
Securing a Remote Terminal Application with a Mobile Trusted Device

Alina Oprea1, Dirk Balfanz2, Glenn Durfee2, D. K. Smetters2

1 Carnegie Mellon University
Pittsburgh, PA

alina@cs.cmu.edu

2 Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
{balfanz, gdurfee,

smetters}@parc.com

Abstract

Many real-world applications use credentials such as
passwords as means of user authentication. When accessed
from untrusted public terminals, such applications are vul-
nerable to credential sniffing attacks, as shown by recent
highly publicized compromises [20].

In this paper, we describe a secure remote terminal ap-
plication that allows users possessing a trusted device to
delegate their credentials for performing a task to a pub-
lic terminal without being in danger of disclosing any long-
term secrets. Instead, the user gives the terminal the ca-
pability of performing a task temporarily (as long as the
user is in its proximity). Our model is intuitive in the sense
that the user exposes to the untrusted terminal only what he
sees on the display, and nothing else. We present the de-
sign and implementation of such a system. The overhead –
in terms of additional network traffic – created by introduc-
ing a trusted third party is a moderate 12%.

1. Introduction

From 2000 to 2002, Queens resident JuJu Jiang col-
lected over 450 online banking passwords from unsuspect-
ing Kinko’s customers [20]. Jiang accomplished this by in-
stalling keyboard-sniffing software on public terminals in
thirteen Kinko’s stores in Manhattan, thus learning the Go-
ToMyPC [15] account passwords of hundreds of people that
had used those terminals. Armed with those GoToMyPC
passwords, Jiang could connect to, and gain full control of
the home PCs of his victims.

This story teaches us two lessons: (1) Computer
users want to access their home computing environment
from public terminals. (2) Those public terminals can-
not be trusted with passwords or other credentials that

give full access to the users’ home computing environ-
ment.

How can we reconcile these two issues, and provide the
user any secure access at all to their home computing en-
vironment from an untrusted terminal? Clearly, if the ter-
minal werecompletely untrusted, then users would refrain
from using it. On the other hand, if they could completely
trust the public terminal, then no precautions against key-
board sniffers and the like would be necessary. In practice,
the truth is usually somewhere in the middle – such termi-
nals may often be trusted to perform the functions they ad-
vertise, but not be trustable with long-term secrets. We call
a terminal that is not fully trusted “untrusted”, even though
we trust it to a certain extent (e.g.,not to deny service).

If users want to access their sensitive home computing
environment from an untrusted terminal, it would be nice if
they could control what information that terminal gains ac-
cess to – in particular, the terminal should only obtain in-
formation about those parts of the home computing envi-
ronment that the user chooses to access via the terminal, and
gain neither access to other parts, nor to the user’s long-term
secrets (e.g.,passwords). This would allow the user to de-
cide what information to expose to a given terminal on a
case-by-case basis. For example, I may have no problem
having a friend’s PC access individual email messages in
my Inbox (as long as I have control over which email mes-
sages get accessed), while I may not let a public terminal at
a hackers’ conference access my Inbox at all.

This sounds like we are asking users to make sophisti-
cated security decisions –i.e., “decide what to expose to an
untrusted host”, something end-users are usually considered
ill-equipped to do. We believe instead that an effective fo-
cus on usability in system design can make such things not
only possible, but easy and intuitive. In designing this sys-
tem, our primary goal was to make it very easy for users to
specify which parts of their home computing environment



PDA

optical 
mouse

connection to 
untrusted
terminal

PDA buttons 
serve as mouse 
buttons

Figure 1. Our augmented PDA

are exposed to the untrusted terminal, and which are not.
The simple analogy we have used here is “seeing” – the un-
trusted terminal gains access to any information, and only
that information, that it “sees” – that the user chooses to
display via the monitor. We use the same desktop metaphor
of traditional user interfaces, and simplyextendthe famil-
iar click-to-open semantics of such interfaces. In our sys-
tem, a mouse click (or double-click) that normally means
“open this item and display it” takes on an additional, yet
intuitive, meaning: “expose this component of my comput-
ing environment to the untrusted terminal I’m currently at”.

If a simple mouse click can expose a resource in our
home computing environment to an untrusted terminal, we
better make sure that only we, not the untrusted terminal,
can issue such mouse clicks (or other input events). In other
words, we provide the untrusted terminalread-onlyaccess
to our home computing environment, and provide the in-
put necessary to interact with that environment via a sepa-
rate,trusted input pathprotected from the untrusted termi-
nal.

