If uncompromised and non-oracle-generated, use the simulator Spake to generate the ter-

minal flow. In case of a TestPwd-query on a candidate rA, run TestResp(rA, bx)
7. SendHum(j, 3.x) (from an infected terminal):

– If (x, r) ∈ Λ for some r, output r ;
– Otherwise, compute r ← GetResp(x), store (x, r) in Λ and output r.

8. Compromise(j, `): (unchanged) Unless a Start-SendTerm-query has already been sent to πjT ,
mark the instance πjT as compromised and reveal the random tape.

9. Infect(j): (unchanged) mark the session as infected, allowing SendHum
10. Test(j, P): (unchanged) according to b, and whether πiP is fresh or not, the real key skP , or a

random key, or ⊥ is returned.

Note that the event GuessedPwd now means that a TestResp-answer was positive, we no previous
GetResp-query. This is exactly a success in the unforgeability of the HC function family, so

AdvprivHAKE(A) ≤ Adv
ncomp-uf
F (B4) + 2× AdvpakePAKE(Spake,A,B3).

+ 2×
(
Advs-eqCS (D2) + Advs-bindingCS (B′2) + Advsetup-indCS (D1)

)
3 In particular, this can be the case if the SendServ(k, 1.c)-query was remote-compromised or if r was queried through
the SendHum query of an infected terminal session.

4 If such a query is not allowed because too many were asked since the last GetRandChal, it first issues a GetRandChal(0)
query (and discards the result)

32

We now have to count how many queries are asked by our simulator B4 in game G4.
One can note from this simulation that any interaction between the adversary and a safe player
(uncompromised terminal/server) results in an x ∈ Λ0 (generated by a GetRandChal-query from the
simulator on behalf of the safe player). Moreover,

– in each passive session with an uncompromised terminal, there is just a GetRandChal-query;
– for each server interacting with a compromised terminal, the simulator asks a GetRandChal-query,

a GetResp-query and a correct TestResp, hence ctr overall stays the same;
– in each session between a uncompromised terminal and an adversary trying to impersonate the

server (some non-oracle-generated flows), there might be a GetRandChal-query and a TestResp-
query;

– in each session between a compromised terminal and an adversary trying to impersonate the server
(some non-oracle-generated flows) with an x of its choice, there might be a GetResp-query (and a
GetRandChal in some cases), but no TestResp. Hence, ctr is incremented.

– in each session with an infected terminal that directly queries the user on its own challenge, there
is a GetResp-query. Hence ctr is incremented.

– in each session between an honest server and an adversary playing on behalf of the user/terminal
(after infecting or not the terminal), there are a GetRandChal-query and a TestResp-query. If one
of the two previous terminal session situations occured between those, the TestResp will decrement
ctr5 if the PAKE succeeds
Or none occured, in which case πkS is fresh, but a success of the PAKE means winning the unforge-
ability game;

As a consequence,

– a GetResp-query only appears in sessions with a compromised terminal Hence, qr is at most the
number of compromised terminal sessions, that is

qr ≤ ncomp;

– a TestResp-query only appears in sessions between a safe player (uncompromised terminal or
honest server) and the other being impersonated by the adversary. In particular, such session are
active, hence qt is at most the number of active sessions (nactive).

qt ≤ nactive;

– a GetRandChal-query only appears in sessions with a safe player (uncompromised terminal or
honest server) or, in some cases, in sessions where a GetResp-query was issued. Hence, qc is at
most the sum of the number of uncompromised terminal sessions (nuncomp), GetResp-queries and
the number of server sessions with a non-oracle-generated flow 1.c (nnogc),

qc ≤ nuncomp + qr + nnogc ≤ nuncomp + ncomp + nserv.

– ctr is only incremented by compromised terminal session in which a GetResp-query was asked,
while no concurrent server session succesfully terminated. Unfortunately, such a situation is not
reliably detectable by the human, though it will play an important role for the Confirmed HAKE.

ctr ≤ ncomp

D Proof of Theorem 4

We recall the protocol on Figure 3 and associated theorem on the security level, that we then prove.

