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Abstract—Cryptographic hash functions provide a basic data
authentication mechanism and are used pervasively as building
blocks to realize many cryptographic functionalities, including
block ciphers, message authentication codes, key exchange
protocols, and encryption and digital signature schemes. Since
weaknesses in hash functions may imply vulnerabilities in the
constructions that build upon them, ensuring their security
is essential. Unfortunately, many widely used hash functions,
including SHA-1 and MD5, are subject to practical attacks. The
search for a secure replacement is one of the most active topics
in the field of cryptography. In this paper we report on the
first machine-checked and independently-verifiable proofsof
collision-resistance and indifferentiability of Merkle-Damgård,
a construction that underlies many existing hash functions.
Our proofs are built and verified using an extension of
the EasyCrypt framework, which relies on state-of-the-art
verification tools such as automated theorem provers, SMT
solvers, and interactive proof assistants.

I. I NTRODUCTION

Cryptographic hash functions provide a basic data authen-
tication mechanism and are routinely used as building blocks
in other cryptographic constructions. For a given inputm,
a cryptographic hash functionH outputs a digestH(m) of
some small fixed length. For most tasks, it is required that
finding distinct inputs with the same digest—a collision—
be difficult. However, recent research has demonstrated that
widely used hash functions, including SHA-1 and MD5, are
vulnerable to collision attacks [28], [36], [37]. In response
to these concerns, the U.S. National Institute of Standards
and Technology (NIST) started in November 2007 a public
competition to develop new cryptographic hash functions to
augment a set of standard functions that includes the SHA-1
and SHA-2 algorithms. This competition, commonly known
as theSHA-3 competition, motivated a growing interest in
developing cryptographic hash functions and in rigorously
scrutinizing their security.

Verified security [8], [10] is an emerging approach to
security proofs of cryptographic systems. It adheres to
the same principles as provable security, but revisits its

realization from a formal verification perspective. When
taking a verified security approach, proofs are mechanically
verified and built with the aid of state-of-the-art verification
tools, such as SMT solvers, automated theorem provers and
interactive proof assistants.EasyCrypt [8] is an automated
framework that aims to make verified security accessible
to cryptographers with a limited background in formal
methods; it has been successfully applied to verify exact
security bounds of several digital signature and encryption
schemes.

In this paper, we report on an extension ofEasyCrypt and
its application to build and verify exact security proofs ofthe
Merkle-Damgård construction [23], [31], which underlies
the design of many cryptographic hash functions. In its sim-
plest formulation, Merkle-Damgård iterates a compression
function f : {0, 1}k × {0, 1}n → {0, 1}n over the blocks
of an input message padded to a block boundary. For a
fixed public initialization vectorIV, the digest of a padded
message with blocksx1 ‖ · · · ‖ xℓ is computed as

f(xℓ, f(xℓ−1, . . . f(x1, IV) . . . ))

One way of arguing that iterated constructions like
Merkle-Damgård are secure is to show that they preserve
security properties of the underlying compression function.
The seminal works of Merkle [31] and Damgård [23] show
that if messages are padded in some specific way, finding
two colliding messages for the above iterated construction
is at least as hard as finding two colliding inputs for the
compression functionf ; said otherwise, that the construction
preserves the collision resistance of the compression func-
tion. We present a proof of a generalization of this result in
EasyCrypt. Our proof applies when the padding function is
suffix-free, i.e. the padding of a messagem is not a suffix
of the padding of any other messagem′.

An alternative method for proving the security of a hash
function is to show that it behaves as a random oracle
when the compression function, or some other lower-level



building block, is assumed to be ideal. The indifferentia-
bility framework of Maurer et al. [30] provides a rigor-
ous simulation-based definition that captures this intuition
and implies a strong composability result. Glossing over
technical subtleties [33], a hash functionH indifferentiable
from a random oracle can be plugged into a cryptosystem
proven secure in the random oracle model forH without
compromising the security of the cryptosystem. We present a
proof in EasyCrypt of the indifferentiability of the Merkle-
Damgård construction from a random oracle. Our proof,
which follows the proof of Coron et al. [22], applies when
the padding function is prefix-free, i.e. the padding of a
messagem is not a prefix of the padding of any other
messagem′.

Organization of the Paper:Section II overviews the
foundations and verification mechanisms implemented in our
extension toEasyCrypt; Section III describes the Merkle-
Damgård construction and its security properties; Section IV
describes a machine-checked proof that Merkle-Damgård
preserves collision resistance when used with a suffix-free
padding, while Section V describes a machine-checked proof
of its indifferentiability from a random oracle when the
padding is prefix-free; Section VI discusses the applicability
of our results to generalizations of the Merkle-Damgård
construction and the finalists of NIST SHA-3 competition.
We conclude in Section VII.

II. A PRIMER ON EASYCRYPT

Building a cryptographic proof inEasyCrypt is a process
that can be decomposed in the following steps:

• Defining a formal context, including types, constants
and operators, and giving it meaning by declaring
axioms and stating derived lemmas.

• Defining a number of games, each of them composed of
a collection of procedures (written in the probabilistic
imperative language described below) and adversaries
declared as abstract procedures with access to oracles.

• Proving logical judgments that establish equivalences
between games. This may be done fully automatically,
with the help of hints from the user in the form of
relational invariants, or interactively using basic tactics
and automated strategies.

• Deriving inequalities between probabilities of events
in games, either by using previously proven logical
judgments or by direct computation.

In the remainder of this section, we briefly overview some
key aspects of the process of building anEasyCrypt proof.
Note that the work reported in this article benefited from
several extensions of the tool with respect to [8]; these
extensions include:

1) Support for reasoning about programs with loops.
Loops were used to represent iteration in the Merkle-
Damgård construction.

2) Mechanization of the Failure Event Lemma of [11],
implemented inEasyCrypt as an extension to the
mechanism that directly computes probability bounds.
This was used to bound the success probability of
the distinguisher in the proof of indifferentiability pre-
sented in Sect. V.

3) Proof engineering mechanisms to manage the size of
proof obligations and the theories that external solvers
use. These mechanisms were essential for the success-
ful verification of the proofs presented in this paper.

A. Input Language

Probabilistic experiments are defined as programs in
pWHILE, a strongly-typed imperative probabilistic program-
ming language. The grammar ofpWHILE commands is
defined as follows:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

The only non-standard feature of the language are proba-
bilistic assignments; an assignmentx $← d evaluates the
expressiond in the current state to a distributionµ on values,
samples a value according toµ and assigns it to variablex.
The key to the flexibility ofEasyCrypt is that the base
language of expressions and distribution expressions can be
extended by the user to suit the needs of the verification
task. The rich base language includes expressions over
Booleans, integers, fixed-length bitstrings, lists, finitemaps,
and option, product and sum types. User-defined operators
can be axiomatized or defined in terms of other operators. In
the following, we let{0, 1}ℓ denote the uniform distribution
on bitstrings of lengthℓ.

