
Application-Sensitive Access Control Evaluation using Parameterized Expressiveness

Timothy L. Hinrichs∗, Diego Martinoia∗, William C. Garrison III†,
Adam J. Lee†, Alessandro Panebianco∗, Lenore Zuck∗

∗ Department of Computer Science, University of Illinois at Chicago
† Department of Computer Science, University of Pittsburgh

Abstract—Access control schemes come in all shapes and sizes,
which makes choosing the right one for a particular application
a challenge. Yet today’s techniques for comparing access control
schemes completely ignore the setting in which the scheme is to
be deployed. In this paper, we present a formal framework for
comparing access control schemes with respect to a particular
application. The analyst’s main task is to evaluate an access
control scheme in terms of how well it implements a given access
control workload (a formalism that we introduce to represent
an application’s access control needs). One implementation is
better than another if it has stronger security guarantees, and
in this paper we introduce several such guarantees: correct-
ness, homomorphism, AC-preservation, safety, administration-
preservation, and compatibility. The scheme that admits the
implementation with the strongest guarantees is deemed the best
fit for the application. We demonstrate the use of our framework
by evaluating two workloads on ten different access control
schemes.

Index Terms—access control; evaluation; state machine; pa-
rameterized expressiveness

I. INTRODUCTION

Access control, determining which actions are permitted in

a system, is a fundamental issue in computer security and

has been studied formally in numerous settings. Prior work

has mainly focused on comparing the raw expressive power

of two or more access control schemes, e.g., [1]–[8]. While

raw expressiveness is an interesting and meaningful basis for

comparison, it fails to give a security analyst a methodology

for choosing the access control scheme that will best serve the

needs of a particular application (where by “application” we

mean any kind of computer system, be it hardware, software,

or cyberphysical system). The fact that scheme S is more

expressive than scheme T only means that there are some

applications for which S is adequate but T is not, a fact that

fails to tell an analyst whether or not either scheme is adequate

for her particular application.

We therefore advocate the development of an application-
sensitive evaluation framework for access control schemes.

Instead of comparing candidate access control schemes S and

T with each other, we propose evaluating each candidate

scheme against a specification of the application’s access

control workload, a formalism that we introduce to capture

the access control demands of the application. The scheme

that best meets the demands of that workload is the one

deemed best-suited for the application, and it could be that

the less expressive T better meets those demands than the

more expressive S .

While there are many ways to decide which access con-

trol scheme is best suited for a given application (e.g., us-

ability, maintenance overheads, development costs), in this

paper we focus on two key issues: the basic functional-

ity that the application requires and the security guarantees

that are important for the application. We introduce ACEF,

an application-sensitive access control evaluation framework,

where the workload W describes the basic functionality the

application requires of its underlying access control scheme,

and candidate access control schemes are compared in terms

of which application-relevant security guarantees that they

can achieve. While ACEF is targeted at developers aiming

to leverage hardened implementations of much-studied access

control schemes by implementing W using an existing scheme,

even developers implementing W from scratch can benefit

from comparing potential implementations in terms of the

security guarantees described by ACEF.

In ACEF, a workload W is based upon the concept of an

idealized access control scheme for the application—a scheme

that immediately meets the application’s every access control

need. Every operation the application would ever potentially

execute that has access-control repercussions can be executed

directly in W; every bit of protection state the application

ever needs to store is stored by W; and every access control-

relevant question the application would ever potentially need

answered is one of the built-in queries of W . Such an idealized

access control scheme describes the basic functionality the

application requires of any candidate scheme.

Each implementation of that basic functionality achieves

different security guarantees. For example, the safety guarantee

we introduce ensures that every right ever granted by an

implementation must have been explicitly granted by the

workload, even in transitory states. As another example, [5]

describes the (strongly) security-preserving guarantee, which

requires certain formulas in (infinitary) temporal logic to be

preserved by the implementation. A central contribution of this

work is the identification of several useful classes of desirable

security guarantees that may hold over implementations of

a workload. Which guarantees are important depends almost

entirely on the application, and the scheme that can implement

W while upholding the most application-relevant guarantees

is deemed the best fit.

From the perspective of prior work, the key idea of this

paper is that the same mathematical machinery used for years

to compare access control schemes in absolute terms (the

state machine and simulation relations), e.g., [4], [5], [9], can

also be used to develop an application-sensitive evaluation

framework. This paper can be seen as an investigation into the

validity of a simple but powerful thesis: that a state machine is

2013 IEEE 26th Computer Security Foundations Symposium

© 2013, Timothy L. Hinrichs. Under license to IEEE.

DOI 10.1109/CSF.2013.17

145

an apt formalism for representing an application’s basic access

control functionality, and that the security properties achieved

by the simulation relations between that state machine and

each candidate scheme is a crucial aspect of comparing

candidate schemes. ACEF can therefore be seen as a study of

parameterized expressiveness: comparing the expressiveness

of access control schemes relative to the workload and a

set of application-relevant security guarantees. Change either

the workload or the security guarantees, and the results of

comparing two schemes S and T may change.

The main contributions of this work are as follows.

• We present the first framework for application-sensitive

access control evaluation (ACEF). ACEF generalizes the

application-insensitive frameworks studied in [4] and [5].

• We introduce several security guarantees for work-

load implementations (correctness, homomorphism, AC-

preservation, safety, administration-preservation, and

compatibility). For each guarantee, we develop useful

proof techniques for negative results (i.e., showing that

a candidate scheme has no implementation with that

guarantee), and introduce reductions between candidate

schemes S and T that ensure every workload imple-

mentable in S with that guarantee is also implementable

in T with that guarantee.

• We present an application-sensitive analysis of the work-

load for the dynamic coalition application described in

[10] and another workload corresponding to a typical

hospital administration application. For each workload,

we analyze the suitability of four variations of the access

matrix model, three variations of the RBAC model, and

three variations of Bell-LaPadula.

In the remainder of the paper, we begin with an informal

overview of ACEF (Section II) and then describe its three

central formalisms: access control systems, workloads, and

implementations (Section III). Then we introduce several novel

security guarantees that we found to be important during our

case studies, along with several theorems about those guar-

antees (Section IV). We then discuss the results of applying

ACEF to two case studies (Section V). Finally we describe

related work (Section VI) and conclude (Section VII). Material

omitted for lack of space can either be found in the Appendix

or in the extended version [11].

II. EXAMPLE AND INFORMAL OVERVIEW

The motivation for this work were the MITRE reports [10],

[12] that conclude that the access control system currently

used by the United States government is no longer adequate

to secure the nation’s information. The reports call for a re-

design of the system to address a troublesome yet routine

application of access control: dynamic coalitions. Dynamic

coalitions arise whenever the U.S. joins forces with other

countries to confront issues of global significance, e.g., the

military operations in Libya and the tsunami in Japan. Coali-

tions are problematic from the perspective of access control

because each time a country joins a coalition, all participating

governments must share large amounts of information with

a large number of individuals, requiring massive changes in

each country’s access control policy. Similarly, each time a

country leaves a coalition, a large number of rights must

be revoked. Coalitions whose memberships change frequently

put extraordinary demands on access control systems, and the

MITRE reports cite anecdotes of how the current U.S. system

has failed either to protect sensitive information or to release

that information in a timely fashion. The key observation is not

that the U.S. system has always been fundamentally flawed,

but rather that it is a poor fit for the now-prevalent coalition

operations. This dynamic coalition application serves as the

running example throughout the paper.

ACEF is a rigorous mathematical framework that helps an

analyst concerned about dynamic coalitions, for example, to

design a new access control system for the U.S. government.

Below we informally describe the methodology the analyst

would follow and spend the remainder of the paper detailing

ACEF’s formal foundations.

To use ACEF, the analyst begins by describing the following

idealized access control scheme to represent the workload for

the dynamic coalitions application.

• states: Each state stores an access control policy and a

record of which operative is a citizen of which country.

• commands: The joinCoalition command adds rights for

all the joining country’s users and records the country of

each new user. The leaveCoalition command revokes all

the rights granted any user of the country that is leaving

the coalition.

• queries: The queries about the state that are relevant to

the application include all the possible access control

requests, and whether a given operative is a citizen of

a given country.

Second, the analyst chooses a set of access control schemes

that are viable candidates for the application. For example,

the analyst might choose variants of the access-matrix (AM),

role-based access control (RBAC), or Bell-LaPadula (BLP).

In ACEF, each candidate scheme is formalized as a state

machine: a set of states, commands for changing the state,

and a set of queries for all states, just as in the workload

described above.

Third, the analyst finds implementations of the workload

for each of the candidate access control schemes. An imple-

mentation consists of three things:

• state-mapping: a mechanism that dictates how the access

control scheme’s states are used to represent the work-

load’s states

• command-mapping: a prescription for how each work-

load command can be (weakly) simulated using the

access control scheme’s commands.

• query-mapping: a method of computing the workload’s

queries from the candidate scheme’s queries

Next, the analyst chooses which security guarantees are im-

portant for the coalition workload’s implementation, of which

we introduce several in this paper. A correct implementation

ensures that the access control scheme will faithfully simulate

146

the end-to-end intent of each workload command. An AC-
preserving implementation guarantees that the access control

policy of the workload is represented the way the access con-

trol scheme was designed to represent access control policies.

A safe implementation ensures that in even the intermediate

states arising during a workload command’s implementation,

no right is ever granted or revoked unless the workload

requires it. An administration-preserving implementation en-

sures that commands carried out by regular users in the

workload never require an administrator to intervene in that

command’s implementation. A homomorphic implementation

is one that is robust under constant substitutions, giving us

confidence that the implementation is not blatantly abusing the

scheme. A compatible implementation allows administrators to

use the scheme the way that it was originally designed while

simultaneously using it to meet the demands of the workload.

This list of guarantees is by no means comprehensive (e.g.,
[5] introduces the (strong) security-preserving guarantee), but

is comprised of those we found useful when performing our

evaluation.