5 Thus, counting both the terminal session that increments ctr and the server sessions that decrements it, ctr is unchanged

33

Human U`(K`) Terminal T Server S(K`)

accept← False accept← False
terminate← False terminate← False

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT)
1.(`, c)−−−−−−−→

3.x←−−−−−−− x← g(xS + xT)
2.xS←−−−−−−− xS

$← Z|C|
r ← FK`(x)

4.r−−−−−−−→ 5.s−−−−−−−→ xT ← Open(c, s)
accept← True x← g(xS + xT)

r ← FK`(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁PAKEsid = (`, c, xS , s)

Parses key: (kT ||skT) Parses key: (kS ||skS)
accept← True

xU
$← C 4.xU−−−−−−−→ XU ← EnckT (xU)

7.XU−−−−−−−→ xU ← DeckS (XU)
Verifies rU

9.rU←−−−−−−− rU ← DeckT (RU)
8.RU←−−−−−−− RU ← EnckS (FK`(xU))

Outputs skT Outputs skS
terminate← True 0/1−−−−−−−→ terminate← True

Figure 3. Confirmed HAKE Construction (reminder)

Theorem 4. Consider the Confirmed HAKE protocol defined in Figure 3. Let A,A′ be adversaries
against the privacy and authenticity security game of HAKE within a time bound t and using less
than ncomp compromised terminal sessions, nuncomp uncompromised terminal sessions, nserv server
sessions, nactive ≤ ncomp+nuncomp+nserv active sessions and nhr human session that reject in the end.
Then there exist two adversaries B1,B′1 attacking the 2-party (nhr + 1)-unforgeability of HC function
family with qr, qc, qt queries of the corresponding type, two adversaries B2,B′2 and two distinguishers
B3,B′3 attacking UC-security of the PAKE with the simulator Spake, two adversaries B4,B′4 against the
authenticated encryption, as well as six adversaries A1,A′1, A2,A′2, and A3,A′3 against the commitment
scheme properties, all running in time t, such that

AdvprivHAKE(A) ≤ Adv
(nhr+1)−uf
F (B1) + 2× AdvpakePAKE(Spake,B2,B3) + 2× AdvauthencES (B4)

+ 2×
(
Advsetup-indCS (A1) + Advs-eqCS (A2) + Advs-bindingCS (A3)

)
,

AdvauthHAKE(A′) ≤ Adv
(nhr+1)−uf
F (B′1) + 2× AdvpakePAKE(Spake,B

′
2,B′3) + 2× AdvauthencES (B′4)

+ 2×
(
Advsetup-indCS (A′1) + Advs-eqCS (A′2) + Advs-bindingCS (A′3)

)
,

where qr ≤ 2ncomp, qt ≤ nactive, qc ≤ ncomp + nuncomp + nserv.

Proof (Privacy proof). The proof is very similar to the previous one, so we just introduce the new
queries to add to the security games defined in Section 4.2, but only after the execution of the PAKE,
and so the simulator (in the real game when it knows all the long-term keys) knows the output (kP ‖skP):

Game G0: In this game, we simply simulate every oracle according to the protocol, knowing the
output of the PAKE, and all the honest players accept at the end of the PAKE.
1. Last SendTerm-PAKE-query (that led to the session key (kT , skT)):

(a) generate xU
$← C (on behalf of the user, and so the internal random coins stay secret even

if πjT is compromised)
(b) send XU ← EnckT (XU)

2. SendHum(j, 3.x) (from an infected terminal): Not only output 4.r, as before, but additionally
generate and send xU

$← C.
3. SendServ(k, 7.XU): Compute and send RU ← EnckS (FK`

(DeckS (XU))) (unless the decryption
fails, terminate is set to True)