A program (equivalently, a game) inEasyCrypt is repre-
sented as a set of global variables together with a collection
of procedures. Some of these procedures are concrete and
given a definition as a commandc ∈ C, while some
others may be abstract and left undefined. Quantification
over adversaries in cryptographic proofs is achieved by
representing them as abstract procedures parametrized by
a set of oracles; these oracles must be instantiated as other
procedures in the program.

Commands operate on program memories, which map
local and global variables to values; we letM denote the
set of memories. The semantics of a commandc ∈ C is
a functionJcK : M → D(M) from program memories to
sub-distributions on program memories. Note that programs
that do not terminate with probability1 generate sub-
distributions with total probability less than1. We refer the
reader to [9] for a detailed description of the semantics



of pWHILE as it has been formalized in theCoq proof
assistant. In what follows, we denote byPr [c,m : A] the
probability of eventA w.r.t. to the distributionJcK m and
often omit the initial memorym when it is not relevant.

Although EasyCrypt is not tied to any particular cryp-
tographic model, it provides good support to reason about
proofs developed in the random oracle model. A random
oracle O : X → Y is modelled in EasyCrypt as a
stateful procedure that maps values inX into uniformly and
independently distributed values inY . The state of a random
oracle can be represented as a global finite mapL that is
initially empty. Queries are answered consistently so that
identical queries are given the same answer:

Oracle O(x) :
if x 6∈ dom(L) then L[x] $← Y
return L[x]

B. Probabilistic Relational Hoare Logic

The foundation ofEasyCrypt is a probabilistic Relational
Hoare Logic (pRHL), whose judgments are quadruples of
the form:

⊢ c1 ∼ c2 : Ψ =⇒ Φ

wherec1, c2 are programs andΨ,Φ are first-order relational
formulae. Relational formulae are defined by the grammar:

Ψ,Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ⇒ Φ | ∀x. Φ | ∃x. Φ

wheree stands for a Boolean expression over logical vari-
ables and program variables tagged with either〈1〉 or 〈2〉
to denote their interpretation in the left or right-hand side
program; the only restriction is that logical variables must
not occur free. The special keywordres denotes the return
value of a procedure and can be used in the place of a
program variable. We writee〈i〉 for the expressione in
which all program variables are tagged with〈i〉. A relational
formula is interpreted as a relation on program memories.
For example, the formulax〈1〉+ 1 ≤ y〈2〉 is interpreted as
the relation

R = {(m1,m2) | m1(x) + 1 ≤ m2(y)}

The validity of a pRHL judgment is defined in terms of
a lifting operatorL : P(A × B) → P(D(A) × D(B)).
Concretely,

|= c1 ∼ c2 : Ψ⇒ Φ def
=

∀m1,m2. m1 Ψ m2 ⇒ (Jc1K m1) L(Φ) (Jc2K m2)

Formally, letµ1 be a probability distribution on a setA and
µ2 a probability distribution on a setB. We define the lifting
µ1 L(R)µ2 of a relationR ⊆ A × B to µ1 andµ2 by the
clause:

∃µ : D(A×B). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ supp(µ) ⊆ R

whereπ1(µ) (resp.π2(µ)) denotes the projection ofµ on its
first (resp. second) component andsupp(µ) is the support

of µ as a sub-probability measure—ifµ is discrete, this is
just the set of pairs with positive probability.

Figure 1 shows some selected rules that can be used to
derive valid pRHL judgments. There are two kinds of rules:
two-sided rules, which require that the related programs
have the same syntactic form, and one-sided rules, which do
not impose this requirement. One-sided rules are symmetric
in nature and admit aleft and a right variant. We briefly
comment on some rules. The two-sided rule[Rnd] for
random assignments requires the distributions from where
values are sampled be uniform on some setX ; to apply
the rule one must exhibit a functionf : X → X that may
depend on the state and is 1-1 if the precondition holds.
The one-sided rule[Rand〈1〉] for random assignments simply
requires that the post-condition is established for all possible
outcomes; in effect, this rule treats random assignment as a
non-deterministic assignment.

Similarly to Hoare logic, the rules for while loops require
to exhibit an appropriate relational invariantΦ. The two-
sided rule[While] applies when the loops execute in lockstep
and thus requires proving that the guards are equivalent.
The one-sided rule[While〈1〉] further requires exhibiting a
decreasing variantv and a lower boundm. The premises
ensure that the loop is absolutely terminating, which is
crucial for the soundness of the rule.

The relational Hoare logic also allows capturing the well-
known cryptographic argument“ x is uniformly distributed
and independent of the adversary’s view”, which is certainly
one of the most difficult to formalize. We formalize this
argument in EasyCrypt by proving that re-samplingx
preserves the semantics of the program. Suppose we want
to prove that in a programc, a variablex used in an
oracleO is uniformly distributed and independent of the
view of an adversaryAO. Let O′ be the same asO except
that it re-samplesx when needed. We identify a condition
used that holds wheneverA obtained some information
about x (and thus, re-sampling would not preserve the
semantics). We then prove that the conditional statement
c′ def

= if ¬used then x $← X can swap with calls to O
andO′, i.e.

⊢ c′; y ← O(~e) ∼ y ← O′(~e); c′ : Φ =⇒ Φ

whereΦ implies equality over all global variables. From
this, we can conclude thatc′ can also swap with calls to
AO andAO

′

, and hence that the semantics of the program
c is preserved whenO is replaced byO′. The advantage
of using such kind of reasoning is that it is generally much
easier to reason about a game wherex is sampledlazily,
since its distribution is locally known.

We conclude with some observations on the mechaniza-
tion of reasoning in pRHL. We implement inEasyCrypt
several variants of two-sided and one-sided rules of pRHL
in the form of tactics that can be applied in a goal-oriented
fashion to prove the validity of judgments. For instance,



⊢ c1 ∼ c2 : Φ =⇒ Φ′ ⊢ c′1 ∼ c′2 : Φ′ =⇒ Φ′′

⊢ c1; c
′
1 ∼ c2; c

′
2 : Φ =⇒ Φ′′

[Seq]

⊢ x← e ∼ skip : Φ {e〈1〉/x〈1〉} =⇒ Φ [Asn〈1〉] ⊢ skip ∼ x← e : Φ {e〈2〉/x〈2〉} =⇒ Φ [Asn〈2〉]

Ψ⇒ bijective(f) Ψ⇒ ∀v ∈ X. Φ {v, f(v)/x〈1〉, y〈2〉}

⊢ x $← X ∼ y $← X : Ψ =⇒ Φ
[Rnd]

Ψ⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

⊢ x $← d ∼ skip : Ψ =⇒ Φ
[Rnd〈1〉]

⊢ c1 ∼ c2 : Ψ ∧ e〈1〉 =⇒ Φ ⊢ c′1 ∼ c2 : Ψ ∧ ¬e〈1〉 =⇒ Φ

⊢ if e then c1 else c′1 ∼ c2 : Ψ =⇒ Φ
[Cond〈1〉]

⊢ c1 ∼ c2 : Φ ∧ b1〈1〉 =⇒ Φ Φ⇒ b1〈1〉 = b2〈2〉

⊢ while b1 do c1 ∼ while b2 do c2 : Φ =⇒ Φ ∧ ¬b1〈1〉
[While]