At the same time, we would like the interaction with the
untrusted terminal to be as natural as possible. Our solu-
tion to this problem is to use a modified PDA that the user
plugs into the untrusted terminal, and which can be used
as a mouse (see Figure 1). The PDA will authenticate all
mouse (and other input) events to the home computing en-
vironment. It will withhold the credentials necessary to do
this authentication from the untrusted terminal, thus mak-
ing it impossible for the untrusted terminal to issue its own
input events. At the same time, the PDA will temporarily is-
sue (and update) credentials to the untrusted terminal allow-
ing it to display representations of those parts of the home
computing environment that the user decided to open up to
it. Once we unplug the PDA from the untrusted terminal, the
last credential issued expires after a timeout, leaving the ter-
minal unable to even display the user’s home computing en-
vironment.

We emphasize that the PDA in question is a general-
purpose PDA, which can be used as such by its users. It
just happens to also be a mouse that provides a trusted input
path to the user’s home computing environment when con-
nected to an untrusted terminal. Figure 1 shows our initial

prototype of such a PDA. A finished product would have the
same form factor as a PDA, perhaps with an LED and op-
tical sensor such as those found in optical mice embedded
in the back of it. Alternatively, the trusted device could be
a cell phone or two-way pager (e.g.,a RIM BlackberryTM),
or a special-purpose device with a form factor similar to
“travel mice” currently sold.1 This has the advantage that
the device is much smaller (e.g., could be put on a key
chain), but has the disadvantage that it presents yet another
special-purpose device to be carried by its user that can-
not be used for other applications. For the rest of this paper,
we will assume that the trusted mobile device is a general-
purpose PDA that has optical mouse capabilities built in, or
at least provides “touchpad”-like functionality through its
touch screen.

In this paper, we describe a particular implementation of
this idea. The graphical representation of the home comput-
ing environment is, in fact, a copy of the home PC’s GUI
desktop, using any one of the standard “remote desktop”
protocols in common use today (for our implementation we
chose VNC [18]). We give the user full access to a home PC
of their choice.2 They can open applications or documents,
using their PDA as a mouse (and also as a keyboard). The
desktop environment is displayed on the untrusted terminal,
but only as long as the PDA is present. The terminal loses
all credentials to access the home environment after a speci-
fied timeout has elapsed since the user walked away with the
PDA. The end result is that the user interacts with the un-
trusted terminal (almost) the same way he would with his
home PC, or with current remote desktop software. The ad-
vantage is that the user can be certain that only those items
that he “exposes” to the untrusted terminal are accessible to
the untrusted terminal.

We describe the goals of our system in Section 3, after
looking at some related work in Section 2. In Section 4 we
explain the design, implementation and performance evalu-

1 These are very small optical mice, similar in size to a car key fob.
2 While we describe our application in terms of giving a user access

to a “home” PC, the same approach can obviously be used to access
any network-accessible machine supporting the chosen remote termi-
nal protocol.



ation of our particular VNC-based application. We conclude
in Section 5.

2. Related Work

Traditional approaches to securing network access –e.g.,
the use ofssh [5] – leave the user still vulnerable to
password-sniffing attacks. Even the use of one-time pass-
words or tokens, while potentially preventing the untrusted
terminal from accessing the user’s resources in the future,
does not protect the user from malicious manipulation of
his home environment by the untrusted terminal while he
is present and authenticated. These approaches provide the
untrusted terminal total access to the home computing envi-
ronment, while protecting that access from malicious eaves-
droppers on the network. As we want to protect the home
computing environment from a potentially malicious access
terminal, this is insufficient. Instead, we must be able to del-
egate to that terminal very limited capabilities to access the
home environment.

Delegation of credentials has been the focus of much
previous work, ranging from the theoretical to the more ap-
plied. For example, in the ABLP access control logic [1],
delegation plays a central role in form of “speaks-for” state-
ments. A principal Alice can delegate her privileges to a
principal Bob by announcing that Bob speaks for Alice. Re-
finements of that approach (e.g., [2] or [11]) allow finer-
grained delegation,e.g., Alice could announce that Bob
speaks for her only for the next 5 minutes. SPKI [12] has a
form of certificates that allows principals to delegate a sub-
set of their rights to other principals.

Compared to these efforts, we take a rather pragmatic
approach: we simply send short-lived keys to the delega-
tee, which allow it to decrypt messages meant for the del-
egator for a short period of time. The advantage of our ap-
proach is that we can easily augment existing software (in
our case, VNC) without any of the heavy lifting required
by some of the cited approaches (e.g., [2] requires clients
to come up with proofs of authorization; other systems re-
quire some sort of shared infrastructure in which every host
must participate). In fact, our system doesn’t even require
the untrusted terminal to possess a private key.