34

4. SendTerm(j, 8.RU): Compute r′U ← DeckT (RU) and check whether r′U = FK`
(xU) or not (on

behalf of the user). Unless the decryption fails, if the equality holds, the user accepts and the
terminal sets terminate to True

5. SendHum(j, 9.rU) (from an infected terminal): Accept if rU = FK`
(xU).

Game G1: In this game, we once again make use of the underlying HC security game oracles. But
now, the simulator does not know anymore the long-term keys, and did not learn the output of
the PAKE when the simulator Spake was involved.
1. Last SendTerm-PAKE-query:

– If compromised (the simulator honestly ran the PAKE on behalf of the terminal, and so
the simulator knows (kT , skT), but the adversary too)
(a) generate xU ← GetRandChal(1)
(b) send XU ← EnckT (xU)

– If uncompromised, generate a random ciphertext XU

2. SendHum(j, 3.x) (from an infected terminal), as before, and additionally generate and send
xU ← GetRandChal(1)

3. SendServ(k, 7.XU):
– If remote-compromised, the simulator knows (kS , skS) and knows xU ; it then computes
rU ← GetResp(xU), stores (xU , rU) in Λ and sends RU ← Enck0(rU)

– If remote-uncompromised, generate and send a random ciphertext RU
– If non-oracle-generated,
• either the simulator knows kS because of an honest execution of the PAKE with r.

Then, it can get x′U ← DeckS (XU). If this decrypts correctly, it checks if (x′U , r
′
U) is

in Λ for some r′U . If it is not, get r
′
U ← GetResp(x′U). It then sends EnckS (r

′U), and
set terminate to True
• or the simulator does not know kS because it invoked the simulator Spake, which means

that the adversary should not know the session key either, and so is unable to generate
a valid ciphertext: the simulator makes the server to abort.

4. SendTerm(j, 8.RU):
– If compromised and oracle-generated, rU is known and correct so run TestResp(rU , 1) and

terminate
– If compromised and non-oracle-generated, get r′U ← DeckT (RU), and run TestResp(r′U , 1),

to either terminate or reject (a decryption failure leads to a reject)
– If uncompromised and oracle-generated, terminate
– If uncompromised and non-oracle-generated, reject

5. SendHum(j, 9.rU) (from an infected terminal): Accept if TestResp(rU , 1).

Note that in the added flows, all GetRandChal and TestResp occur with bit 1, which was only used
previously if the terminal oracle was uncompromised, in which case either the adversary issued a correct
TestPwd, and the simulator already won the HC unforgeability game, or (kP , skP) is unknown and the
authenticated encryption hides all flows.
From the previous simulation, in case of passive sessions with a compromised terminal, in the first
part of the simulation, the simulator honestly ran the PAKE, completing it with (kT , skT). It can thus
continue honestly if the adversary continues to forward oracle generated flows. It then learns a new
challenge-response pair. If the adversary starts to play on behalf of the server, it has to generate a
forgery for the HC function (checked by the TestResp-query).
We will define an adversary B′1 against the combined security notion for authenticated encryption.
In case of passive sessions with an uncompromised terminal, kT is unknown to the adversary, then
random ciphertexts can be sent, they are indistinguishable from real ciphertexts (from the semantic
security of our secure authenticated encryption scheme, in which case B′1 is used as a distinguisher
between the encryption of the real plaintext —as in game G0— or of a random plaintext —as in
game G1—). Eventually, if the adversary tries to impersonate the server before the PAKE, and send
non-oracle-generated messages to the terminal, they should not be encrypted under the correct key

35

kT , unless the adversary has broken either the integrity of the authenticated encryption (in which case
B′1 outputs the fake ciphertext message) or the PAKE (correct guess of r), which would have led to a
positive answer to a TestResp during the simulation before: a forgery against the HC function.
As a consequence, unless the adversary has helped the simulator to break the unforgeability of the
HC function family, this game G1 is indistinguishable from the previous one, and leads to accepted
sessions by the human user for passive sessions only (with compromised terminals or not) with the
expected server, which was our target.
We already showed that the server could only agree on a key (kP , skP) with a terminal linked to the
expected human user, hence the global security of our protocol: privacy and authentication. In addition,
the two more flows allow the human user to detect whether the key skT is shared with the expected
server, just leaking one more random challenge-response pair in case of compromised terminal.
With the same reasoning as in the previous proof, we have