⊢ c1 ∼ skip : Φ ∧ (b1 ∧ v = n)〈1〉 =⇒ Φ ∧ v〈1〉 < n Φ ∧ v〈1〉 ≤ m⇒ ¬b〈1〉

⊢ while b1 do c1 ∼ skip : Φ =⇒ Φ ∧ ¬b1〈1〉
[While〈1〉]

Ψ⇒ Ψ′ ⊢ c1 ∼ c2 : Ψ′ =⇒ Φ′ Φ′ ⇒ Φ

⊢ c1 ∼ c2 : Ψ =⇒ Φ
[Sub]

⊢ c1 ∼ c2 : Ψ ∧Ψ′ =⇒ Φ ⊢ c1 ∼ c2 : Ψ ∧ ¬Ψ′ =⇒ Φ

⊢ c1 ∼ c2 : Ψ =⇒ Φ
[Case]

Figure 1. Selected pRHL rules

instead of implementing rule[Rnd〈1〉], we combine it with
the [Seq] rule to obtain the following more easily applicable
rule:

⊢ c1 ∼ c2 : Ψ =⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

⊢ c1; x $← d ∼ c2 : Ψ =⇒ Φ

The application of a tactic may generate additional verifica-
tion subgoals, and logical side conditions that are checked
using SMT solvers, automated theorem provers and, as a
last recourse, interactive proof assistants. Depending ontheir
nature, application of the tactics can be fully automated or
require user input. For instance, applying the tactics that
mechanize the rules for while loops, requires the user to
provide an adequate invariant. In the case of the two-sided
rule, a new subgoal is generated to prove the correctness
of the user-provided invariant, whereas the equivalence of
the loop guards is checked automatically as a logical side-
condition.

In addition to tactics that mechanize basic rules of pRHL,
EasyCrypt implements automated strategies that combine
the application of a weakest precondition transformerwp
with heuristics to apply basic tactics. Thewp transformer op-
erates on deterministic loop-free programs. These strategies
can often be used to deal automatically with large fragments
of proofs, letting the user focus in the parts that require
ingenuity.

C. Reasoning about Probabilities

Since cryptographic results are stated as inequalities on
probabilities rather than pRHL judgments, it is important to

derive probability claims from pRHL judgments. This can
be done mechanically by applying rules in the style of

m1 Ψm2 ⊢ c1 ∼ c2 : Ψ =⇒ Φ Φ⇒A〈1〉⇒B〈2〉

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]

Game-based proofs often argue that two programsc1 and
c2 behave identically unless a failure eventF is triggered.
This is used to conclude that the difference in probability
of any event between the two programs is bounded by
the probability ofF in one of them. Although a syntactic
characterization of this lemma is often used (in which failure
is represented by a Boolean flag), it can be conveniently
expressed and implemented inEasyCrypt in a more general
form using pRHL.

Lemma 1 (Fundamental Lemma). Let c1 and c2 be two
terminating commands andA,B, F events such that

⊢ c1∼c2 : Ψ =⇒F 〈1〉⇔F 〈2〉∧(¬F 〈1〉⇒A〈1〉⇔B〈2〉)

Then, if the initial memories of both games satisfyΨ,

|Pr [c1 : A]− Pr [c2 : B] | ≤ Pr [c1 : F ] = Pr [c2 : F ]

In most applications of the above lemma, the failure
event F can only be triggered in oracle queries made
by an adversary. When the adversary can only make a
known bounded number of queries, the following lemma,
which we implemented inEasyCrypt, provides a means to
bound the probability of failure. (We describe its hypotheses
informally, but note that most of them can be captured by
pRHL judgments.)



Lemma 2 (Failure event lemma). Consider a program
c1; c2, an integer expressioni, an eventF , and u ∈ R.
Assume the following:
• Free variables inF and i are only modified byc1 or

oracles in some setO;
• After executingc1, F does not hold and0 ≤ i;
• OraclesO ∈ O do not decreasei and strictly increase
i whenF is triggered;

• For every oracleO in O, ¬F ⇒ Pr [O : F ] ≤ u
Then,Pr [c1; c2 : F ∧ i ≤ q] ≤ q · u.

Finally, EasyCrypt implements a simple mechanism to
directly compute bounds for the probability of an event
in a program. This mechanism can establish, for instance,
that the probability that a value uniformly chosen from a
set X equals an expression that does not depend on it is
exactly1/|X |, or that the probability that the same uniformly
sampled value belongs to a list ofn values that does not
depend on it is at mostn/|X |.

III. T HE MERKLE-DAMGÅRD CONSTRUCTION

Merkle-Damgård is a method for building a variable
input-length (VIL) hash function from a fixed input-length
(FIL) compression function. In its simplest form, the digest
of a message is computed by first padding it to a block
boundary and then iterating a compression functionf over
the resulting blocks starting from an initial chaining value
IV. A compression functionf maps a pair of bitstrings of
lengthk andn (equivalently, a bitstring of lengthk+ n) to
a bitstring of lengthn:

f : {0, 1}k × {0, 1}n → {0, 1}n

A padding functionpad converts an arbitrary length message
into a list of bitstrings of block size (k is the block-size):

pad : {0, 1}∗ → ({0, 1}k)∗

Definition 3 (Merkle-Damgård). Let f be a compression
function andpad a padding function as above, and letIV ∈
{0, 1}n be a public value, known as the initialization vector.
The hash functionMD is defined as follows:

MD : {0, 1}∗ → {0, 1}n

MD(m) def
= f∗(pad(m), IV)

where f∗ : ({0, 1}k)∗ × {0, 1}n → {0, 1}n is recursively
defined by the equations

f∗(nil, y) def
= y f∗(x::xs , y) def

= f∗(xs , f(x, y))

The security properties of the compression function pre-
served by the Merkle-Damgård construction greatly depend
on an adequate choice of padding to thwart certain types of
attacks. In the remainder, we consider prefix- and suffix-free
padding functions.

Definition 4 (Prefix- and suffix-free padding). A padding
function pad is prefix-free (resp.suffix-free) iff for any

distinct messagesm,m′, there is no xs such that
pad(m′) = pad(m) ‖ xs (resp.pad(m′) = xs ‖ pad(m)).

Security properties of hash functions are stated as claims
about the difficulty of an attacker in achieving certain goals.
Collision resistance states that it is hard to find distincta, b
such thatH(a) = H(b). Pre-image resistance states that
given a digesth, it is hard to finda such thatH(a) = h.
Second preimage resistance states that givena, it is hard
to find b 6= a such thatH(a) = H(b). Finally, resistance
to length-extension attacks states that it is hard to compute
H(a ‖ b) from H(a). The precise formulation of these
notions and their relationship is addressed in detail in [34].

An established method for proving the security of domain
extenders, likeMD above, is to show that they are property-
preserving: for instance, the seminal works of Merkle [31]
and Damgård [23] show that if the compression functionf
is collision resistant, then the hash functionMD with some
specific padding function is also collision resistant. Property
preservation also applies for other notions; a representative
panorama of property preservation for collision resistance,
preimage and second preimage resistance appears in [4].
In Section IV we useEasyCrypt to reduce the collision
resistance of suffix-freeMD to the collision resistance of
the underlying compression function.