Remotely-Keyed Encryption [6, 7] is closer to our
model: here an untrusted host is able to encrypt and de-
crypt data only with the help of a trusted smartcard (anal-
ogous to the PDA in our system). The remotely-keyed
encryption protocol is designed to guarantee that the smart-
card must be present and involved to encrypt or de-
crypt any data, while not actually sending all of that data
over the low-bandwidth link to the card. One disadvan-
tage of remotely-keyed encryption is that the host can de-
crypt only entire messages – handling streaming data, for
example, poses a problem. One could get around this by di-

viding the data stream into smaller packets which are
encrypted and decrypted separately, but then the smart-
card has to interact with the host for every packet received.
In our system, the frequency with which the PDA and un-
trusted terminal interact is determined by the expiration
time of delegated keys, not by the frequency of pack-
ets sent.

Zero-Interaction Authentication [10, 9] uses an authenti-
cation token to store credentials needed to use a host com-
puter. If you take the token away from the host computer,
the host computer will forget all keys needed to read and
write files, and will essentially become unusable. The sim-
ilarity to our work is that the token issues keys to the host
computer, which it then uses to get useful work done. The
difference is in the trust model. In Zero-Interaction Authen-
tication, the host computer is trusted. It voluntarily forgets
all keys once it senses that the token is no longer in prox-
imity. In our system, the host computer is untrusted. It con-
stantly needs updated keying material from the PDA to ac-
cess the user’s home PC desktop.

People have proposed to use PDAs as touchpads before
(e.g., [17]), but mostly for reasons of convenience. In our
case, we use the PDA as a touchpad to create atrusted input
path. Furthermore, we have augmented a PDA with (parts
of) an optical mouse (see Figure 1). This allows the PDA to
be used as a mouse, not just as a touchpad.

Balfanz and Felten [3] point out that PDAs can provide
a trusted input and output path when used with an untrusted
host. We also use a PDA as a trusted input device, and find
it more trustworthy than a public terminal for the same rea-
sons given in [3]. They, however, use the PDA to provide
cryptographic functions that the host cannot be trusted with.
This method would completely fail in our case – the amount
of framebuffer data that needs to be decrypted by the un-
trusted host is much too large to be handled by the PDA.
Consequently, wedo let the untrusted host handle its own
decryption, albeit with rapidly expiring keys.

Finally, our work has some similarity to SSL-Splitting
[16]. There, untrusted proxy servers are given only encryp-
tion, but not MAC keys to serve out Web content over an
SSL connection. Here, we give the untrusted terminal de-
cryption and MAC keys to receive data over an SSL con-
nection. There, clients connect to untrusted proxy servers
while requiring assurance from the server that the content
served out is authentic. Here, the clientsare the untrusted
entities, and it is theserverthat requires assurance that the
input events are authentic.

3. Preliminaries and Goals

The goal of our system is to allow a user in the posses-
sion of a small, trusted device to access sensitive informa-
tion stored on his home computer in a secure manner. We



provide that access in the form of a “remote desktop” ap-
plication, giving the user any access he desires to his home
computing environment. The user holds certain capabili-
ties on the trusted device and delegates some of them, tem-
porarily, to an untrusted host that displays the sensitive in-
formation from the home environment. We emphasize that
in our system, the input and output paths are clearly sepa-
rated: all the input comes from the trusted device, whereas
the output goes to the untrusted host. In other words, the un-
trusted host has “read-only” access to just that part of the
home computing environment that the user chooses to dis-
play. The untrusted host is trusted to some extent to display
correctly the information it receives.

3.1. Model

The players in the secure remote terminal application
are: the home computer (HC) holding sensitive information,
that acts as the remote terminal server; the untrusted termi-
nal (UT) to which the user delegates the capability of act-
ing as the remote terminal output; the user with its trusted
PDA from which the input to the remote terminal server is
sent.

We are assuming that all the devices from the user home
network (all the devices that are trusted to the user and form
the trusted computing base) are given certain credentials. In
our particular implementation, the credentials take the form
of certificates signed by a root home certification authority.
The root home certification authority might be the PDA it-
self or any other trusted device. Any two devices from the
home network use these certificates to mutually authenti-
cate. The communication between devices from the home
network (in particular, between the PDA and the home com-
puter) is always done over SSL with client authentication
enabled.

The PDA and the untrusted terminal communicate
through a secure channel. In our prototype, we phys-
ically plug the PDA into the untrusted terminal, but
we could also imagine a wireless connection authenti-
cated through a location-limited channel [4] such as in-
frared.