AdvprivHAKE(A) ≤ Advη−ufF (B1) + 2× AdvpakePAKE(Spake,B2,B3) + 2× AdvauthencES (B4)

+ 2×
(
Advsetup-indCS (A1) + Advs-eqCS (A2) + Advs-bindingCS (A3)

)
.

However, there are a few changes regarding the number of queries involved in the simulation B5, but
only on compromised sessions, as otherwise the simulator would not have played the PAKE honestly
and therefore only random-looking messages are generated:

– There may be an additional GetRandChal in some compromised sessions.
– There may be an additional TestResp-query in some active sessions, but only if the PAKE was

passive, without a previous TestResp-query. Otherwise kT is random, and the decryption fails.
– There may be an additional GetResp-query in some server session, if the PAKE succeeded, which

means a compromised terminal session must have been used or a win was alread reached.
– ctr may incremented, but only if the PAKE suceeded (meaning it was not durably increased by

the previous flows). Moreover, if the human accepts, it is decreased (and overall stays the same).

Overall, it is notable that ctr is permanently increased only if the human rejects in the end or the HC
unforgeability game is won. Hence:

ctr ≤ nhr
Moreover, ctr can never reach a value higher than its final value plus one. This means that η = nhr +1
is sufficient for the HC unforgeability game.

Proof (Authenticity proof). The simulated game G1 is indistinguishable from the real one (either the
privacy security game or the authentication security game). To break the server-authentication, the
adversary should be able compute the answer to a random challenge xU with no GetResp allowed.
Breaking the user-authentication means that the adversary succeeded in the PAKE, in order to know
kS , and to send a valid ciphertext XU and hence must also guess the answer r to a random x challenge.
Since we exclude trivial attacks from the authentication security game, any winning strategy requires
a successful TestResp-query. Hence, the advantage Advauth(A) of the adversary in the authentication
security game is upper-bounded the same way as Advpriv(A).

E Proof of Theorem 10

We recall the protocol on Figure 4, and provide a more precise version of Theorem 10.

36

Time Human U` Terminal T Server S

≤ t accept← False accept← False
terminate← False

t
`−−−−→ xT

$← Zp, XT ← gxT xS
$← Zp, XS ← gxS

t
pwt−−−−→ (cT , sT)← ComT (XT , pwt)

`,XT , cT−−−−−−−→
t accept← True XS , cS←−−−−−−− (cS , sS)← ComS(XS , pwt)
... Wait for timeframe > t Wait for timeframe > t
> t

sT−−−−−−−→ If OpenT (cT , sT) = (XT , pwt) and
(`, t) 6∈ Λ, store (`, t) in Λ

> t Otherwise reject
> t accept← True
> t Reject if

OpenS(cS , sS) 6= (XS , pwt)

sS←−−−−−−− Outputs (XT)xS

> t Outputs (XS)
xT terminate← True

Figure 4. Time-Based Device-Assisted HAKE Construction (reminder)

Theorem 10. Consider the Time-Based Device-Assisted HAKE protocol defined in Figure 4. Let A,A′
be an adversaries against the privacy and user authentication security games with static compromises,
running within time tA and using less than nserv non-passive sessions against the server oracle, nterm
non-passive sessions against the terminal oracle, ntotal > nterm + nserv total sessions and T < ntotal
unique timeframes. Then there exist an adversary D1 against the indistinguishability of the password-
distribution D running in time t, an adversary D5 against the DDH experiment running in time t +
8ntotalτexp, four adversaries B′3, B′5, D2, and D3 against the commitment scheme properties running in
time t:

AdvprivHAKE(A) ≤ (nserv + nterm)× 2−D + Advdist-TF (D1) + AdvindDDH(D5) + AdvbindingCS (B′3)

+ Advsetup-indCS (D2) + ntotal × Advs-eqCS (D3) + Advs-bindingCS (B′5)

Advu-authHAKE(A′) ≤ (nserv + nterm)× 2−D + Advdist-TF (D1) + Advsetup-indCS (D2)

+ ntotal × Advs-eqCS (D3) + Advs-bindingCS (B′5),

with τexp the time necessary to exponentiate one group element, and ntotal the global number of sessions.