Finally, the analyst compares candidate schemes in terms

of parameterized expressiveness. For example, suppose the

analyst decides that correctness, safety, and AC-preservation

are the only important security guarantees for the dynamic

coalition application. Then RBAC is better suited than BLP

if RBAC can implement the coalition workload correctly

and safely, but none of BLP’s correct implementations are

safe. If two schemes satisfy incomparable sets of security

guarantees (e.g., correctness and safety versus correctness

and AC-preservation), the analyst must decide which set of

guarantee is preferable.

III. ACCESS CONTROL, WORKLOADS, IMPLEMENTATIONS

In this section we give formal definitions of access control,

workloads, and a workload implementation in ACEF. At the

heart of our formal framework is the access control model.
Intuitively, an access control model is (i) a collection of data

structures that store information pertinent to access control and

(ii) a collection of queries that expose only certain kinds of

information about those data structures to an external observer.

Each snapshot of the data structures in the model is an access
control state. Each method that exposes information about the

state is a query. An access control model differs from an

arbitrary data structure because every state supports a special

set of queries that define the access control policy for that

state. The access control policy for a state dictates which of

all possible access control requests are granted and which ones

are denied. In this paper we denote the access control queries

with auth(r), where r is one of the access control requests,

e.g., the typical combination of subject-object-right.

Definition 1 (Access Control Model): An access control

model M has fields 〈S,R,Q, |=〉
• S: a set of states

• R: a set of access control requests

• Q: a set of queries including auth(r) for every r ∈ R

• |=: a subset of S ×Q (the entailment relation)

If M = 〈S,R,Q, |=〉, we use States(M) to denote S and

Queries(M) to denote Q. We use the term theory to denote

any truth assignment for all the queries in Q. For state s ∈ S ,

we use Th(s) (a subset of Q) to denote the set of all q ∈ Q
such that s |= q (a convenient representation of the theory that

holds at s). We use Auth(s) (a subset of Th(s)) to denote the

set of all auth(r) ∈ Q such that s |= auth(r). �

Example 1 (RBAC model): Traditionally each state in RBAC

(specifically RBAC0 [13]) includes a UR relation to record

users and their roles and a PA relation to record roles and the

object-right pairs assigned to them.1 In our framework, each

RBAC state is a finite collection of statements of the form

UR(a, b) or PA(a, b, c). The permitted queries usually include

all the possible UR(a, b) and PA(a, b, c). Additionally, the

queries include all possible auth(a, b, c), whose values are

defined in terms of UR and PA: a subject is granted a right

over an object exactly when there is some role to which the

subject belongs and to which the right over that object is

granted.

S |= auth(a, b, c) ⇐⇒ ∃d.(UR(a, d) ∈ S ∧ PA(d, b, c) ∈ S)

�

While an access control model defines how to store and

query information, an access control system adds methods for

changing the state of an access control model. For example,

when a user adds a document, the system changes state,

perhaps by adding the document’s identifier to the set of

known documents. Mathematically, an access control system
adds labeled edges between the states of a model, where the

labels record the command that caused the transition to occur.

Definition 2 (Access Control System): An access control sys-

tem Y has fields 〈M,L, next〉
• M: an access control model

• L: a set of labels (also called commands)

• next : States(M) × L → States(M) (the transition

function)

If Y = 〈M,L, next〉, we use Labels(Y) to denote Labels(M),
States(Y) to denote States(M), and Queries(Y) to denote

Queries(M). The theories of Y are all the theories of M. For a

finite sequence of labels l1◦· · ·◦ln, we use terminal(s, l1◦· · ·◦
ln) to denote the final state produced by repeatedly applying

next to the labels l1, . . . , ln starting from state s. �

Example 2 (RBAC system): The system commands for RBAC

are given below.1 All instances of those commands are the

labels L in our framework, and the transition function next
is given implicitly by the changes the commands make to the

state in which they are invoked.

• assignUser(a,b): add UR(a, b) to the state

• revokeUser(a,b): remove UR(a, b) from the state

• assignPermission(a,b,c): add PA(a, b, c) to the state

1Usually the set of all subjects, the set of all objects, and the set of all
roles are also recorded in the state, but for brevity we ignore those here.

147

• revokePermission(a,b,c): remove PA(a, b, c) �

In ACEF, we use the concept of an access control sys-

tem to define an access control workload—the mathematical

construct intended to capture all the demands the application

of interest places on its underlying access control system. A

workload consists of two components: (i) an access control

system defined to be ideal for the application of interest, and

(ii) the set of all possible traces through that system that might

arise depending on the environment in which the application

is deployed.

The idealized access control system for a workload is one

that immediately meets every access control need of the appli-

cation. Every operation the application would ever potentially

execute that has access-control repercussions can be executed

directly in the workload. Every bit of protection state the

application ever needs to store is stored by the workload.

Every access control-relevant question the application would

ever potentially need answered is one of the built-in queries

of the workload.

The traces of the workload reflect the idea that the appli-

cation could be deployed in many different settings (e.g., an

open-source web app is installed and run on many different

systems) and hence the actual work that the application does

varies from deployment to deployment. The traces describe

how the environment in which the application is deployed

will interact with that application by detailing all the possible

sequences of commands the environment is permitted to

invoke. In any single deployment, the environment will invoke

only one of the workload’s traces, but because the environment

varies from deployment to deployment, the application must be

able to properly cope with any one of the traces defined in the

workload. Each of those traces is formalized as an initial state

and the (possibly infinite) sequence of workload commands

that are executed. This formalization assumes that if the

environment executes commands concurrently, the workload

traces include all possible linearizations of those concurrent

executions.

Definition 3 (Workload): A workload W has fields 〈A, T 〉.
• A: an access control system.

• T : a set of pairs 〈s0, τ〉 where s0 ∈ States(A) and τ =
l1 ◦ l2 ◦ . . . is sequence where li ∈ Labels(A) for all i.

If W = 〈A, T 〉, we use Labels(W) to denote Labels(A),
States(W) to denote States(A), and Queries(W) to denote

Queries(A). �

From a formal perspective, an access control system is a

special kind of workload: one where all possible traces are

feasible. This similarity in formalism is useful because it

helps keep the framework mathematically simple. But while

formally similar, the intention of a workload differs appre-

ciably from the intention of an access control system. An

access control system is something that someone other than the

analyst defines to represent a fixed piece of software. A work-

load is something the analyst defines to represent the high-

level functionality an application requires of an access control

system—functionality that would never be built directly into

a general purpose access control system.

Example 3: In the coalition workload, one command involves

an organization joining the coalition, and another command in-

volves an organization leaving the coalition. The state includes

statements of the form auth(subject, object, right) to repre-

sent the authorization policy and orgUser(orgID, subject)
to track which subjects belong to which organizations.

The joinCoalition command takes as input an organiza-

tion ID and a set of subject-object-right authorizations. For

each authorization, it adds auth(subject, object, right) and

orgUser(orgID, subject) to the state. The complementary

command, leaveCoalition is applied to a given organization

ID and revokes all the rights of subjects who are members of

that organization. It also removes the record of those subjects

belonging to that organization.

• joinCoalition(orgID, newAuth): for each 〈a, b, c〉 ∈
newAuth, add to the state (i) auth(a, b, c) and (ii)

orgUser(orgID, a).
• leaveCoalition(orgID): for each orgUser(orgID, a) true

in the state, remove from the state (i) all auth(a, b, c) and

(ii) orgUser(orgID, a).

The assumption that leaveCoalition makes is that orgUser
is functional, i.e., every subject belongs to at most one

organization. This seems problematic because two invocations

of joinCoalition could assign a single subject to two different

organizations; however, for this application, joinCoalition is

never used that way. To represent this within the workload,

we say that the possible traces are all those that yield only

states where orgUser is functional. �

Once the analyst has formalized the application workload

and the candidate access control systems, she searches for

implementations of that workload for each of the candidate

systems. The implementations we consider in this paper have

three components. The first component is a specification for

how each workload state can be represented by a state in

the candidate access control system. The second component

is a prescription for how each command in the workload is

translated into a sequence of commands in the access control

system—a prescription that can depend on the state in which

the command is invoked. The third component describes how

to compute the truth values for the workload queries given

the truth values for the access control system queries. More

precisely, this component consists of one function for each

of the workload queries that maps each possible theory of the

access control system to a truth-value for that workload query.

Definition 4 (Implementation): For a workload W and a sys-

tem Y , an implementation has fields 〈α, σ, π〉
• σ : States(W) → States(Y) (state-mapping)

• α : States(Y) × Labels(W) → Labels(Y)∗ (command-

mapping)

• π: for each q ∈ Queries(W), a function πq that maps

each theory for Y to either true or false (query mapping)

With slight abuse of notation, for an access control theory T

148

from system Y , we write π(T) to denote the set of all workload

queries made true under π, i.e.,

π(T) denotes {q ∈ Queries(W) |πq(T) is true}

�

Example 4 (RBAC and Coalitions): To implement the coali-

tion workload in RBAC, the query mapping π might represent

the workload’s auth(a, b, c) queries as RBAC usually does:

there exists some role d such that UR(a, d) and PA(d, b, c)
hold. To encode orgUser we treat each orgID as a role

and represent orgUser(orgID, a) as UR(a, orgID) where

the role orgID is granted no rights for any object.

For the state mapping σ, the workload state w is mapped to

an RBAC state s where the queries of w have the same values

as when the query mapping is applied to s. In particular, σ
chooses the minimal such RBAC state. For example, the initial

workload state (wherein both auth and orgUser are empty),

maps to the empty RBAC state (wherein both UR and PA
are empty).

The command mapping α translates each workload

command to a sequence of AC system commands (assignUser,

revokeUser, assignPermission, and revokePermission).

Each time joinCoalition adds auth(a, b, c), a role d
that occurs nowhere else in the state is created, and

we invoke assignUser(a,d) and assignPermission(d,b,c),
thereby adding UR(a, d) and PA(d, b, c) to the state. For

each orgUser(orgID, a) that must be added, we invoke

assignUser(a,orgID) to add UR(a, orgID) to the state but

first ensure that if orgID is a legitimate role, that role (which

our implementation invented) is first renamed to a fresh

value. The implementation of leaveCoalition simply removes

the appropriate UR and PA atoms using revokeUser and

revokePermission. �

IV. SECURITY GUARANTEES

This section formally introduces the security guarantees

that we have developed and evaluated during our case study.