Our security goals are the following:

1. All the input events (mouse and keyboard) to the re-
mote terminal server come from the trusted device on
a secure communication channel.

2. All the output goes to the untrusted host on a secure
communication channel.

3. The untrusted host can access sensitive information
only when the trusted device is in its proximity.

We need to clarify an aspect related to our third secu-
rity goal: there is a timeout between the moment in which
the PDA stops delegating the credentials and the time the

host computer is actually denied access to the sensitive in-
formation. We think that values on the order of seconds, and
even minutes, are reasonable for the timeout. Such a time-
out is important, as the user may choose to display on the
host computer time-varying information whose future con-
tents may be sensitive. For instance, the user may open a
window showing the contents of his most recent e-mail, that
automatically updates as new messages arrive. Or, the user
may display the current output of his home video surveil-
lance system. It is important, therefore, that the untrusted
host’s access to the home environment is time-limited and
tied to the presence of the user, as evidenced by the pres-
ence of his trusted device.

A straightforward solution that one might think of de-
ploying for the delegation of capabilities is the following:
the trusted device hands its certificate (and private key) to
the untrusted host. There are two problems with this ap-
proach: (1) The certificate is likely a coarse-grained capa-
bility, i.e., it authorizes its bearer for all kinds of access
to the home network and (2) the certificate may not ex-
pire soon enough, and leave the untrusted computer with the
ability to access the user’s home network long after the user
has walked away. Therefore, we need to find lower-privilege
credentials to delegate (i.e.,credentials that do not give full
access to the user’s home network), and we need a mech-
anism to ensure that the delegation istemporary, i.e., just
for the period when the user is in the proximity of the un-
trusted device.

Another, perhaps even simpler solution to this problem
would be to avoid the delegation of capabilities at all: sim-
ply provide secure remote access to the home environment
to just the trusted device, which can then forward any subset
of the information it receives to the untrusted terminal. Un-
fortunately, this places unreasonable bandwidth and compu-
tation demands on the trusted device, which we would like
to allow to be as small and inexpensive as possible.

3.2. Overview of SSL

SSL (Secure Socket Layer) [14] is a transport level se-
curity protocol that creates a secure transparent tunnel be-
tween a client and a server. The protocol consists of two
phases: an initial handshake initiated by the client and a data
transfer phase. In the handshake phase, the server authenti-
cates to the client (client authentication is optional); then the
parties establish the cryptographic algorithms used for con-
fidentiality and data integrity(ciphers, MAC algorithms); fi-
nally, the client and server derive the cryptographic keys.

After verifying the server’s certificate, the client and
server agree on a shared secret – the “pre-master secret”. If
the server authenticates with an RSA public key, the client
simply generates a random value to be the pre-master se-
cret, and encrypts it with the public key of the server. From



this pre-master secret, both the client and server can derive a
master secret. All the cryptographic keys are generated from
the master secret using cryptographically secure hash func-
tions MD5 and SHA-1. The keys generated by the client
and server are: (1) the client write MAC key (the key used
by the client to compute MACs), (2) the server write MAC
key (the key used by the server to compute MACs), (3) the
client write key (the key used by the client to encrypt) and
(4) the server write key (the key used by the server to en-
crypt). After the key computation, both the client and server
compute a MAC of all the handshake messages and verify
that the corresponding MAC computed by the other party is
correct.

In the data transfer phase, SSL breaks the data sent
in both directions into SSL records of variable size. The
records are encrypted with the write key of the party that
sends the message. The sender of the message computes a
MAC for each record, using its secret MAC key and adds a
header specifying the length of the packets and the SSL ver-
sion used. The use of SSL is transparent to the application
level, so any application running over TCP can be modi-
fied to run over SSL.

3.3. Virtual Network Computing (VNC)

Virtual Network Computing [18] is an open-source re-
mote display system developed by AT&T that allows a re-
mote terminal (VNC viewer) to access the graphical inter-
face of a VNC server. The protocol is platform-independent
and is designed such that the viewer is a lightweight appli-
cation that can run on various hardware configurations.

VNC is based on the Remote FrameBuffer (RFB) proto-
col [19], a protocol for encoding screen images as rectan-
gles. It supports several encodings of these images, and ne-
gotiates the one to be used in a particular connection in the
initial phase of the protocol. The input to the VNC server
comes from the client, which encodes keyboard and mouse
events and transmits them to the server. The protocol is
adaptive in that an update is sent by the server only when
explicitly requested by the client . Thus, the update rate can
be adjusted dynamically by the client according to its capa-
bilities and network characteristics. This means that a VNC
client sends two kinds of messages to the server – one con-
taining traditional input (keyboard and mouse) events, the
other containing simple requests for display update. An ap-
plication such as ours which wishes to separate the dis-
play and input components of the VNC client must there-
fore provide the display component a channel back to the
VNC server, over which it can only request display updates.