An alternative method for proving the security of domain
extenders is to show that they preserve ideal functionalities,
i.e. that when applied to ideal functionalities they yield
an ideal functionality. The notion of indifferentiabilityof
Maurer et al. [30] provides an appropriate framework.

Definition 5 (Indifferentiability). A procedureC with oracle
access to an ideal primitiveG is (tS , q, ǫ)-indifferentiable
from F if there exists a simulatorS with oracle access
to F and executing within timetS , such that for any
distinguisherD that makes at mostq oracle queries, the
following inequality holds

∣
∣Pr

[
b← DC,G( ) : b

]
− Pr

[
b← DF ,S( ) : b

]∣
∣ ≤ ǫ

Intuitively, the distinguisher is either given access toCG

and G, or it is given access toF and SF (see Figure 2).
The probability that it succeeds in distinguishing the two
scenarios must be small.

C G F S

D

Figure 2. Indifferentiability ofC from an ideal functionalityF

In the application considered in this paper,C represents
the Merkle-Damgård construction,G represents the compres-



sion function andF represents an idealized hash function.
Thus, the role ofS is to simulate the behavior of the
compression function, i.e. it should behave towardsF like
G behaves towards the Merkle-Damgård construction. In
Section V, we useEasyCrypt to define a simulatorS that
proves indifferentiability ofMD from a VIL random oracle
when the compression functionG is modeled as a FIL
random oracle—random oracles [13] are functions that map
values in the input domain into uniformly and independently
distributed values in the output domain; see Section II for a
precise definition.

We conclude this section with two observations about
proofs of indifferentiability and property preservation.First,
indifferentiability from a random oracle provides weaker
guarantees than initially anticipated—see [20] and [33]
respectively for discussions on the random oracle model
and on the notion of indifferentiability—but nevertheless
remains a useful heuristics in the design of hash functions.
Second, the two methods are complementary. On the one
hand, indifferentiability from a VIL random oracle entails
resistance against collision, preimage, second preimage,
and length-extension attacks. Thus, preservation of ideal
functionalities apparently yields stronger guarantees than
property preservation. On the other hand, however, property
preservation is typically established under weaker hypothe-
ses and exact security bounds derived from indifferentiability
proofs generally deliver looser bounds than direct proofs
based on property preservation.

IV. COLLISION RESISTANCE

We show that finding collisions forMD with a suffix-free
padding is at least as hard as finding collisions forf . A
collision for the compression functionf is a pair of inputs
xy1, xy2 satisfying the predicate

coll(xy1, xy2)
def
= xy1 6= xy2 ∧ f(xy1) = f(xy2)

Theorem 6. Let MD be a Merkle-Damg̊ard hash function
with compression functionf and a suffix-free paddingpad.
For any algorithmA finding collisions forMD of at most
length p, there exists an algorithmB that finds collisions
for f with the same probability and with an overhead of
O(p · tf ), wheretf is a bound on the time needed for one
evaluation off .

Consider the experimentCRMD below, in which an adver-
saryA performs a collision attack againstMD:

Game CRMD :
(m1,m2)← A();
h1 ← F(m1);
h2 ← F(m2);
return (m1 6= m2 ∧ h1 = h2)

Oracle F(m) :
xs ← pad(m); y ← IV;
while xs 6= nil do
y ← f(hd(xs), y);
xs ← tl(xs);

return y

We prove inEasyCrypt that the algorithmB shown in Fig. 3
finds collisions forf in the experimentCRf with at least the

Game CRf :
(xy1, xy2)← B();
return coll(xy1, xy2)

Adversary B() :
(m1,m2)← A();
xs1 ← pad(m1); y1 ← IV;
xs2 ← pad(m2); y2 ← IV;
while |xs1| > |xs2| do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);

while |xs1| < |xs2| do
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

while ¬coll((hd(xs1), y1), (hd(xs2), y2)) ∧ xs1 6= nil do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

return ((hd(xs1), y1), (hd(xs2), y2))

Figure 3. A collision-finderB for the compression functionf

same probability asA finds collisions forMD in CRMD, i.e.

Pr
[

CRMD : res
]

≤ Pr
[

CRf : res
]

(1)

(Recall that res is a keyword that stands for the value
returned by the main procedure of the games.) Algorithm
B obtains fromA a pair of messagesm1,m2, pads them,
and iterates the compression function over the first blocks of
the longer padded message until the remaining suffix is the
same length as the other padded message. It then performs
the remaining iterations needed to computeMD(m1) and
MD(m2) in parallel. If m1,m2 forms a collision forMD,
a collision forf must occur during one of these iterations.
Algorithm B stops as soon as it detects one such collision,
returning the colliding inputs as a result.

In order to show (1) it suffices to prove the relational
judgment:

⊢ CR
MD ∼ CR

f : true =⇒ res〈1〉 ⇒ res〈2〉 (2)

Proving this judgment involves non-trivial relational reason-
ing because equivalent computations in the related games
are not performed in lockstep. We begin by inlining the call
to B in CRf and showing that the relational post-condition

(m1,m2)〈1〉 = (m1,m2)〈2〉 ∧
(h1 = MD(m1) ∧ h2 = MD(m2))〈1〉

holds after the call toA in both programs and the two calls
to F in CR

MD. To show this, we prove that oracleF cor-
rectly implements functionMD using the one-sided rule for
loops—the needed invariant is simplyf∗(xs , y) = MD(m).
At this point, note that ifm1 = m2, judgment (2) holds
trivially (we only have to check thatB terminates). We
are left with the casem1 6= m2. Assume w.l.o.g. that
|pad(m2)| ≤ |pad(m1)|, in which caseB never enters its
second loop and the following invariant holds for the first:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
m1 6= m2 ∧ |xs2| ≤ |xs1| ∧ xs2 = pad(m2) ∧
∃xs ′. xs ′ ‖ xs1 = pad(m1)

(3)



We prove that if the messagesm1,m2 output byA collide,
the last loop necessarily exits because a collision is found.
This can be shown by means of the following loop invariant:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
|xs2| = |xs1| ∧
(xs1 = xs2 ⇒ y1 6= y2)

Note that (3) and the negation of the guard of the first loop
imply that the above invariant holds initially. In particular,
the last implication holds because ifxs1 andxs2 were equal,
there would exist a prefixxs ′ such thatxs ′ ‖ pad(m2) =
pad(m1), contradicting the fact thatpad is suffix-free.
Finally, observe that the last loop can exit either because
a collision for f is found or becausexs1 = nil. In this
latter case, it must be the case thatxs2 = nil and therefore
y1 = MD(m1) = MD(m2) = y2. However, from the last
implication in the invariant we also havey1 6= y2, which
leads to a contradiction that renders this case trivial.