Proof. Once again, we will denote Bi the simulator for game Gi, that outputs 1 if b ← A and 0
otherwise and define Di the distinguisher between games Gi and Gi−1, for i > 1.

Game G0: This is the real game, where the adversary outputs its guess on the bit b:

AdvprivHAKE(A) = 2× Pr
G0

[b← A]− 1.

Game G1: In this game the simulator will execute the real protocol, generating a password pwt
$← D

at the beginning of each timeframe t and subsequently using it whenever necessary. We will also
consider a flag, NOG-Com-OK, that can be raised during the execution of the simulation. More
precisely, in G1, the simulator answers each request as follows:
1. SendServ(k, (`,XT , cT)): Set the current timeframe t to be πkS ’s session timeframe. Generate
xS

$← Zp and XS ← gxS . Then set (cS , sS)← Com(XS , pwt) and send (XS , cS).
2. SendServ(k, sT): Check whether Open(cT , sT) = (XT , pwt).

– If so, send sS , accept and set skS = (XT)
xS . Additionaly, if πkS is fresh and cT was not

oracle-generated, raise flag NOG-Com-OK.
– If the equality is not verified reject.

3. SendTerm(j, Start): Set the current timeframe t to be πjT ’s session timeframe. Generate xT
$←

Zp and XT ← gxT . accept on behalf of the human and use the current password pwt to set
(cT , sT)← Com(XT , pwt) and send (`,XT , cT). Additionally, if π

j
T is compromised, reveal the

password pwt.

37

4. SendTerm(j, (XS , cS)): Wait until the timeframe is > t, then send sT .
5. SendTerm(j, sS): Check whether Open(cS , sS) = (XS , pwt).

– If so, set skT = (XS)
xT . Additionaly, if πjT is fresh and cS was not oracle-generated, raise

flag NOG-Com-OK.
– If the equality is not verified, reject.

6. SendHum(): If πjT was marked as infected, reveal pwt, where t is the current timeframe and
accept.

7. Compromise(j): Mark πjT as compromised and reveal the random tape.
8. Infect(j): If πjT is compromised through a previous Compromise(j) query, mark it as infected,

allowing SendHum queries.
9. Test(j, P): according to b and whether πjP is fresh or not, the real key skP , a random key or
⊥ is returned.

It should be clear that this simulation performs exactly as the real game should, except for using
the global distribution D to generate the passwords, since the additional flags are purement formal
but do not affect the simulation. Hence:

|Pr
G1

[b← A]− Pr
G0

[b← A]| ≤ Advdist-TF (D1),

where D1 behaves as B0 but using either distribution D (which is then G1) or the real distribution
(as in G0) to generate the passwords pwt.

Game G2: In this game, unless the oracle is compromised, we will reject all openings for non-oracle-
generated commitments.
More precisely, we change the queries answers as follows:
2. SendServ(k, sT): If cT was oracle-generated and Open(cT , sT) = (XT , pwt), send sS , accept

and set skS(XS)
xT . Otherwise, reject.