Each guarantee is a property of the implementations from

Definition (4). Typically, only some guarantees are relevant to

a given application, and the access control system admitting an

implementation with the largest number of application-relevant

guarantees is the one best-suited for that application.

A. Correct Implementations

The most important guarantee is correctness. Intuitively, a

correct implementation ensures that the environment cannot

determine whether it is interacting with the workload state

machine or with a candidate access control system at the

basic level of inputs and outputs. More precisely, a correct

implementation is one that for any of the workload’s com-

mand traces, its execution produces a state sequence in the

access control system that, except for intermediate states, is

observationally equivalent to the workload’s trace.

Definition 5 (Correctness): Consider a workload W =
〈A, T 〉, a system Y , and an implementation 〈α, σ, π〉. The

implementation is correct if (i) the state-mapping preserves the

query mapping: for every workload state w we have Th(w) =
π(Th(σ(w)) and (ii) the command-mapping preserves the state

mapping: for every workload trace 〈w0, 〈β1, β2, . . . 〉〉 ∈ T
where s0 = σ(w0) and

w1 = next(w0, β1) s1 = terminal(s0, α(s0, β1))
w2 = next(w1, β2) s2 = terminal(s1, α(s1, β2))
...

...

we have that si = σ(wi) for all i. �

Notice that a single workload command can be implemented

as a sequence of access control commands and that correctness

places no limitations on what those intermediate states might

be. Correctness only requires that the start and end state of

every workload command’s implementation is correct. For

example, the implementation given in Example 4 is correct.

Our definition of correctness is, conceptually, a common

one used in prior work on comparing access control systems

in an application-insensitive manner (see [5] for a detailed

treatment). While correctness is an intuitively necessary re-

quirement for useful workload implementations, it is not

a sufficient condition for guaranteeing the desirability of a

workload implementation. For example, it has been shown that

a simple variant of our notion of correctness can be used to

simulate ATAM within RBAC [14], and to simulate RBAC

within Strict DAC [5]. Thus, by transitivity, ATAM (in which

the safety question is undeciable) can be simulated using

Strict DAC (in which the safety question is decidable) [5].

Thus, while an implementation may be correct, it may not

preserve all of the security guarantees that are important to an

application. The remainder of this section describes additional

restrictions on implementations that application developers

can use to refine their evaluation of candidate access control

systems.

B. AC-Preserving Implementations

An AC-preserving (access control-preserving) implemen-

tation is one that restricts how the authorization policy of

the workload is represented by the access control system. It

requires that the workload’s authorization policy is represented

in the system the way the system was designed to represent

authorization policies. The intuition is that if an implemen-

tation violates this assumption, it has thrown out the central

representational commitment of the access control system, and

any application using the implementation is effectively using

a custom access control solution. AC-preservation formalizes

that intuition.

For example, in an AC-preserving RBAC implementation,

the mapping for the workload’s auth(a, b, c) query is true

exactly when there is some role d such that UR(a, d) and

PA(d, b, c) are true in the RBAC state. An implementation

that is not AC-preserving could choose to make auth(a, b, c)
true whenever PA(a, b, c) is true in the RBAC state. The

implementation given in Example 4 is AC-preserving.

149

Definition 6 (AC Preservation): An implementation with

query-mapping π is called AC-preserving if for all workload

states s and authorization requests r we have that s |= auth(r)
if and only if πauth(r)(Th(σ(s))) = true. �

Notice that AC-preservation is different than correctness.

AC-preservation puts a restriction on the query mapping that

is not required either explicitly or implicitly by correctness.

Notice also that for a system to achieve AC-preservation, it

must support at least all those auth queries in the workload.

C. Safe Implementations

Safety is a subject of much interest in the context of access

control. It is often (though not always [15]) the name given to

the following access control analysis problem: given a system
and an access control request, is that request ever permitted?
Instead of treating safety as an analysis problem pertaining to

access control, here we treat it as a security guarantee that is

tied to the original rights-leakage problem.

Whereas correctness restricts the start and end states of a

workload command’s implementation, a safe implementation

restricts the states between the start and end states. Suppose

the workload command β is executed from the workload state

w, and an implementation causes a candidate access control

system to transition from state s0 through some number of

intermediary states to end at sn. Correctness only dictates that

s0 must represent w, and sn must represent the workload state

resulting from executing β in w. Safety requires that if the

query auth(r) changes to true anywhere between s0 and sn,

then auth(r) must true in sn, and if auth(r) changes to false

then it must be false in sn.

For example, it is correct to implement the joinCoalition
command by first adding 10 arbitrary rights to the access con-

trol policy, then adding the rights required by joinCoalition,

and finally removing those 10 extraneous rights. However,

such an implementation is unsafe because rights were changed

that need not have been.

Definition 7 (Safety): An implementation is safe if the follow-

ing holds for all i whenever the execution of a workload com-

mand yields the access control state sequence 〈s0, . . . , sn〉.
Auth(si)− Auth(s0) ⊆ Auth(sn)− Auth(s0) (Grant)

Auth(s0)− Auth(si) ⊆ Auth(s0)− Auth(sn) (Revoke)

�

For example, the RBAC implementation of the coalition

workload in Example 4 fails to be safe. To represent the

orgUser component of the workload with the UR component

of RBAC requires the implementation to sometimes rename

roles used in representing the authorization policy to avoid

conflicts. This renaming requires changes to the authorization

policy not required by the workload commands.

D. Homomorphic Implementations

The goal of ACEF is to compare access control systems

in terms of parameterized expressiveness: the access control

system that is best-suited for a workload is the one with

the implementation that has the strongest security guarantees.

However, there is a style of implementation (the “string-

packing implementation”) that allows even the simplest access

control system to implement the most complex workload

while achieving some of the strongest guarantees possible,

something that intuitively should not be possible. A string-

packing implementation is one that represents the entire work-

load state with a single data element in the access control

state (e.g., a username or document identifier). That is, it

encodes the entirety of a workload state as a string and

then unpacks, manipulates, and re-packs that string as needed.

For example, in the coalition workload, the entire orgUser
relation might be stored as a single RBAC username. When the

orgUser relation is queried, the implementation unpacks the

that username to find the answer. When the orgUser relation

changes, the implementation unpacks, updates, and repacks

that username.

The goal of the homomorphic security guarantee is to

eliminate these implementations and in so doing capture

our intuition that some workloads are too complex to be

implemented by simple access control systems. Conceptually,

it treats data elements as though they were opaque—as though

they were not strings at all but rather indivisible entities.

Said another way, if we were to replace all data elements

with different data elements, the implementation’s behavior

would be the same under that substitution. The trouble with

formalizing that intuition is that it requires knowing what

the “data elements” for each system are—something that for

exotic access control systems may not be straightforward.

Thus, instead of attempting to eliminate string-packing imple-

mentations for all possible access control systems, we focus

on a class of access control systems that are prevalent today

and easy to define: the extensional access control systems.

An extensional access control system (e.g., the access

matrix, RBAC, Bell-La Padula) is one in which users enter

atomic values (e.g., roles, rights, classifications) into simple

data structures (e.g., a matrix or a pair of binary relations).

We can represent each state of an extensional system as a set

of relations over some universe of strings (e.g., { UR(“alice”,

“r”), UR(“bob”, “r”), PA(“r”,“doc”,“write”) }). Each query of

an extensional system is the name of the query plus its argu-

ments (e.g., auth(“alice”, “doc”, “write”)). Likewise, each

command of an extensional system is the name of the com-

mand plus its arguments (e.g., assignUser(“alice”, “r”)).
A formal definition of extensional systems can be found in

Appendix A.

Extensional access control systems allow us to identify

the data elements and therefore give a rigorous definition

for the intuitive solution to the string-packing problem. A

homomorphic implementation is one that is correct even when

in the midst of a workload execution, every data element

(in both the workload and the access control system) can

be replaced consistently by any other data element without

forfeiting correctness.

The formal definition is based on a homomorphic func-

tion: a function that commutes with constant substitutions.

150

Function f is homomorphic if for all constant substitutions

v we have f(x[v]) = f(x)[v]2. Operationally, homomorphic

functions can be understood as functions written in a special

programming language that includes neither string constants

nor string manipulation routines. See Appendix A for such a

programming language as well as a more complete definition

for the homomorphic security guarantee.

Definition 8 (Homomorphisms): A constant substitution v :
U → U is a bijection from strings to strings. The application

of a substitution v to the common mathematical structures is

the usual one, e.g., function f is homomorphic if f(x̄)[v] =
f(x̄[v]). An implementation 〈α, σ, π〉 is homomorphic if α, σ,

and π are all homomorphic. �

In our running example, suppose an implementation stores

the orgUser relation as a single user in the state, e.g.,

{orgUser(“alice”, “USA”), orgUser(“bob”, “France”)}

is represented as the RBAC state

UR(“〈alice, USA〉, 〈bob, France〉”, “r”).

Replacing “alice” with “eve” changes the workload state so

that “eve” instead of “alice” belongs to “USA”. But that same

substitution does not affect the RBAC state because it contains

no single string “alice”; the only “alice” that appears is as a

substring of the lone UR entry. Thus this implementation is

not homomorphic.

In our experience (see Section V), the homomorphism

guarantee helped us prove some intuitively reasonable results:

that several simple access control systems could not correctly

implement the coalition workload. At the same time, we

recognize that the homomorphism restriction is sometimes too

strong and eliminates implementations that we would want

to consider. The problem is that it assumes that no data

elements are meaningful to the system or workload. The strict

DAC with change of ownership (SDCO) scheme violates this

assumption. Specifically, the “own” right is handled differently

from all other rights within the system. We believe that by

parameterizing the definition of homomorphism by a finite set

of reserved data elements (strings) that are never substituted

for, the homomorphic guarantee would handle SDCO properly

while still eliminating string-packing implementations.