V. I NDIFFERENTIABILITY

We prove the indifferentiability of theMD construction
from a random oracle in{0, 1}∗ → {0, 1}n when its
compression functionf is modeled as a random oracle in
{0, 1}k × {0, 1}n → {0, 1}n and its padding function is
prefix-free. Our proof is based on [22].

Theorem 7 (Indifferentiability of MD). The Merkle-
Damg̊ard constructionMD with an ideal compression func-
tion f , prefix-free paddingpad, and initialization vectorIV
is (tS , qD, ǫ)-indifferentiable from a variable input-length
random oracleF : {0, 1}∗ → {0, 1}n, where

ǫ =
3ℓ2 q2D
2n

tS = O(ℓ q2D)

and ℓ is an upper bound on the block-length ofpad(m) for
any messagem appearing in a query of the distinguisher.

In what we call the real scenario, a distinguisherD has ac-
cess to an oracleFq implementing the functionMD and to a
random oraclefq : {0, 1}k × {0, 1}n → {0, 1}n that models
the compression function. In contrast, in the ideal scenario,
D has access to a random oracleFq : {0, 1}∗ → {0, 1}n and
fq is simulated. See Fig. 4 for a formulation of these two
scenarios as games. To preventD from making more than
q oracle queries, we enforce a boundq = ℓ qD on the
counterqf , that counts the number of evaluations of the
compression function in gameGreal. Note that this is more
permissive than the proof of Coron et al. [22], since it allows
the distinguisher to trade queries toFq for queries tofq.
Indeed, ifD makesnf queries tofq andnF queries toFq,
we require

qf ≤ nf + ℓ nF ≤ ℓ (nf + nF ) ≤ ℓ qD = q

We show that the simulatorfq in Gideal behaves consistently
with a random oracle. Whenever the distinguisher makes a

query (x, y) to oracle fq, the simulator looks among all
previous queries for a sequence that could be the chain
of inputs to the compression function used to compute the
hash of some messagem, for which x is the last block of
pad(m). We call such a sequence acomplete chain, and we
define it formally below. When such a sequence is found,
the simulator queriesF for the hash ofm and forwards the
answer to the distinguisher. Otherwise, the simulator answers
with a uniformly distributed random value. Figure 5 shows
how this simulator would react to a sequence of queries

y2 ← fq(x1, IV); y3 ← fq(x2, y2); y4 ← fq(x3, y3)

wherex1 ‖ x2 ‖ x3 = pad(m). The first two queries will be
answered with random values, while the third completes a
chain and is answered by forwardingpad−1(x1 ‖ x2 ‖ x3)
to F ; this maintains the consistency with the real scenario.

(x1, IV)
︸ ︷︷ ︸

T
′[x1,IV]←y2

incomplete chain

y2 $← {0, 1}
n

(x2, y2)
︸ ︷︷ ︸

T
′[x2,y2]←y3

incomplete chain

y3 $← {0, 1}
n

(x3, y3)
︸ ︷︷ ︸

T
′[x3,y3]←y4

complete chain

y4 ← F (m)

Figure 5. An example illustrating how the simulator works

Definition 8 (Complete chain). A complete chain in a
map T : {0, 1}k × {0, 1}n → {0, 1}n is a sequence
(x1, y1) . . . (xi, yi) such thaty1 = IV and

1) ∀j = 1 . . . i− 1. (xj , yj) ∈ dom(T )∧T [xj, yj] = yj+1

2) x1 ‖ . . . ‖ xi is in the domain ofpad−1

The function findseq((x, y),T ′) used by the simula-
tor searches inT ′ for a complete chain of the form
(x1, y1) . . . (xi, yi)(x, y) and returnsx1‖ . . . ‖xi, or ⊥ if no
such chain is found.

To help SMT solvers and automated provers check logical
side-conditions arising in our proofs, we needed to derive
several auxiliary lemmas: e.g., if a finite mapT is injective
and does not map any entry to the valueIV, every complete
chain is determined by its last element—that is, for any
given (x, y), the value offindseq((x, y),T ′) is uniquely
determined. All of these lemmas have been mechanically
verified based solely on the axiomatization and definitions
of elementary operations. In many cases,EasyCrypt is able
to verify the validity of these lemmas automatically. The
more involved lemmas have been manually verified in the
Coq proof assistant.

The proof proceeds by stepwise transforming the game
Greal into the gameGideal, upper-bounding the probability
that the outcome of consecutive games differ. By summing
up over these probabilities, we obtain a concrete bound for
the advantage of the distinguisher in telling apart the initial
and final games. Specifically, we prove:

|Pr [Greal : b]− Pr [Gideal : b]| ≤
3q2

2n
(4)



Game Greal :
qf ← 0;
T ← ∅;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while xs 6= nil do
y ← f(hd(xs), y);
xs ← tl(xs)

return y

Oracle f(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}

n;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then
qf ← qf + 1
z ← f(x, y);

else z ← IV
return z

Game Gideal :
qf ← 0;
R,T ′ ← ∅;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
z ← F (m)

else z ← IV
return z

Oracle F (m) :
if m /∈ dom(R) then
z $← {0, 1}

n;
R[m]← z

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

T
′[x, y]← F (pad−1(xs)‖[x]))

else

T
′[x, y] $← {0, 1}

n

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 4. The gamesGreal andGideal

Game Greal′ :
qf ← 0;
T ,T ′ ← ∅;
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while |xs | > 1 do
y ← fbad(hd(xs), y);
xs ← tl(xs)

y ← fbad(hd(xs), y)
return y

Oracle f(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}

n;
Z ← z::Z; Y ← y::Y ;
T [x, y]← z

return T [x, y]

Oracle fbad(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

T
′[x, y]← fbad(x, y)

else

if set bad3(y,T ′,T ) then
bad3 ← true;
T

′[x, y]← f(x, y)
else

T
′[x, y]← fbad(x, y)

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 6. The gameGreal′

We begin by considering the gameGreal′ defined in Fig. 6.
We introduce eventsbad1, bad2, andbad3 that will be
needed later. First, we introduce a copy of oraclef , which
we callfbad. Both use the same mapT to store previously
answered queries, the difference is thatfbad may trigger
eventsbad1 andbad2. We also introduce the listsY and
Z that allow us to appropriately detect when these events
occur. In addition, we modify the simulatorfq to maintain
a mapT ′ of queries known to the distinguisher. Observe
that T ′ ⊆ T , because queries toFq result in entries being
added only toT , whereas queries tofq result in the same
entries being added to bothT and T

′. Additionally, the
simulator fq behaves in two different ways depending on
whetherfindseq((x, y),T ′) 6= ⊥. If this condition holds,
there is a complete chain in mapT ′ ending in(x, y). In this

case, in gameGideal the simulator should call oracleF to
maintain consistency with the random oracle; otherwise the
simulator could just sample a fresh random value. In this
game, oraclefq returns the same answer in both cases, but
setsbad{1,2,3} accordingly. Lastly, we also unroll the last
iteration of the loop inFq.