5. SendTerm(j, sS):
– If compromised, act exactly as in G1

– Otherwise: If cS was oracle-generated and Open(cS , sS) = (XS , pwt), accept and set skT =
(XS)

xT . Otherwise, reject.
Obviously, games G2 and G1 are not indistinguishable. However, this can only make a difference
when NOG-Com-OK was raised. Hence:

|Pr
G2

[b← A]− Pr
G1

[b← A]| ≤ Pr
G1

[NOG-Com-OK]

Game G3: In this game, we further straighten our requirements for openings in non-compromised
terminals. Indeed, we will also reject an opening if it opens to a different XS/XT than the one it
was initially generated for. More precisely:
1. SendServ(k, (`,XT , cT)): Act as in G1. Then store (cS , XS , sS) ∈ ΥS .
2. SendServ(k, sT): If Open(cT , sT) = (XT , pwt) and (cT , XT , ·) ∈ ΥT , send sS , accept and set

skS = (XS)
xT . Otherwise, reject.

3. SendTerm(j, Start): Act as in G1. Then store (cT , XT , sT) ∈ ΥT .
5. SendTerm(j, sS):

– If compromised, act exactly as in G2

– Otherwise: If Open(cS , sS) = (XS , pwt) and (cS , XS , ·) ∈ ΥS , set skT = (XS)
xT . Otherwise,

reject.
GameG3 andG2 are almost the same. The only difference would be if A somehow reuses an oracle-
generated commitment cP but opens it to a different key X∗P (and the same, valid, password pwt)
than the oracle-generated one XP . This would, however, break the binding property of CS, as
we now know two opening values (sP , s∗P) for two messages ((XP , pwt), (X

∗
P , pwt)) with the same

commitment cP ; we define a simulator B′3 that behaves as B3 but outputs such a tuple.
As it happens only on non-passive sessions, of which there is at most nterm + nserv, we have:

|Pr
G3

[b← A]− Pr
G2

[b← A]| ≤ AdvbindingCS (B′3).

38

Game G4: We now consider a CDH tuple (A,B,C) = (ga, gb, gab) and embed it into the simulation.
Once again, simulations still behave as in the original game G1 for compromised sessions. More
precisely, we change the queries answers from game G3 as follows:
1. SendServ(k, (`,XT , cT)): Set the current timeframe t to be πkS ’s session timeframe. Generate

(β, δ)
$← Z2

p and set XS ← Bδ · gβ . Then set (cS , sS) ← Com(XS , pwt) and send (XS , cS).
Lastly, store (cS , XS , sS) ∈ ΥS .

3. SendTerm(j, Start):
– If compromised, act exactly as in G3.
– Otherwise: Set the current timeframe t to be πjT ’s session timeframe. Generate (α, γ) $← Z2

p

and set XT ← Aγ · gα. Use the current password pwt to set (cT , sT)← Com(XT , pwt) and
send (`,XT , cT). Then store (cT , XT , sT) ∈ ΥT .

9. Test(j, P): If skP has been generated and πjP is fresh, we know (α, β, γ, δ) that were used to
construct XT and XS (we only compute skP if both are oracle-generated). Then, the simulator
uses skP = Cγδ ·Bαδ ·Aβγ · gαβ for the real key. Otherwise, it returns ⊥.

Regarding compromised sessions, either the adversary learned the password pw (from SendHum-
query or by letting the compromised terminal ask the user) and no Test-query can be asked as
neither πjT nor πkS is fresh; or the adversary did not learn the password, in which case Test-queries
can still be asked to πkS , but the compromise did not reveal any secret.
Since we have C = gab, then skP = g(aγ+α)·(bδ+β) is exactly as the real key should be. This game
is perfectly indistinguishable from the previous one:

Pr
G4

[b← A] = Pr
G3

[b← A].

Game G5: We are now given a random C, independent of A and B:
Hence, using a distinguisher D5, that behaves as B5 with C either real (as inG4) or random (which
is G5):

|Pr
G5

[b← A]− Pr
G4

[b← A]| ≤ AdvindDDH(D5),

Note that our simulator makes 8 exponentiations to simulate any session in addition to the running
time of A, so D5 runs in time tA + 8ntotalτexp with tA the running time of A and τexp the time
necessary to exponentiate one group element.
When C is random, then every skP is random and independent of all others. Hence one cannot
distinguish the real key from a random key, since they are both random: PrG5 [b← A] = 1/2.
As a consequence,

AdvprivHAKE(A) ≤ Pr
G1

[NOG-Com-OK] + Advdist-TF (D1) + AdvindDDH(D5) + AdvbindingCS (B′3).