E. Administration-Preserving Implementations

One important distinction in access control is that of the

administrators versus regular users. Administrators can do

everything regular users can do, but in addition they have

special permissions to help deploy, maintain, and trouble-shoot

the system. The important observation about administrators

is that typically there are far fewer administrators than reg-

ular users, and good applications are designed to minimize

2In the context of encryption, the term “homomorphic” is also used, but
instead of commuting over constant substitutions as in this paper, homomor-
phic encryption is concerned with commuting over arithmetic. Naming our
restriction “homomorphic” was intended to convey a conceptually similar but
technically different requirement.

administrator involvement. A good workload implementation

then is one that minimizes the work for administrators. The

administration-preservation security guarantee requires that

any task executed by a regular user in the workload must not

require administrative involvement in the candidate system.

To formalize this idea, we assume that the workload and

the access control system each have designated some subset of

their commands (labels) as “administrative”. An administrative

command is one that only an administrator is permitted to

execute. In Bell-LaPadula administrators change the clearances

and classifications of subjects and objects, whereas regular

users change the access matrix; in the our hospital workload

case study (see Section V), administrators change the doc-

tors and clerical staff employed by the hospital but regular

users, like doctors, change patient charts. We say that an

implementation is administration-preserving if the command

mapping ensures that every non-administrative workload com-

mand maps to a sequence of non-administrative access control

system commands.

Definition 9 (Administrative preservation): An implementa-

tion 〈α, σ, π〉 is administration-preserving if for all workload

labels l and system states s, if α(s, l) = l1◦· · ·◦ln and l is not

a workload administrative command then none of {l1, . . . , ln}
are system administrative commands. �

F. Compatible Implementations

Part of the intuition behind an implementation is that it

demonstrates how to augment an access control system to

include commands for all of the workload’s commands. That

intuition brings with it the idea that in the resulting system

we could ignore the new workload commands and use the

system as it was originally intended. Or we could ignore the

original commands and use just the new workload commands,

or we could interleave the workload commands with the

original commands. It turns out that some implementations

are better suited to this kind of interleaving than others. We

call such implementations compatible with the original system

commands.

We can formalize this idea by comparing the implementa-

tions of workload W in system Y with implementations of a

workload built by combining W and Y (which we denote

W ∪ Y). Intuitively, we say that if the implementation of

W can be conservatively extended to an implementation of

W ∪ Y , then it is compatible with the original system. For

example, for an implementation of the coalition workload in

RBAC to be compatible, there must be an implementation

of the coalition workload augmented with all the RBAC

commands and queries (e.g., assignUser, assignPermission)

that conservatively extends the original implementation.

The definition of compatibility relies on the definition of

W ∪Y for adding an access control system to a workload to

produce a new workload. Conceptually, combining a workload

W and an access control system Y requires two things:

combining Y with the access control system embedded within

W and choosing the traces permitted by that combined access

151

control system. In this paper, we combine access control

systems by building the state machine representing the cross

product of those systems and by unioning the queries of the

two systems. The traces for W ∪Y are all the traces from W
but where commands from Y are interleaved arbitrarily.

Definition 10 (Workload ∪ System): Consider a workload

W = 〈〈〈Sw,Rw,Qw, |=w〉,Lw, nextw〉, Tw〉 and an access

control system Y = 〈〈Sy,Ry,Qy, |=y〉,Ly, nexty〉. W ∪ Y
is defined as:

model: 〈Sw × Sy,Rw ∪Ry,Qw ∪ Qy, |=〉
〈sw, sy〉 |= q iff sw |=w q ∨ sy |=y q

system:〈Lw ∪ Ly, next〉
next(〈sw, sy〉, l) =

〈nextw(sw, l), sy〉, if l ∈ Lw

〈sw, nexty(sy, l)〉, otherwise

traces: the set of all 〈〈sw, sy〉, τ〉 where τ is a sequence of

Lw∪Ly and 〈sw, τ |Lw〉 ∈ Tw (where τ |Lw denotes

τ ’s projection onto its Lw elements)

Definition 11 (Compatibility): The implementation 〈α, σ, π〉
for workload W in system Y is compatible for implementation

guarantees G if there is an implementation 〈α′, σ′, π′〉 of W∪Y
with guarantees G and the following properties.

• α′ conservatively extends α: if l ∈ Lw then for all

sw ∈ States(W) and sy ∈ States(Y), α′(〈sw, sy〉, l) =
α(sw, l).

• π′ conservatively extends π: if q ∈ Qw then π′
q = πq . �

For example, the combination of the RBAC system and

the coalition workload would result in states whose fields

are auth, orgUser, UR, and PA. The commands would

be joinCoalition, leaveCoalition, assignUser, revokeUser,

assignPermission, and revokePermission. If there were an

implementation of this combined workload, the fragment of

that implementation pertaining to just the coalition workload

would be a compatible implementation.

Notice that compatibility is a different kind of guarantee

than the others introduced so far because it is parameterized by

a set of security guarantees. Furthermore, compatibility is con-

cerned with the existence of another implementation, which

also differentiates it qualitatively from the other guarantees.

G. Meta-theorems

Instead of introducing another security guarantee, in this

section we focus on theorems that simplify an analyst’s most

time-consuming tasks: (i) exhibiting implementations with a

given set of security guarantees and (ii) showing that no im-

plementation exists. By showing that system Y1 can simulate

Y2 in a precise way and applying the theorems in this section,

the analyst can conclude that every workload implementable

with some particular set of security guarantees G by Y2 can

also be implemented with guarantees G by Y1. Then if the

analyst shows an implementation in Y2, she knows there must

also be an implementation in Y1, and if she shows there is no

implementation in Y1, then there can be no implementation

in Y2. That is, the theorems in this section help the analyst

to compare systems in terms of parameterized expressiveness:

the ability to implement workloads under security guarantees

G.

Definition 12 (Parameterized Expressiveness): Suppose every

workload that can be correctly implemented by Y1 with

security guarantees G can be correctly implemented by Y2

with security guarantees G. Then we say that Y1 is no more

expressive than Y2 with respect to G, written Y1 ≤G Y2. �

Demonstrating Y1 ≤G Y2 directly can be difficult; hence,

a reduction between two systems is a sufficient condition

that ensures Y1 ≤G Y2 and is easier to demonstrate. The

notion of reduction we introduce here is a simplification

of the implementation definition given earlier. Instead of a

state-mapping, a query-mapping, and a command-mapping, a

reduction includes just a state-mapping and a query-mapping

and requires the state-mapping preserve the query-mapping.

Definition 13 (Reduction): A reduction from system Y1 to

system Y2 is a state-mapping σ and a query-mapping π where

the state-mapping preserves the query-mapping, i.e., for all Y1

states s we have Th(s) = π(Th(σ(s))). �

Different kinds of reductions yield different parameterized

complexity results. Our first theorem says that a reduc-

tion where the state-mapping is one-to-one and preserves

finite reachability ensures that each workload correctly im-

plementable by one system can be correctly implemented by

the other. Finite reachability says that if two states s1 and s2
are connected by finitely many steps in Y1 then σ(s1) and

σ(s2) must be connected by finitely many steps in Y2.

Theorem 1 (System Reductions for ≤): If there is a reduction

〈σ, π〉 from Y1 to Y2 where σ is one-to-one and preserves

finite reachability then Y1 ≤ Y2. Finite reachability requires

that for all s, s′ ∈ States(Y1), if s′ is reachable in a finite

number of commands from s, then σ(s′) is reachable in a

finite number of commands from σ(s).

Our second theorem uses a reduction that is a special case

of the one in the previous theorem. The reduction for AC-

preservation must be one-to-one, preserve finite reachability,

and ensure that the query-mapping π answers each workload

query auth(r) with the access control system query auth(r).

Theorem 2 (System Reduction for ≤A): If there is a reduction

〈σ, π〉 from Y1 to Y2 where σ is one-to-one and preserves finite

reachability and π is AC-preserving, then Y1 ≤A Y2.

Our third theorem also refines the reduction defined in

Theorem 1. Unlike AC-preservation, where we only needed

to add the requirement that the query-mapping was AC-

preserving to ensure ≤A, adding the requirement that the

reduction be homomorphic does not alone ensure ≤H . To

ensure ≤H , we must also know that the systems themselves

are homomorphic.

Theorem 3 (Reduction for ≤H): Consider the case of exten-

sional workloads and access control systems. If there is a

reduction 〈σ, π〉 from Y1 to Y2 then Y1 ≤H Y2 under the

152

following conditions.

• σ is one-to-one, preserves finite reachability, and is ho-

momorphic

• π is homomorphic

• the transition functions and entailment relations of Y1 and

Y2 are homomorphic

For safety, we posit that a reduction for which there is

a command mapping that is one-to-one suffices to preserve

safety between systems. For compatibility, it is likely to

suffice that each command of system Y1 is a special case

of some command in Y2. For administration preservation, it

should suffice that each non-administrative command in Y1

be mapped to a sequence of non-administrative commands

n Y2. Proofs of some of the theorems above can be found

in Appendix B, and further details can be found in the full

version of the paper [11].

V. CASE STUDIES

During our case studies we evaluated several well-known

access control systems against two workloads: the coalition

workload used as a running example throughout the paper and

a workload envisioned for a hospital management system. Our

candidate access control systems consisted of four variants of

the access matrix, three variants of role-based access control,

and three variants of Bell-LaPadula. We report results for each

workload on each candidate access control system for a broad

spectrum of the security guarantees introduced in this paper.

After describing the candidate systems, we discuss the results

for each of the workloads.

A. Candidate Access Control Systems

We analyzed four variants of the access matrix (AM)

system, three variants of the basic role-based access control

(RBAC) system, and three variants of the Bell-LaPadula

(BLP) system. For lack of space, below we present only the

four access matrix systems (AMa, AMb, AMc, and AMd)

and one BLP system (BLPc). One of the RBAC systems

(RBACa) serves as the running example in the main body of

the paper. For each system, we investigated several different

combinations of implementation properties. All of the systems

we analyzed are extensional and hence the homomorphism

guarantee is applicable.

The main difference between the four variants of the access

matrix is (i) whether the subjects, objects, and rights types are

stored outside the matrix as separate relations and (ii) when the

matrix is restricted to the separately stored types, e.g., when

the matrix is stored or when the matrix is queried.

Definition 14 (Access Matrix): U is the set of all strings over

some alphabet.