Note that instrumenting the game with the additional map
T

′ and the failure eventsbad{1,2,3} does not change the
observable behavior. Therefore,

Pr [Greal : b] = Pr [Greal′ : b]

In gameGrealRO, defined in Fig. 7, we introduce a random
oracle RO : {0, 1}∗ → {0, 1}n and replace every call
fbad(x, y) in gameGreal′ where (x, y) ends a complete
chain in T with a call to RO(m, y) where m is the



unpadded message of the chain. I.e., in oraclefq we call
RO if findseq is successful and in oracleFq we call RO
instead of the last call tofbad. We also introduce the map
I : N→ {0, 1}n×B which enumerates all sampled chaining
values and includes atainted flag to keep track of values
known to the distinguisher. We introduce an indirection in
map T and T

′ through the use of mapI. This allows us
to keep track of the order in which queries were made
and to know which answers we could re-sample without
introducing inconsistencies in the view of the distinguisher.

The failure events that were introduced in the last step
capture certain dependencies on previous queries that the
distinguisher may exploit to tell apart gamesGreal′ and
GrealRO. We prove that gamesGreal′ and GrealRO behave
the same provided these failure events do not occur.

1) bad1 is triggered whenever oraclefbad samples a
random value that is eitherIV or has already been
sampled for a distinct query before. The role of this
event is twofold: on the one hand, ifIV is sampled
as a random value, then there could exist a complete
chain inT that is a suffix of another complete chain
in T as illustrated in the first example of Figure 8
(hereT [x2, y2] = IV). The problem is that oracleFq

in the gameGreal will generate the same values for
the two messages corresponding to those two chains,
while Fq in the gameGideal most likely will not. On
the other hand, if a sampled value has been sampled
for another query before, then there could exist two
complete chains inT that collide at some point and are
identical from that point on as illustrated in the second
example of Figure 8. Again the two corresponding
messages would yield the same answer inGreal but
most likely not inGideal on queries toFq. By requiring
that eventbad1 does not occur, we guarantee that in
gameGreal′ the mapT is injective and does not map
any value toIV.

2) bad2 is triggered whenever oraclefbad samples a
random value that has already been used as a chaining
value in a previous query. This means that this query
may be part of a chain of which the distinguisher has
already queried later points in the chain, which should
not be possible. The event also captures that no fixed-
points (i.e. entries of the formT [x, y] = y) should be
sampled.

3) bad3 is triggered whenever a chaining valuey in a
query has already been sampled as a random value and
is in the range ofT for some previous query(x′, y′),
but (x′, y′) does not appear in the domain ofT ′ and
(x′, y′) is not the last element of a complete chain in
T . Intuitively, this means thaty was never returned by
fq or Fq and hence the distinguisher managed to guess
a random value.

In order to relate gamesGreal′ andGrealRO in case that

(x1, IV) (x2, y2) (x3, IV) (x4, y4) (x5, y5)

(x3, IV) (x4, y4) (x5, y5)

(x1, IV) (x2, y2) (x3, y3)

(x′1, IV) (x′2, y
′
2) (x′3, y

′
3)

(x4, y4) (x5, y5)

Figure 8. Two examples illustrating the necessity of eventbad1

findseq((x, y),T ′) in fq succeeds in both games, we need
to show that the callfbad(x, y) in Greal′ and the call
RO(m, y) in GrealRO behave similarly. For this we show
that the following invariant is preserved in both games: for
all complete chainsc in the mapT of gameGreal′ with
last(c) ∈ dom(T ), it holds thatc’s associated message is in
dom(R) of gameGrealRO and, vice versa, every message
in dom(R) of gameGrealRO has a corresponding complete
chainc in the mapT of gameGreal′ with last(c) ∈ dom(T ).
This invariant allowsEasyCrypt to prove this case by
inferring that(x, y) ∈ dom(T ) in gameGreal′ if and only if
m ∈ dom(R) in gameGrealRO.

Proving that the aforementioned invariant is preserved in
the games requires several other invariants. Most of them
merely relate the representation of maps in both games; we
omit these technical details. The essential invariant is that
the distinguisher queriesfq for points in a chain only if it
has already queried the preceding part of the chain. This is
important as it implies that each chain will be completed by
a query for its last element, in which casefindseq will detect
this query and the corresponding message will be added
to R. In gameGreal′ , the predicateset bad3 enforces this
ordering by triggering eventbad3. The probability of this
event is negligible, because it means thaty was never output
by fq or Fq and hence is not known to the distinguisher. In
gameGrealRO, we use the mapI to iterate over all chaining
values in order to check for the ordering mentioned above.

In oracleFq of gameGrealRO, the computation of the
Merkle-Damgård construction is split into three stages due
to the different usage of the mapsT ′, T ′

i
, andT . The first

loop computes the construction for values that were already
queried by the distinguisher and are therefore indom(T ′).
The restriction that the distinguisher may only query chains
in order implies that such values occur only in the prefix of
a chain. The second loop handles values that were already
used before by oracleFq, and the third loop samples fresh
chaining values. Relating the final call tofbad in game
Greal′ and the final call toRO in gameGrealRO is similar
to this case in oraclefq. We prove that the advantage in
differentiating between gamesGreal′ andGrealRO is upper
bounded by the probability of any ofbad1,bad2,bad3

occurring in gameGrealRO.

|Pr [Greal′ : b]− Pr [GrealRO : b]| ≤

Pr [GrealRO : bad1 ∨ bad2 ∨ bad3]



Game GrealRO :
qf ← 0;
q′

f ← 1;
T ,T ′,T ′

i ,R, I ← ∅;
I[0]← (IV, false);
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while |xs | > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i [hd(xs), y];
y ← T

′[hd(xs), y];
xs ← tl(xs);

while |xs | > 1∧
(hd(xs), i) ∈ dom(T ) do
i← T [hd(xs), i];
y ← fst(I[i]);
xs ← tl(xs);

while |xs | > 1 do
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [hd(xs), i]← q′

f ;
I[q′

f ]← (z, true);
i← q′

f ;
y ← z;
q′

f ← q′

f + 1;
xs ← tl(xs)

y ← fst(RO(m, y))
return y

Oracle RO(m, y) :
if m /∈ dom(R) then
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
R[m]← (z,q′

f )
I[q′

f ]← (z, false)
q′

f ← q′

f + 1
return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

m ← pad−1(xs)) ‖ [x]);
(z, j)← RO(m, y);
T

′[x, y]← z; T
′

i [x, y]← j;
else
found , found bad3 ← false;
j, k′ ← 0;
while k′ < q′

f do

if snd(I[k′]) then
found bad3 ← (fst(I[k′]) = y);

else if ¬found ∧ fst(I[k′]) = y∧
(x, k′) ∈ dom(T )∧
snd(I[T [x, k′]]) then

found ← true; j ← T [x, k′];
k′ ← k′ + 1;

if found then
z ← fst(I[j]); I[j]← (z, false);
T

′[x, y]← z; T
′

i [x, y]← j;
else

if found bad3 then
bad3 ← true;
z $← {0, 1}

n;
I[q′

f ]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′

f ;
q′

f ← q′

f + 1;
else

z $← {0, 1}
n;

bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
I[q′

f ]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′

f ;
q′

f ← q′

f + 1
z ← T

′[x, y]; qf ← qf + 1
else z ← IV
return z

Figure 7. The gameGrealRO

To finish the proof, we have to relatePr [GrealRO : b] with
Pr [Gideal : b] and bound the probability of the failure events
in gameGrealRO. We first focus on the probability ofbad1

andbad2. Eventbad1 (resp.bad2) is set when a freshly
sampled valuez is in the listZ (resp.Y ); since the size of
both lists is bounded byq, this occurs with probability at
mostq 2−n, for each of the possibleq queries.