We now need to bound the probabilities of events NOG-Com-OK in game G1. For this, we construct
another series of games from game G1, in which we will consider the probability of raising a flag
instead of the regular advantage over the Test-queries. For the sake of simplicity, we will denote the
simulators in this branch Ci for game Gi.

Game G2: In this game, we go back to game G1 and change the simulator’s behavior to make use of
the equivocality property of our commitment scheme. But before any equivocation, we just change
the setup procedure of the commitment:

|Pr
G2

[b← A]− Pr
G1

[b← A]| ≤ Advsetup-indCS (D2),

where D2 is a distinguisher that behaves as B1, with either Setup (which is G1) or Setup′ (which
is G2).

Game G3: The simulator can now use its oracle access to equivocal commitments whenever it has
to use commitments in order to delay the actual committed value. However, if the terminal is
compromised, we will still use regular commitments algorithm. This is due to the fact that the
adversary knows the random tape and can therefore deterministically reproduce the output of
Com. The simulator runs as follows:

39

1. SendServ(k, (`,XT , cT)): Set the current timeframe t to be πkS ’s session timeframe. Generate
xS

$← Zp and XS ← gxS . Get cS ← GenEquivCommit and send (XS , cS).
2. SendServ(k, sT): Check whether Open(cT , sT) = (XT , pwt).

– If so, send sS ← OpenEquivCommit(cS , (XS , pwt)), accept and output skS = (XT)
xS .

Additionally, if πkS is fresh and cT was not oracle-generated, raise flag NOG-Com-OK.
– Otherwise output ⊥.

3. SendTerm(j, Start): Set the current timeframe t to be πjT ’s session timeframe and generate
xT

$← Zp and XT ← gxT . Then:
– If compromised : Act as in G1.
– If uncompromised : Get cT ← GenEquivCommit and send (`,XT , cT).

4. SendTerm(j, (XS , cS)): Wait until the timeframe is > t. Then:
– If compromised : Act as in G1.
– If uncompromised : Send sT ← OpenEquivCommit(cT , (XT , pwt)).

5. SendTerm(j, sS): Check whether Open(cS , sS) = (XS , pwt).
– If so, generate and output skT = (XS)

xT Additionally, if πjT is fresh and cS was not
oracle-generated, raise flag NOG-Com-OK.

– Otherwise output ⊥.
The difference is just in the use of equivocal commitments instead of real ones:

|Pr
G3

[b← A]− Pr
G2

[b← A]| ≤ ntotal × Advs-eqCS (D3).

where D3 is a distinguisher that behaves as C2 but uses either real (like in G2) or equivocal (as
in G3) commitments.

Game G4: One could remark that in the previous game, unless the session is compromised, the
simulator doesn’t use pwt in any timeframe ≤ t. Therefore, in this game, the simulator will delay
producing pwt until the timeframe t has ended, unless Compromise is called. This can be done
using the same oracle handlers as in G3, simply adding the password definition:
2. SendServ(k, sT): If not yet generated, generate pwt

$← D. Then act as in G3.
4. SendTerm(j, (XS , cS)): After waiting for the current timeframe to be > t, if not yet generated,

generate pwt
$← D. Then act as in G3.

7. Compromise(j): Generate pwt
$← D. Then act as in G3.

This game is perfectly indistinguishable from the previous one:

Pr
G4

[b← A] = Pr
G3

[b← A].

Game G5: We will now use the extractability property of our commitment scheme to check the
adversary’s commitment, by modifying the simulator as follows:
1. SendServ(k, (`,XT , cT)): If cT was not oracle-generated, extract (X∗T , pw

∗
t)← ExtractCommit(cT).