• AMa has fields 〈m〉
– m ⊆ U × U × U

auth(x, y, z) ⇐⇒ m(x, y, z)

• AMb has fields 〈m,S,O,R〉
– S ⊆ U , the set of legitimate subjects

– O ⊆ U , the set of legitimate objects

– R ⊆ U , the set of legitimate rights

– m ⊆ S ×O ×R

auth(x, y, z) ⇐⇒ m(x, y, z)

• AMc has fields 〈m,S,O,R〉
– S ⊆ U , the set of legitimate subjects

– O ⊆ U , the set of legitimate objects

– R ⊆ U , the set of legitimate rights

– m ⊆ U × U × U
auth(x, y, z) ⇐⇒ S(x) ∧O(y) ∧R(z) ∧m(x, y, z)

• AMd has fields 〈m,S,O,R〉
– S ⊆ U , the set of legitimate subjects

– O ⊆ U , the set of legitimate objects

– R ⊆ U , the set of legitimate rights

– m ⊆ U × U × U
auth(x, y, z) ⇐⇒ m(x, y, z)

The commands for the AM models add and delete an element

from each of the fields. Commands that modify S and R are

the only administrative commands. �

The three variations of role-based access control (RBAC) we

studied differ in the same way as the access matrix: (i) whether

or not the subjects, objects, rights, and roles types are stored

separately from the UR and PA relations and (ii) when the

UR and PA relations are restricted to those separately stored

types. RBACa, for example, does not store the types, whereas

RBACb and RBACc do. RBACb applies the type restrictions

at query-time, similar to AMc, whereas RBACc applies the

type restrictions at the time the UR and PA relations are

stored. The commands for the RBAC systems add or delete

elements from each of the fields of the state; all commands

are administrative commands.

The next three systems are based on the Bell-LaPadula

(BLP) access control system. The important thing about BLPb

is that it assigns subjects and objects to points on a lattice

and then requires that the authorization policy be computed

from the combination of that lattice and an access matrix.

BLPa simplifies BLPb by removing the access matrix; thus,

the authorization policy is only computed from the lattice.

BLPc differs from BLPb in that the authorization policy is

only computed from the access matrix.

Definition 15 (BLPc): BLPc has the following fields

• C: a set of clearance levels

• <: a total ordering on C
• P : a set of compartments

• S: a set of subjects

• O: a set of objects

• R: a set of rights

• clear: S → C × 2P maximal user clearances

• class: O → C × 2P document classifications

• clearc: S → C × 2P current user clearances

• m ⊆ S ×O ×R is a discretionary access matrix

• b ⊆ m records the set of accesses employed currently

153

AHSPAHCS

AH

AHC AHS AHP

AHCP

AMc

Yes
AMc
RBACa
RBACb
RBACc
BLPc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMc
RBACa

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMc
BLPc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMa
RBACa
RBACb
RBACc
BLPc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMc
RBACa

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMc
BLPc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMc

No
AMa
AMb
AMd
BLPa
BLPb

AHCSP

Fig. 1. Summary of the coalition workload results. AMx is an access
matrix system; RBACx is a role-based access control system; BLPx is a Bell-
LaPadula system. A stands for AC-preservation, H for homomorphism, C for
compatibility, S for safety, P for administration-preservation. Correctness is
required throughout.

All fields of the model can be queried. The query auth(s, o, r)
is true exactly when m(s, o, r) is true.

Each BLP variant has commands for changing each of its

fields. The command that changes the clearance clearc of a

user ensures that the current clearance is set no higher than

the maximum clearance defined by clear. The commands that

change C, <, P , class, clear, S, O, and R are the only

administrative commands. �

B. Dynamic Coalition Workload Results

Recall that the coalition workload contains two commands:

joinCoalition, which makes a number of auth atoms true

and records which subject belongs to which organization in

orgUser, and leaveCoalition, which revokes all the auth
atoms for any subject belonging to the organization leaving

the coalition and removes all those subjects from orgUser.

The crucial problem in implementing the coalition workload is

representing the orgUser relation while achieving the desired

security guarantees. While our results cover all our candidate

systems (see Figure 1), for lack of space we only discuss the

access matrix and RBAC systems. See [11] for further details.

We begin with the AC-preservation guarantee, which re-

quires every one of the workload’s auth(x, y, z) queries to

be equivalent to the system’s auth(x, y, z). (Correctness is

required throughout.) The main difference in the models we

studied is how easy it is to represent the orgUser relation.

AMa has no space to store anything besides the coalition’s

authorization policy, so it fails to admit an AC-preserving

implementation. The rest of the AM models as well as all

the RBAC models can all store at least one string in addition

to the coalition’s authorization policy; hence, they admit AC-

preserving implementations by string-packing orgUser into

that one string.

Theorem 4: AMb, AMc, AMd, and RBACa admit correct,

AC-preserving implementations of the coalition workload.

AMa fails to admit a correct, AC-preserving implementation.

Proof (sketch): It is easy to represent the orgUser relation of

the coalition workload by encoding it in a single, long string

and adding that to the state. The key, though, is that the string

cannot change the authorization policy, since otherwise we

would not satisfy AC-preservation. Because AMa has only

the matrix m to store information, and m represents the

authorization policy directly, there is no space to store this

long string, but AMb, AMc, and AMd can all store such

a string and therefore admit correct implementations of the

coalition workload. Proof for AMa is done by simple counting:

there are fewer AMa states than workload states. Proof for

AMb demonstrates (i) how to encode orgUser as a string

and (ii) how to insert it into the state without changing the

authorization policy of the state. For (ii), we simply add the

string to the subject type S without adding an entry to m.

Proof for AMc and AMd are by reductions from AMb.

For RBACa, the authorization policy is given as the database

join of the UR and PA relations on their respective role

columns. Any UR entry with a role that is assigned no

permissions (a “hanging” UR) is an entry that does not impact

the authorization policy of the system; likewise, for hanging

PA entries. Hence for each auth(a, b, c) in the coalition policy

enter UR(a, r) and PA(r, b, c) into the RBAC state, and for

some role r not already in the state, enter UR(stringpack, r)
where stringpack is the string packing of orgUser. �

When we impose the homomorphism restriction, we can

no longer use a single string to represent orgUser, and

only AMc and RBACa admit an AC-preserving, homomorphic

implementation. The key insight is that while AMb and AMd

have storage space besides the matrix, all of that storage space

is a unary relation, and under the homomorphism guarantee

a unary relation does not suffice to store the binary relation

orgUser; in contrast, AMc and RBACa have at least binary

relations for storing orgUser.

Theorem 5: Neither AMa, AMb, nor AMd admit correct, AC-

preserving, homomorphic implementations of the coalition

workload. AMc and RBACa admit a correct, AC-preserving

homomorphic implementation.

Proof (sketch): AMa, AMb, and AMd fail because after stor-

ing the auth relation, they have at most three unary relations

(S, O, R) to store the orgUser relation. Unary relations are

inadequate to store a binary relation like orgUser, as long as

the homomorphism requirement is in place. The proof begins

by showing that if there is a homomorphic implementation,

there is a homomorphic function that encodes the workload

154

state as a system state and another homomorphic function that

decodes the system state. The proof goes on to show that there

is no pair of homomorphic encoder/decoder functions that can

represent a binary relation (like orgUser) with three unary

relations (S, O, R).
AMc, on the other hand, can use a portion of the matrix m

to store orgUser. It differs from the other models because its

definition of the auth query is not the matrix itself but rather

a restriction of the matrix to the existing subjects, objects,

and rights; any matrix entry mentioning a non-existent subject,

object, or right can therefore be used to store orgUser.
RBACa has hanging UR and hanging PA entries to

store additional state, both of which are binary. For each

orgUser(a, b), it suffices to ensure that no roles named b
already exist and to enter UR(a, b) into the RBAC state. �

Finally, we show that AMc admits a correct, AC-preserving,

homomorphic, compatible implementation but requires each

AMc command to be implemented as something other than

itself.

Theorem 6: AMc admits a compatible implementation but

cannot implement each workload AMc command with the

corresponding system AMc command.

Proof (sketch): The existence of a compatible implementation

is proven by demonstrating the implementation in a homomor-

phic programming language. For the negative result, the proof

is by contradiction. It assumes the implementation exists and

then demonstrates a command trace from the workload for

which there is a command trace from the system commands

that lead to the same state. The contradiction arises because

the two traces have distinct orgUser relations but nevertheless

end at the same system state. �

C. Hospital Workload Results
In the hospital workload, we consider some of the normal

operations that the typical workers at a hospital carry out.

Clerical staff admit patients to wards (e.g., the Oncology ward

or the Emergency ward) and assign each patient a primary

doctor. A patient’s primary doctor examines the patient’s chart

of treatments and modifies that chart by prescribing new

treatments and modifying old treatments. Once a patient’s

treatments have finished, the patient’s primary doctor dis-

charges her.
Formally, the workload state is comprised of the following

fields.

• D: the set of doctors

• P : the set of patients

• C: the set of clerical staff

• W : the set of wards

• T : the set of treatments

• belongs(s) = w indicates the patient, doctor, or clerical

staff s belongs to ward w.

• primary(p) = d indicates that the primary doctor of

patient p is d.

• chart(p, t) means that patient p has been assigned treat-

ment t.

• Rpri is the set of the rights only the primary doctor has.

• Rmed is the set of the rights for all doctors in the Ward.

• Rcler is the set of the rights for clerical staff.

To change the state, the workload has administrative com-

mands for altering D, C, W , Rpri, Rmed, Rcler and the

following non-administrative commands.

• modifyMedicalData(issuer,p): edits the medical data of

patient p. Permission to issue belongs to Rpri.

• viewMedicalData(issuer,p): view the medical data of pa-

tient p. Permission to issue belongs to Rmed.

• admitPatient(issuer,p,d): admit patient p with primary

doctor d (add p to P , primary(p) := d and

belongs(p) := belongs(d)). Belongs to Rcler.

• dischargePatient(issuer,p): delete patient’s occupancy

records (set belongs(p) :=⊥ and primary(p) :=⊥,

remove p from P). Belongs to Rpri.