Note that oraclesFq, RO , and fq in gameGrealRO use
the same code to detect the failure eventsbad1 andbad2

when sampling a fresh valuez. We can wrap this code in a
new oracle that meets the conditions of Lemma 2: we take

u = q 2−n and i = |Z| (resp.|Y |). We get

Pr [GrealRO : bad1] ≤
q2

2n
Pr [GrealRO : bad2] ≤

q2

2n

We are left to bound the probability ofbad3 and relate
the gamePr [GrealRO : b] with Pr [Gideal : b]. Note that in
gameGrealRO chaining values are sampled eagerly, i.e. for
a querym, oracleFq samples chaining valuesz that are
independent of the distinguisher’s view (their associatedflag
is set totrue). These values might later on become known
to the distinguisher if it recomputes the Merkle-Damgård
construction form using oraclefq (we identify this case
setting found = true). We want to transform the game so
that chaining values are sampled lazily (as in gameGideal).



Game GidealEager :

Game GidealLazy :

qf ← 0;
q′

f ← 1;
T ,T ′,T ′

i ,R, I ← ∅;
I[0]← (IV, false);
Y ← nil;
bad4 ← false;

l ← 0;
while l < q′

f do
if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;

b← DFq ,fq ();

l ← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}

n;
I[l]← (z, true);

l← l + 1;

return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if (0 < q′

f∧
qf + |xs | ≤ q) then
qf ← qf + |xs |;
while |xs | > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i [hd(xs), y];
y ← T

′[hd(xs), y];
xs ← tl(xs);

while |xs | > 1∧
(hd(xs), i) ∈ dom(T ) do
i← T [hd(xs), i];
xs ← tl(xs);

while |xs | > 1 do
z $← {0, 1}

n;
T [hd(xs), i]← q′

f ;
I[q′

f ]← (z, true);
i← q′

f ;
q′

f ← q′

f + 1;
xs ← tl(xs);

y ← fst(RO(m));
return y

Oracle RO(m) :
if m /∈ dom(R) then
z $← {0, 1}

n;
R[m]← (z,q′

f )
I[q′

f ]← (z, false)
q′

f ← q′

f + 1;
return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (0 < q′

f∧
(x, y) /∈ dom(T ′)) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

m ← pad−1(xs ‖ [x]);
(z, j)← RO(m);
T

′[x, y]← z; T
′

i [x, y]← j;
else

found ← false; j, k′ ← 0;
while (k′ < q′

f ∧ ¬found) do
if (I[k′] = (y, false)∧

(x, k′) ∈ dom(T )∧
snd(I[T [x, k′]])∧
k′ < T [x, k′]∧
T [x, k′] < q′

f ) then
found ← true; j ← T [x, k′];

else

k′ ← k′ + 1;
if found then

z ← fst(I[j]); z $← {0, 1}
n;

bad4 ← bad4 ∨ z ∈ Y ;
I[j]← (z, false);
T

′[x, y]← z; T
′

i [x, y]← j;
else

z $← {0, 1}
n;

I[q′

f ]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′

f ;
q′

f ← q′

f + 1;
Y ← y::Y ;

z ← T
′[x, y]; qf ← qf + 1;

else
z ← IV;

return z

Figure 9. The gamesGidealEager andGidealLazy

The same kind of argument can be used forbad3. This event
is set whenever the distinguisher makes a query(x, y) to fq
with y coinciding with a value uniformly and independently
distributed w.r.t. its view.

We modify gameGrealRO in order to prepare for the
transition from eager to lazily sampled chaining values: the
body of gameGidealEager (see Figure 9) contains a loop
which re-samples all chaining values that are unknown to the
adversary, i.e., the values for which the second component
in mapI is set totrue. Furthermore, gameGidealEager drops
the failure eventsbad{1,2,3}, but introduces a new failure
eventbad4. We show that ifbad3 is triggered in game
GrealRO, then in GidealEager bad4 is set to true or there
exists ani such thatI[i] = (v, true) andv ∈ Y . We get

Pr [GrealRO : b] = Pr [GidealEager : b]
Pr [GrealRO : bad3] ≤ Pr [GidealEager : bad4 ∨ I∃]

whereI∃ = ∃i. 0 ≤ i ≤ q′f ∧ snd(I[i]) ∧ fst(I[i]) ∈ Y .

In gameGidealLazy (see Figure 9), the loop we introduced
in the last game is swapped with the call to the distinguisher
and oraclefq samples the chaining values lazily (the branch
found re-samples the value ofz). In order to prove the
equivalence with the previous game, we need to show that
the loop that resamples the values unknown to the adversary
swapswith calls to oraclesFq andfq in gamesGidealEager

andGidealLazy. We obtain

Pr [GidealEager : b] = Pr [GidealLazy : b]
Pr [GidealEager : bad4 ∨ I∃] = Pr [GidealLazy : bad4 ∨ I∃]

It is easy to see that gamesGidealLazy and Gideal are
equivalent w.r.t.b; the global variableqf and the mapsR
andT ′ are equivalent in both games. The other variables in
gameGidealLazy and its loops do not influence the behavior
of its oracles. We show that

Pr [GidealLazy : b] = Pr [Gideal : b] .



We still have to bound the probability ofbad4 ∨ I∃ in
gameGidealLazy. To do this, we simply modify the while
loop in the code of the game by replacing the instruction
z $← {0, 1}n with

z $← {0, 1}
n;bad4 ← bad4 ∨ z ∈ Y

This leads to a gameGidealLazy′ , for which we show

Pr [GidealLazy : bad4 ∨ I∃] ≤ Pr [GidealLazy′ : bad4]

We finally use the same technique as forbad1 to bound the
probability ofbad4 in gameGidealLazy′, and obtain

Pr [GidealLazy′ : bad4] ≤
q2

2n

Putting the (in-)equalities proved above together we prove
(4), which completes the proof of Theorem 7.

VI. SECURITY PROOFS OFGENERALIZED

MERKLE-DAMGÅRD

To avoid inheriting structural weaknesses in the original
Merkle-Damgård construction, existing hash functions em-
ploy instead slight variants of it. One well-known variant
is the wide-pipe design, which uses an internal state larger
than the final output [22], [27]. Many variants are subsumed
by the following Generalized Merkle-Damgård construction.