Then act as in G4.
2. SendServ(k, sT): If cT was oracle-generated, act as inG4. Otherwise, generate pwt

$← Dt. Then
check whether (X∗T , pw

∗
t) = (XT , pwt).

– If so, send sS ← OpenEquivCommit(cS , (XS , pwt)), accept and output skS = (XT)
xS .

Additionally, if πkS is fresh, raise flag NOG-Com-OK.
– Otherwise output ⊥.

4. SendTerm(j, (XS , cS)): Extract (X∗S , pw
∗
t)← ExtractCommit(cS). Then act as in G4.

5. SendTerm(j, sS): If cS was oracle-generated, act as inG4. Otherwise, check whether (X∗S , pw
∗
t) =

(XS , pwt).
– If so, generate and output skT = (XS)

xT Additionally, if πjT is fresh and cS was not
oracle-generated, raise flag NOG-Com-OK.

– Otherwise output ⊥.

40

Note that in this game, except for compromised sessions, pw∗t is obtained before pwt is generated.
Hence Pr[pwt = pw∗t] = 2−D.
The only way to distinguish GameG5 from GameG4 would be if (Open(cP , sP) 6= ExtractCommit(cP).
But if so, then (cP , sP) breaks the strong binding extractability, which can be outputed by a sim-
ulator B′5 similar to C5. Hence:

|Pr
G5

[NOG-Com-OK]− Pr
G4

[NOG-Com-OK]| ≤ Advs-bindingCS (B′5).

Moreover, we can now bound the probability that those flags are raised in game G5. Indeed, for it
to happen, there must exist a oracle πjP such that (X∗P , pw

∗
t) = (XP , pwt). In particular, we must

have pw∗t = pwt. Moreover, this cannot happen if the session was passive. Hence,

Pr
G5

[NOG-Com-OK] ≤ (nserv + nterm)× 2−D.

And so:

Pr
G1

[NOG-Com-OK] ≤ (nserv + nterm)× 2−D + Advsetup-indCS (D2) + ntotal × Advs-eqCS (D3) + Advs-bindingCS (B′5).

In conclusion, we have various adversaries such that:

AdvprivHAKE(A) ≤ (nserv + nterm)× 2−D + Advdist-TF (D1) + AdvindDDH(D5) + AdvbindingCS (B′3)

+ Advsetup-indCS (D2) + ntotal × Advs-eqCS (D3) + Advs-bindingCS (B′5).

Proof (Authenticity proof). The simulated game G1 is indistinguishable from the real world (be it in
the privacy security game or the authentication security game).
To break user authentication means that the adversary successfully opened a commitment cT toXT , pwt
without interacting with U`. This is exactly the situation in which flag NOG-Com-OK is raised. Hence:

Advu-authHAKE(A′) ≤ Pr
G1

[NOG-Com-OK] + Advdist-TF (D1)

Using the same results about PrG1 [NOG-Com-OK], this gives:

Advu-authHAKE(A′) ≤ (nserv + nterm)× 2−D + Advsetup-indCS (D2) + ntotal × Advs-eqCS (D3)

+ Advs-bindingCS (B′5) + Advdist-TF (D1)

	Human Computing for Handling Strong Corruptions in Authenticated Key Exchange
	Introduction
	Human Authenticated Key Exchange (HAKE)
	HAKE Definitions
	Formal Security Model

	Building Blocks
	Human-Compatible Function Family
	Commitment Scheme
	Password-Authenticated Key Exchange
	Authenticated Encryption

	Generic HAKE Protocols
	The Basic Generic HAKE
	The Confirmed HAKE

	Human-Compatible Function Family Instantiation
	Token-Based HC Function Family Instantiation
	Only-Human HC Function Family Instantiation

	Device-Assisted HAKE Protocols
	Simplified Basic HAKE
	Time-Based HAKE

	Conclusion
	Building Blocks
	Commitment Scheme
	Password-Authenticated Key Exchange

	Simplified Basic HAKE Construction
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 10