The access control policy of this workload dictates who is

allowed to perform each of the commands listed above.

auth(s, o, r) ⇐⇒
∨

⎛
⎝

r ∈ Rpri ∧ s ∈ D ∧ o ∈ P ∧ primary(o) = s
r ∈ Rmed ∧ s ∈ D ∧ o ∈ P ∧ belongs(s) = belongs(o)
r ∈ Rcler ∧ s ∈ C ∧ o ∈ P ∧ belongs(s) = belongs(o)

⎞
⎠

We analyzed this workload using the same candidate access

control systems as for the coalition workload. Below we

describe results for just the BLP systems, but Figure 2 details

the full results.
Recall that BLPa and BLPb both fix the set of rights to

{read, write, append, execute}. Since the hospital workload

has more rights, neither BLPa nor BLPb can implement

the hospital workload correctly with AC-preservation. BLPc,

however, allows for arbitrary rights and in fact has a simple

access matrix to represent its access control policy. BLPc

also has additional storage that can be used to represent

the extra fields in the hospital workload state; thus, there

is a correct, AC-preserving implementation. Since that extra

state includes a binary relation, there is also a homomorphic

implementation. Since that extra state can be modified inde-

pendently of the access matrix, there is never any need to

add or delete entries from the access matrix unless required

to by the workload; thus, there is a safe implementation.

Administration-preservation, however, cannot be achieved with

AC-preservation and correctness because regular hospital staff

are free to add new patients, which requires adding new objects

to achieve AC-preservation, but adding new objects in BLPc

requires administrative rights.

Proposition 1: BLPc admits a safe, homomorphic, AC-

preserving, correct implementation of the hospital workload.

BLPc admits no administration-preserving, AC-preserving,

correct implementations.

Proof (sketch): The hospital access control policy can be

represented as the access matrix m of BLPc. The remainder

of the hospital state is a finite collection of finite relations,

which can be homomorphically represented using the binary

relation clear. �

155

AHPASH

A

AS AH AP

ASP

AMc

Yes
AMb
AMc
AMd
RBACa
RBACb
RBACc
BLPc

No
AMa
BLPa
BLPb

AMc

Yes
AMc
RBACa
RBACb
RBACc
BLPc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes
AMb
AMc
AMd
RBACa
RBACb
RBACc
BLPc

No
AMa
BLPa
BLPb AMc

Yes
AMc
RBACa
RBACb
RBACc
BLPc

No
AMa
AMb
AMd
BLPa
BLPb

AMc

Yes No
RBACa
RBACb
RBACc
BLPa
BLPb
BLPc

AMc

Yes No
RBACa
RBACb
RBACc
BLPa
BLPb
BLPc

AMc

Yes No
RBACa
RBACb
RBACc
BLPa
BLPb
BLPc

AMc

Yes No
RBACa
RBACb
RBACc
BLPa
BLPb
BLPc

ASHP

Fig. 2. Summary of the hospital workload results. AMx is an access
matrix system; RBACx is a role-based access control system; BLPx is a Bell-
LaPadula system. A stands for AC-preservation, H for homomorphism, S for
safety, P for administration-preservation. Correctness is required throughout.

VI. RELATED WORK AND FUTURE WORK

We know of three fundamentally different, prior frameworks

for evaluating access control systems [4], [5], [9]. None

address application-sensitive evaluation directly, but there are

close connections nevertheless.

Chander et al. [4] analyzes several access control system

features (capability passing, trust management delegation, and

access control lists) by constructing simple systems that ex-

hibit those features and investigating the existence of one-

to-one and one-to-many command-mappings between them.

What they fail to discuss is why a one-to-one simulation might

be preferred to a many-to-one simulation. In ACEF, a one-to-

one simulation between access control systems ensures that

every workload implementable with the safety guarantee in

one is also safely implementable in the second, whereas the

same cannot be said for the one-to-many simulation.

Tripunitara and Li [5] aim to compare access control sys-

tems in terms of their ability to simulate one another while

preserving a particularly strong security guarantee: (strong)

security-preservation. Their framework was the inspiration for

ours, though one technical difference is noteworthy. Their

query-mappings of [5] require each workload query to be

computed from exactly one candidate system query, whereas

our query-mappings allow each workload query to be com-

puted by any function over the candidate system queries. In

our framework, the one-to-one query mapping of [5] could be

defined as another security guarantee, and doing so yields far

more negative results for the coalition workload. Our more

general framework allows an analyst to decide which type of

security mapping is more appropriate for each application.

Tripunitara and Li [5] also analyze a security guarantee

that requires certain formulas in (infinitary) temporal logic

be preserved across the implementation. They also provide

a reduction between systems that, in our language, ensures

that any workload implementation in one system that achieves

(strong) security-preservation is also implementable in the

other system with (strong) security-preservation. The security

guarantees introduced in this paper are much simpler than

(strong) security-preservation yet are important for ACEF for

two reasons. First, the workload state machine may not have

been designed to ensure that all the temporal properties pre-

served by (strong) security-preservation are actually important

to the application. For example, the workload might include a

swap operation, and if the candidate system does not include

a one-step swap, the (strong) security-preservation guarantee

may not be possible but that system might otherwise be a good

candidate. Second, when a candidate system fails to admit an

implementation with (strong) security-preservation, it is useful

to have a variety of weaker guarantees that allow the analyst to

identify the root cause. If the underlying system simply fails to

have a swap operation, that is a very different failure than if the

underlying system admits no AC-preserving implementation.

Thus the spectrum of guarantees provided by ACEF helps an

analyst understand failures and their severity.

Bertino et al. [9] aim to compare systems by axiomatizing

each in a variant of Datalog and then comparing the resulting

logic programs. They assume that each system has components

with particular semantics (e.g., user, group, role, process)

and compare systems assuming those components are used

according to those semantics. Unlike our framework and the

two frameworks discussed above, which require the analyst to

formalize the candidate systems and compare those systems as

two distinct steps, in this work the analyst performs both steps

simultaneously by virtue of formalizing each system using

the basic building blocks of the framework. This building-

block approach has the drawback that formalizing the system

presupposes that each component of a system will always be

used only in the way its designers intended, and hence our

analysis of that system may not reflect what happens in the real

world. In contrast, in our framework, there are no restrictions

about how a system’s components are used and hence we can

formalize abuses of that system as specific kinds of workload

implementations, e.g., the string-packing implementations.

For a discussion of work on authorization logics, modal log-

ics, and the bisimulations related to the frameworks discussed

here, see the extended version of this paper [11].

VII. CONCLUSION

To enable security analysts to determine which access

control system is best-suited for a new or existing application,

156

we developed a formal framework ACEF for application-

sensitive access control evaluation—a way of comparing ac-

cess control systems in terms of parameterized expressiveness.

The analyst’s main task is checking if an access control

system can implement an application’s workload in a way

that meets a set of application-relevant security guarantees.

An analyst can exhibit an implementation either by writing a

computer program or by applying one of ACEF’s theorems

to an existing implementation in another system. An analyst

unable to find such an implementation can attempt to prove

that such an implementation does not exist using several of the

proof techniques developed in this paper. We applied ACEF to

perform two case studies: one based on the dynamic coalitions

described in [10] and one on a hospital management system.

We envision researchers in access control and security

analysts attempting to build real-world applications utilizing

ACEF in different ways. Researchers will produce rigorous

proofs within ACEF to gain deep understanding of the appli-

cations and access control systems they have chosen to inves-

tigate. They will be concerned with the precise definitions of

systems, workloads, implementations, and security guarantees.

In contrast, security analysts will take the main concepts of

ACEF and use them to guide how they integrate access control

into their applications. They will focus mainly on the idea that

different implementations of the access control component of

an application have qualitatively different security guarantees,

and one must weigh the tradeoffs of those guarantees when

choosing an implementation.

Currently, we have begun to explore ACEF within the proof

assistant PVS, in particular formally proving the correctness of

an implementation of the coalition workload within the access

matrix. While the proofs can be complex, preliminary results

are encouraging. In the future we plan to extend ACEF to

enable proper evaluation of access control systems based on

formal logic. Such systems differ from those addressed in our

case studies (the access matrix, RBAC, and Bell-LaPadula)

because each state can transition to any other state in a single

step by changing the logical formulae in the state. To properly

evaluate such systems, ACEF must include security guarantees

that account for the expressiveness and modularity of logical

policy languages.

ACKNOWLEDGMENTS

Thanks to John Mitchell for early conversations about

application-sensitive access control evaluation. This work was

supported in part by the National Science Foundation un-

der awards CCF-0916438, CNS-0964295, CNS-1131863, and

CNS-1228697.

REFERENCES

[1] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Communications of the ACM, vol. 19, no. 8, pp. 461–471,
1976.

[2] R. J. Lipton and L. Snyder, “A linear time algorithm for deciding subject
security,” Journal of the ACM, vol. 24, no. 3, pp. 455–464, 1977.

[3] P. Ammann, R. J. Lipton, and R. S. Sandhu, “The expressive power of
multi-parent creation in monotonic access control models,” Journal of
Computer Security, vol. 4, no. 2/3, pp. 149–166, 1996.

[4] A. Chander, J. C. Mitchell, and D. Dean, “A state-transition model of
trust management and access control,” in CSFW. IEEE Computer
Society, 2001, pp. 27–43.

[5] M. V. Tripunitara and N. Li, “A theory for comparing the expressive
power of access control models,” Journal of Computer Security, vol. 15,
no. 2, pp. 231–272, 2007.

[6] S. Osborne, R. Sandhu, and Q. Munawer, “Configuring role-based access
control to enforce mandatory and discretionary access control policies,”
ACM Transactions on Information and System Security, vol. 3, no. 2,
pp. 85–106, May 2000.

[7] R. Sandhu, “Expressive power of the schematic protection model,”
Journal of Computer Security, vol. 1, no. 1, pp. 59–98, 1992.

[8] R. Sandhu and S. Ganta, “On testing for absence of rights in access con-
trol models,” in Proceedings of the Sixth Computer Security Foundations
Workshop (CSFW), Jun. 1993, pp. 109–118.

[9] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A logical framework
for reasoning about access control models,” ACM Transactions on
Information and System Security, vol. 6, no. 1, pp. 71–127, 2003.