Definition 9 (Generalized Merkle-Damgård). Let IV ∈
{0, 1}n be a public initialization vector andf, g be two
compression functions of type

f, g : {0, 1}k × {0, 1}n → {0, 1}n

Consider a functionpad : {0, 1}∗ → ({0, 1}k)∗ × {0, 1}k

that converts an arbitrary length message into a non-empty
list of blocks of lengthk, singling out the last block. The
hash functionGMD is defined as follows:

GMD : {0, 1}∗ → {0, 1}ℓ

GMD(m) def
= let (x, y) = pad(m) in [g(y, f∗(x, IV))]ℓ

wheref∗ is defined as in Def. 3 and[x]ℓ chops off then− ℓ
least significant bits fromx, i.e. discards all but the leading
ℓ bits.

The NIST SHA-3 competition started in November 2007
with the objective of selecting new cryptographic hash
functions to augment the set specified by the U.S. Federal
Information Processing Standard (FIPS) 180-3, which in-
cludes the SHA-1 and SHA-2 algorithms. After receiving
64 entries, NIST selected 51 candidates for the first round,
further narrowed down the list to just 14 candidates for
the second round, and announced 5 finalists in December
2010:BLAKE [6], Grøstl [25], JH [38], Keccak [14], and
Skein [24]. A public comment period has started after this
announcement and the winner is expected to be selected
before the end of 2012.

The security of all SHA-3 finalists, and of many second
round candidates, has been thoroughly scrutinized. Two
survey articles summarize known results [2], [3]. While
the algorithmic descriptions of the finalists and their exact
security bounds fit in one page (see [3]), the corresponding
security proofs are technically involved and need to be
cautiously adapted to account for the specificities of each
function. As a consequence, it is difficult to assess the
validity of security claims for individual candidates and
machine checking their proofs is an appealing perspective.
In the remainder of this section we discuss the applicability
of the proofs presented in Sections IV and V to SHA-3
finalists.

The five SHA-3 finalists are based on the iterated hash
function design that underlies the Merkle-Damgård con-
struction, but incorporate some variations such as round-
dependent tweaks, counters, final transformations, and chop-
ping. We observe that, in a more or less contrived way, all
the finalists can be considered as variants of the Generalized
Merkle-Damgård (Definition 9). The compression functions
of the finalists are either block-cipher based (BLAKE,
Skein) or permutation-based (Grøstl, JH, Keccak). More-
over, all finalists use suffix-free padding rules, while the
padding rules ofBLAKE andSkein are additionally prefix-
free [3].

Our formalization models compression functions as func-
tions of two arguments: a message block and a chaining
value. This represents a deviation with respect to the com-
pression functions ofBLAKE andSkein. The compression
function of BLAKE additionally takes a counter and a
random salt value, whereas the compression function of
Skein builds on a tweakableblock cipher and takes as
additional input a round-specific tweak. The additional ar-
guments of the compression functions ofBLAKE andSkein
could be formalized as an integral part of the padding rule;
the padding function can compute the appropriate round-
specific values and append them to the message blocks.
This alternative description would have the advantage of
matching the model that we use in our results about the
MD hash function. However, all finalists exceptBLAKE
use chopping or a final transformation, which are formalized
neither in our proof of collision resistance nor in our proofof
indifferentiability. This rules out a direct application of our
results, with the exception ofBLAKE, for which Theorem 6
does apply. We leave it for future work to formalize this
instantiation inEasyCrypt.

NIST requirements for the SHA-3 competition include
collision resistance, preimage resistance and second preim-
age resistance. All the candidates selected as finalists satisfy
these properties and (in most cases) even achieve optimal
bounds for them when the underlying block-ciphers or
permutations used to build their compression functions are
assumed to be ideal [3]. Although the original NIST require-
ments did not include the property of indifferentiability from



a random oracle, this notion has also been considered in the
literature and is achieved by all five finalists [1], [5], [12],
[15], [16], [21]. These indifferentiability proofs hold inan
idealized model for some of the building blocks of the hash
function: the ideal-cipher model for block-cipher based hash
functions, or the ideal-permutation model for permutation-
based hash functions. Indifferentiability seems to be an
excellent target for security proofs because it ensures that
the high-level design of the hash function has no structural
weaknesses, but also because it implies bounds for all of
the classical properties enumerated above. Unfortunately,
the assumption that some underlying primitive is ideal is
at best unrealistic and at worst plainly wrong. Proofs of
indifferentiability should be taken only as an indication for
the security and as a palliative for the lack of security proofs
in the standard model.

Compared to our result of Theorem 7, which assumes
that the compression function is ideal, the indifferentiability
of all the finalists has been proved in an ideal model for
lower building blocks. We point out that assuming ideality
of a lower building block is weaker than assuming ideality
of the entire compression function and thus these results
are stronger. Indeed, assuming ideality of the compression
function seems to be inappropriate for all the finalists:

• The compression functions ofJH and Keccak are
trivially non-random, as collisions and preimages can
be found in only one query to the underlying permuta-
tion [3], [18];

• Finding fixed-points for the compression function of
Grøstl is trivial [25];

• The compression function ofBLAKE has been recently
shown to exhibit non-random behavior [1], [21];

• Non-randomness has been shown for reduced-round
versions of Threefish, the underlying block-cipher of
Skein [26].

The only two finalists that use a prefix-free padding rule,
and for which our proof of indifferentiability can apply, are
BLAKE andSkein. However, our proof of indifferentiability
of prefix-free Merkle-Damgård relies on the assumption
that the underlying compression function behaves like an
ideal primitive. Thus, it cannot be applied toBLAKE, as
this assumption has been invalidated. As forSkein, the
assumption that its compression function is ideal is seriously
weakened by the attacks on Threefish mentioned above.

Although Theorem 7 cannot be directly applied to any of
the SHA-3 finalists, it constitutes a non-trivial result about
the Merkle-Damgård construction and a good starting point
for formalizing more complex proofs. Indeed, indifferen-
tiability proofs based on weaker assumptions and general
enough to apply to SHA-3 finalists are no significantly dif-
ferent from the proof we have formalized and use essentially
the same techniques. We see no impediment to formalizing
them inEasyCrypt.

VII. C ONCLUSION

Despite their widespread use, the formal verification of
hash functions has received little attention. To our best
knowledge, Toma and Borrione [35] were the first to use
theorem provers to formally verify properties of SHA-1, but
their focus is on functional properties, rather than security
properties. The first machine-checked proof of security for
a hash design appears in [7], where the authors use the
CertiCrypt framework to verify that the construction from
Brier et al. [19] yields a hash function indifferentiable
from a random oracle into ordinary elliptic curves. More
recently, Daubignard et al. [?] develop a method to permute
dependencies between oracles in a game, and apply their
method to prove indifferentiability of hash functions from
random oracles. Their method is not implemented, although
the underlying framework has been machine-checked [?].

The prevailing method for building hash functions is to
iterate a compression function on a pre-processed input
message. In this paper, we have considered the Merkle-
Damgård construction, which pioneered this design, and
proved that the resulting hash function preserves collision
resistance and is indifferentiable from a random oracle. Our
results demonstrate that state-of-the-art verification tools can
be used for proving the security of hash designs, and not only
for cryptanalysis [32]. We will further this line of research by
exploring the formalization of more general security proofs
that apply to a wider range of hash functions, including
finalists of the SHA-3 competition.
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