[10] U.S. Air Force Scientific Advisory Board, “Networking to enable
coalition operations,” MITRE Corporation, Tech. Rep., 2004.

[11] T. L. Hinrichs, D. Martinoia, W. C. Garrison III, A. J.
Lee, A. Panebianco, and L. Zuck, “Application-Sensitive
Access Control Evaluation using Parameterized Expressiveness
(Extended Version),” http://people.cs.pitt.edu/∼adamlee/pubs/2013/
hinrichs2013applicationsensitive-long.pdf, 2013.

[12] “Horizontal integration: Broader access models for realizing information
dominance,” MITRE Corporation JASON Program Office, Tech. Rep.
JSR-04-13, Dec. 2004.

[13] J. Crampton, “Understanding and developing role-based administrative
models,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2005, pp. 158–167.

[14] Q. Munawer and R. S. Sandhu, “Simulation of the augmented typed
access matrix model (ATAM) using roles,” in Proceedings of INFOS-
ECU99 International Conference on Information and Security, 1999.

[15] N. Li, J. C. Mitchell, and W. H. Winsborough, “Beyond proof-of-
compliance: security analysis in trust management,” Journal of the ACM,
vol. 52, no. 3, pp. 474–514, 2005.

[16] N. Dershowitz and Y. Gurevich, “A natural axiomatization of com-
putability and proof of Church’s thesis,” Bulletin of Symbolic Logic,
vol. 14, no. 3, pp. 299–350, 2008.

APPENDIX

A. Extensional Access Control Systems and Homomorphisms

Here we include formal definitions for extensional access

control systems and workloads, as well as a full definition for

homomorphic implementations. We also describe a program-

ming language in which all expressible implementations are

homomorphic.

An extensional access control model is a special kind of

access control model where each of the states is a first-order

interpretation from mathematical logic (sometimes called a

first-order model or structure). Intuitively, a state represents

a snapshot of a computer system’s memory, and hence we are

equating a first-order interpretation with such a snapshot, just

as was done in a proof of the Church-Turing thesis [16].

While slightly non-standard, we represent a first-order in-

terpretation as any set of relational atoms (sometimes called

ground facts in logic programming). A relational atom is a

statement of the form p(a1, . . . , an) where p is called a relation

constant and each ai is called an object constant. Since in

practice relation constants and object constants are strings, we

assume they are drawn from U , the set of finite-length strings

over some finite character set.

Definition 16 (Extensional Access Control Model): An

extensional access control model is 〈S,Q, |=〉

157

• S: a set of sets of relational atoms (the states)

• R: a set of access control requests (the requests)

• Q: a set of relational atoms including auth(a1, . . . , an)
for every possible access control request 〈a1, . . . , an〉

• |=: a subset of S ×Q (the entailment relation) �

An extensional access control system is a special kind of

access control system where the labels are relations applied

to first-order interpretations. Here we are equating a data

structure that might be passed as an argument to a system

command with a first-order interpretation. Thus a label is a

relation constant applied to some number of sets of relational

atoms.

Definition 17 (Extensional Access Control System): An

extensional access control system Y has fields 〈M,L, next〉
• M: an access control model

• L: a set of r(i1, . . . , in) where each ij is a set of relational

atoms (the labels)

• next : States(M)× L → S (the transition function) �

With these definitions in hand, we can give a more thorough

definition of the homomorphism security guarantee.

Definition 18 (Homomorphisms): A constant substitution v :
U → U is a bijection from strings to strings. The application

of a substitution v to the mathematical structures important in

this paper are given below.

• atom: p(a1, . . . , an)[v] = p(v(a1), . . . , v(an))
• set/state: {e1, e2, . . . } = {e1[v], e2[v], . . . }
• label: p(S1, . . . , Sn)[v] = p(S1[v], . . . , Sn[v])
• tuple: 〈e1, e2, . . . 〉[v] = 〈e1[v], e2[v], . . . 〉.
• function: if f ′ denotes f [v] then for every

f(a1, . . . , an) = a, f ′(a1[v], . . . , an[v]) = a[v].
• relation: if r′ denotes r[v] then we have

r′(a1[v], . . . , an[v]) exactly when we have r(a1, . . . , an).

The function f is homomorphic if for every constant substi-

tution v, when γ[v] is in f ’s domain then f(γ[v]) = f(γ)[v].
An implementation 〈α, σ, π〉 is homomorphic with respect to

permutation U on the set of strings U if for all workload

states w and workload labels l such that some workload trace

executes l in w, α(σ(w)[v], l[v], U [v]) = α(σ(w), l, U)[v],
σ(w[v]) = σ(w)[v], and π(Th(σ(w))[v]) = π(Th(σ(w)))[v].
An access control system is homomorphic if next and |= are

homomorphic. �

Since checking whether or not an implementation is ho-

momorphic can be difficult, we developed a programming

language in which all expressible programs are homomorphic:

HPL (Homomorphic Programming Language). HPL is similar

to Algol-like programming languages. An HPL program is a

sequence of statements that (i) manipulates a variable assign-

ment by changing existing values for variables and binding

new variables to values and (ii) prints values to an output

buffer. HPL differs from traditional programming languages in

that (i) it disallows string manipulation and string literals, and

(ii) the only data structures it supports are sets and sequences

of relational atoms and strings. We can think of HPL as a

language for writing a compiler that takes as input a command

from a workload and outputs a (sequence of) commands in the

implementing access control system.

To write a state-mapping for a workload implementation

in HPL, we write a program that takes as input a variable

assigned to the current workload state and creates a new

variable whose value is the system state that corresponds

to that workload state. To write an command-mapping for

a workload implementation, we write one HPL program for

each workload command. Each program takes as input the

current state plus all the inputs of the corresponding workload

command and outputs the sequence of system commands that

ought to be executed. To write a query-mapping in HPL, we

write one program for each workload query that takes as input

the set of system queries that are true and creates a new

variable whose value dictates whether the workload query is

true or false.

Table I gives HPL’s semantics. μ is a variable assignment

(i.e., at each step of program execution, the mapping from

program variables to values); γ is the output buffer (i.e., at

each step of execution, the sequence of relational atoms that

have been output by the program). The commands output and

outputSet append relational atoms to the output buffer. The

semi-colon sequences two program statements; := is variable

assignment; set comprehension is expressed using traditional

set-notation; and the command nFreshConst returns object

constants that are not present in the current state.

The following theorem ensures that the sequence of com-

mands output by every program written in HPL is homomor-

phic. In the course of the proof, we also show that the process

of manipulating the variable assignment given to every HPL

program is homomorphic. See [11] for full details.

Theorem 7: If μ is a variable assignment where every value

is a set or sequence of atoms and/or strings, P is an HPL

program (the semantics of which is defined in Table I), and

P halts on input μ then output�P, μ�[v] = output�P, μ[v]�.

Proof (sketch): We start with a two-level inductive proof

about eval�, � and exec�, �, which includes one inductive step

for each of the programming language constructs of HPL.

We first show that if μ starts as a proper variable assignment

(it assigns each variable to a set or sequence of atoms and/or

strings) and eval�e, 〈μ, γ〉� = 〈μ′, γ′〉 then (i) μ′ is a proper

variable assignment and (ii) 〈μ′, γ′〉[v] = eval�e, 〈μ[v], γ[v]〉�.

Then we show for each exec�s, 〈μ, γ〉� = 〈μ′, γ′〉, that if μ
is a proper variable assignment then (i) μ′ is a proper variable

assignment and (ii) 〈μ′, γ′〉[v] = exec�s, 〈μ[v], γ[v]〉�. Thus by

induction we conclude that if μ is a proper variable assignment

then for all those stmt such that exec�stmt, 〈μ, ε〉� halts,

we know that exec�stmt, 〈μ, ε〉� is homomorphic and that it

returns a proper variable assignment.

Finally we know that if exec�stmt, 〈μ, ε〉� = 〈μ′, γ〉
then output�program(stmt), μ� = γ. And since by the

above exec�stmt, 〈μ[v], ε[v]〉� = 〈μ′[v], γ[v]〉, we see that

output�program(stmt), μ[v]� = γ[v], thus completing the

proof.

158

output�program(stmt), μ� = if exec�stmt, 〈μ, ε〉� = 〈μ′, γ〉 then γ
exec�C1;C2, 〈μ, γ〉� = exec�C2, exec�C1, 〈μ, γ〉��
exec�v := E, 〈μ, γ〉� = 〈μ[v ← eval�E, 〈μ, γ〉�], γ〉
exec�output(x), 〈μ, γ〉� = 〈μ, γ ◦ eval�x, 〈μ, γ〉�〉
exec�outputSet({x1, . . . , xn}), 〈μ, γ〉� = 〈μ, γ ◦ eval�x1, 〈μ, γ〉� ◦ · · · ◦ eval�xn, 〈μ, γ〉�〉, deterministically ordered
exec�if(x, y, z), 〈μ, γ〉� = if eval�x, 〈μ, γ〉� �= ∅ then exec�y, 〈μ, γ〉� else exec�z, 〈μ, γ〉�
exec�foreach(v1 ∈ S1, . . . , vn ∈ Sn, p1(x̄1) ∈ T1, . . . , pm(x̄m) ∈ Tm, x), 〈μ, γ〉� = the sequential execution of

exec�x, 〈μ ◦ l, γ〉� for a deterministic ordering of all variable bindings l such that all vi[l] ∈ Si and all pi(x̄i)[l] ∈ Ti

eval�x, 〈μ, γ〉� = μ(x) or {} if μ(x) is undefined, where x is a var
eval�x ∪ y, 〈μ, γ〉� = eval�x, 〈μ, γ〉� ∪ eval�y, 〈μ, γ〉�
eval�x, 〈μ, γ〉� = the set of all atoms not including eval�x, 〈μ, γ〉�
eval�{p1(v̄1), . . . , pn(v̄n) | q1(ū1) ∈ S1, . . . , qm(ūm) ∈ Sm}, 〈μ, γ〉� = the set of all p1(v̄1), . . . , pn(v̄n)[l] such that

q1(ū1)[l] ∈ eval�S1, 〈μ, γ〉�, . . . , qm(ūm)[l] ∈ eval�Sm, 〈μ, γ〉�, deterministically ordered, where all v̄i, ūi are variables.
eval�nFreshConst(n,E, U), 〈μ, γ〉� = the first |eval�n, 〈μ, γ〉�| strings in the sequence eval�U, 〈μ, γ〉�

not appearing in the set of atoms or strings eval�E, 〈μ, γ〉�

TABLE I
HPL: A PROGRAMMING LANGUAGE (SEMANTICS) FOR EXPRESSING HOMOMORPHIC IMPLEMENTATIONS.

B. Meta-theorem Proofs

Theorem 8 (System Reductions for ≤): If there is a reduction

〈σ, π〉 from Y1 to Y2 where σ is one-to-one and preserves

finite reachability (for all s, s′ ∈ States(Y1), if s′ is reachable

in a finite number of steps from s, then σ(s′) is reachable in

a finite number of steps from σ(s)), then Y1 ≤ Y2.

Proof: We demonstrate how to construct a correct implemen-

tation in system Y2 of any workload W that is correctly

implementable by Y1. Suppose 〈αY1 , σY1 , πY1〉 is a correct

implementation of W in Y1 and that 〈σ, π〉 is a reduction

from Y1 to Y2 where σ preserves finite reachability and is

1-1. We first describe the state- and query- mappings for

the implementation of W in Y2 and prove the the state-

mapping preserves the query-mapping (the first property of

a correct implementation). Then we describe the command-

mapping and argue that it preserves the state-mapping (the

second property of correctness).

The state- and query-mappings are given below.

for all x ∈ States(W).σY2(x) = σ(σY1(x))
for all x ∈ States(Y2).π

Y2(Th(x)) = πY1(π(Th(x)))

We must show that the state-mapping preserves the query-

mapping, i.e., for all workload states w we have w |= q if and

only if πY2
q (Th(σY2(w))) = true.

πY2
q (Th(σY2(w))) = true

By def of πY2
q

⇐⇒ πY1
q (π(Th(σY2(w)))) = true

By def of σY2

⇐⇒ πY1
q (π(Th(σ(σY1(w))))) = true

By query-preservation of 〈σ, π〉
⇐⇒ πY1

q (Th(σY1(w)))
By correctness of 〈αY1 , σY1 , πY1〉

⇐⇒ w |= q

The command mapping is more difficult to construct. We

must show there is some αY2 that maps the Y2 states and a W
label to a finite sequence of Y2 labels that preserves the state-

mapping. More precisely, αY2 must preserve the state-mapping

for the traces in W . For that, it suffices to assign values for

αY2(y, l) where the Y2 state y represents some workload state

w (i.e., σY2(w) = y) and there is some trace where workload

label l is executed in w.

So consider any such y, w, and l. Suppose σY1(w) = s and

that σ(s) = y. Building on the correctness of αY1 , we assign

αY2(y, l) so that terminal(y, αY2(y, l)) is query-equivalent

to terminal(s, αY1(s, l)). We know there is always a finite

sequence of labels in Y2 that yield such a state because σ
preserves the query-mapping and is known to preserve finite

reachability.

The only potential problem with this construction is that

there may be two workload states w1 and w2 that map to

the same Y2 state y. This is potentially problematic because

there may be two traces where the implementation of some

workload label l must differ depending on whether executed

from w1 or w2. This would mean the construction above is

ill-defined because there would be two different values for

αY2(y, l). But because the reduction from Y1 to Y2 is 1-1, the

only way w1 and w2 can both map to y through σY2 is if they

both also map to a single Y1 state s through σY1 . If both w1

and w2 are both implemented using the same state s in Y1,

then by the correctness of Y1, they need not be implemented

differently (for αY1 implements them the same).

We must show that for every workload trace

〈w0, l1, w1, . . . 〉 causing the correct Y1 implementation

to induce the system sequence 〈s0, αY1(s0, l1), s1 . . . 〉
that the Y2 implementation induces the state sequence

〈t0, αY2(t0, l1), t1 . . . 〉 where Th(wi) = πY2(Th(ti)).
But that is immediate by transfinite induction since by

correctness Th(wi) = πY1(Th(si)) and by construction

Th(si) = π(Th(ti)). �

Theorem 9 (System Reduction for ≤A): If there is a reduction

〈σ, π〉 from Y1 to Y2 where σ is one-to-one and preserves finite

reachability and π is AC-preserving, then Y1 ≤A Y2.

Proof: This proof is exactly the same as for Theorem 1,

except at the end we apply the following claim. If π1 and

π2 are AC-preserving query-mappings then π1(π2(x)) is an

159

AC-preserving query-mapping. To prove the claim we must

show that for all theories x that auth(r) ∈ π1(π2(x)) if and

only if auth(r) ∈ x.

auth(r) ∈ π1(π2(x))
(by AC-preservation of π1)

auth(r) ∈ π2(x)
(by AC-preservation of π2)

auth(r) ∈ x �

Theorem 10 (Reduction for ≤H): Consider the case of exten-

sional workloads and access control systems. If there is a

reduction 〈σ, π〉 from Y1 to Y2 then Y1 ≤H Y2 under the

following conditions.

• σ is one-to-one, preserves finite reachability, and is ho-

momorphic

• π is homomorphic

• Y1 and Y2 (i.e., their transition functions and query

computations) are homomorphic

Proof: In this proof we choose any fixed permutation U of the

universe of strings U . When given a correct implementation of

Y1 utilizing U as an argument of its command-mapping, we

demonstrate how to construct a correct implementation for Y2

also using U as the argument of its command-mapping. Thus,

U is fixed, but unknown to the implementation, a detail that

we need only be concerned with in the case of homomorphic

implementations.

In this proof, we begin with the proof of Theorem 1,

which demonstrates the existence of a correct implementation

〈αY2 , σY2 , πY2〉 for Y2 under weaker assumptions. Since in

that construction σY2 and πY2 are defined as the composition

of two functions (see below) that in this proof are homomor-

phic, they are immediately homomorphic themselves. This is

why the reduction and Y1 must be homomorphic. (Proof that

the composition of homomorphic functions is a homomorphic

function. If f(x̄[v]) = f(x̄)[v] and g(x̄[v]) = g(x̄)[v], then

f(g(x̄))[v] = f(g(x̄)[v]) = f(g(x̄[v])).)

for all x ∈ States(W).σY2(x) = σ(σY1(x))
for all x ∈ States(Y2).π

Y2(Th(x)) = πY1(π(Th(x)))

Thus we need only demonstrate how to construct αY2 that

is both homomorphic and correct. To do that, recall how αY2

was originally constructed. Consider a workload label l and

a workload state w such that some trace executes l in w
resulting in w′. If σY1(w) = s and the command-mapping

for Y1 transitions from s to s′, then ensure that the command-

mapping for Y2 transitions from σ(s) to σ(s′)—a transition

that always exists. In this proof, we build the command-

mapping the same way except that we make the U argument

explicit and carefully consider the impact of assigning values

to αY2(x, y, z) when z �= U . These careful assignments make

αY2 homomorphic and are only possible under the conditions

above.

Consider a Y2 state y representing some workload state w
and workload label l where some trace executes l in w. If Y1

transitions σ(w) = s to s′ and αY1(s, l) = m̄ and there is a

finite path with labels n̄ in Y2 from σ(s) to σ(s′), then assign

αY2(σ(s), l, U) = n̄ for one such n̄. Moreover, for every con-

stant substitution v, assign αY2(σ(s)[v], l[v], U [v]) = n̄[v], as

long as it is in the proper domain. Assuming well-definedness

(i.e., there is no αY2(x, y, z) assigned two distinct values)

it is clear that αY2 is correct as long as the third argument

is U since those values are all defined the same way as in

Theorem 1. Moreover, it is easy to see that by construction αY2

is homomorphic with respect to U : for those w,l participating

in a trace, if αY2(σY2(w), l, U) = n̄ then for any v we have

αY2(σY2(w)[v], l[v], U [v]) = n̄[v]. Since these assignments

suffice for demonstrating correctness and homomorphisms, we

can freely choose any values for the unassigned entries in αY2 .

To complete the proof we must argue two things. First we

must show that αY2(σ(s)[v], l[v], U [v]) = n̄[v] is a proper

assignment: that n̄[v] is a legitimate sequence of labels in Y2.

Second we must show that there is no αY2(x, y, z) that is

assigned two distinct values. This completes the proof.

To see that αY2(σ(s)[v], l[v], U [v]) = n̄[v] is a proper

assignment we need only show that n̄[v] is a legitimate

sequence of labels in Y2. That only requires showing that each

label in n̄[v] is a legitimate label in Y2. The key observation

is that next2 (the transition relation for Y2) is homomorphic:

next2(y, l) = y′ ensures that next2(y[v], l[v]) = y′[v] Since

each label l in n̄ is legitimate, we see that for next2 to

be homomorphic, l[v] must also be a legitimate label. This

ensures all the assignments we make are proper ones.

To see the algorithm above assigns at most one value to each

α(y, l, z), we argue by contradiction. Suppose there are two

values assigned. One possibility is that there are two workload

states w1 and w2 such that σY2(w1) = σY2(w2) = y. As

argued in Theorem 1, we can assign α(y, l, U) the same thing

in both cases; hence, in the construction above we only assign

a new value if one has not been assigned. Another possibility

is that there are two distinct constant substitutions v1 and v2
such that 〈y[v1], β[v1], U [v1]〉 = 〈y[v2], β[v2], U [v2]. But since

a constant substitution is a function from U → U , and U is an

ordering on U , every distinct pair of constant substitutions en-

sures that U [v1] �= U [v2]. The last possibility is that there are

two distinct y1, l1 and y2, l2 and two variable assignments v1
and v2 such that 〈y1[v1], l1[v1], U [v1]〉 = 〈y2[v2], l2[v2], U [v2]〉.
The only danger is if U [v1] = U [v2], but this only happens

when v1 = v2, which requires y1 = y2 and l1 = l2. Thus,

there is no problem that arises from assigning multiple values

to α(y, l, z). �

160