VNC authentication is password-based. The VNC server
is configured by the administrator with a password and the
VNC viewer has to prove knowledge of that password when
it initiates a connection. The proof is done via a challenge-

response protocol: the server sends a challenge, and the
viewer replies with a DES encryption of the challenge with
a key derived from the password supplied by the user.

4. A Secure Remote Terminal Application

We present an overview of our system and then explain
the roles of the three parties (untrusted terminal, PDA, and
home computer) in the remote terminal application. We then
report on some issues that we encountered when designing
our system, and describe a specific implementation before
evaluating its performance.

For our prototype, we chose to modify an existing open-
source remote desktop application, VNC [18] (see Sec-
tion 3.3 for details of the VNC protocol). We secure all com-
munication between trusted device, home computer, and un-
trusted terminal using SSL/TLS.

4.1. The Three-Party Secure Remote Termi-
nal Protocol

Below we describe the secure remote terminal protocol.

• I: The PDA contacts the home computer (PDA↔ HC)
The PDA initiates an SSL session with the home

computer in which they both authenticate using the
certificates signed by the home root certification au-
thority. They also compute the master secretms of the
SSL session and negotiate the length of the time inter-
val t.

In our implementation, the PDA needs to be con-
nected to the untrusted terminal to perform this step
(the untrusted terminal provides network connectiv-
ity). If the PDA has its own network connection, then
this step can be performed before coming in contact
with the untrusted terminal.

• II: The PDA contacts the untrusted terminal (PDA↔
UT)

The PDA sends to the untrusted terminal the name
of the home computer, the home certification author-
ity’s root certificate, and the VNC password derived
from ms.

Again, in our implementation, the destination of
this information is implicitly given by the fact that the
untrusted terminal and PDA are connected by a wire.
In general, a PDA that has its own network connec-
tion could learn the identity of the untrusted terminal
through a location-limited handshake as in [4].

• III: VNC connection initiation (UT↔ HC)
The untrusted terminal starts an SSL session with

the home computer in which client authentication is
disabled . Over this session, it starts a VNC connec-
tion to the home computer with the password provided



home network

Trusted PDA

Home Computer 
(HC)

SSL 
tunnel

SSL 
tunnel

ki

Eki
(m1) Eki

(m2) Eki
(ml)

keyboard and 
mouse events

secure
channel

Untrusted Terminal 
(UT)

Figure 2. Three-party VNC protocol

by the PDA. The input of this VNC client (i.e.,mouse
and keyboard events sent by the untrusted terminal) is
discarded by the home computer.

At this point, the home computer has two open SSL
connections: one to the PDA, which is authenticated
using client authentication; the other to the untrusted
terminal, which is not authenticated on the SSL level
(but has used a one-time VNC password). The pack-
ets that come in from the authenticated connection
(the PDA) are fed into the input-event queue of the
home computer. As a result of these input message
(mouse movement, key strokes,etc.), the display of
the home computer changes, and the display updates
is sent through the other SSL connection (to the un-
trusted terminal).

• IV: Start Timer (HC↔ PDA)
The home computer sends a “Start Timer” message

to the PDA. Both the home computer and the PDA (on
receiving the message) start a timer with timeoutt and
every time period, they computeKi = SHA1(ms‖i).

• The protocol
The home computer usesKi as the server encryp-

tion key in the SSL session with the untrusted terminal
over which it sends RFB update messages. At the start
of each intervali, the PDA sendsKi to the untrusted
terminal for as long as the PDA wishes to delegate to
it. The PDA encodes mouse and keyboard events and
sends them to the home computer over the SSL session
already established. Figure 2 shows a graphical repre-
sentation of the secure remote terminal protocol.

4.2. Design Issues

In the design of our system, we tried to minimize
the computation involving the PDA and the communi-
cation going through it, as we consider the PDA a re-

source constrained device compared to both the VNC
server and viewer. While ultimately arriving at the de-
sign choices presented above, along the way we considered
several challenges and potential alternative designs dis-
cussed below:

TWO CONNECTIONS VS. ONE CONNECTION. At a first
glance, it might seem that the SSL connection from the
PDA to the home computer is superfluous. Perhaps the PDA
could instead inject messages into a single SSL connec-
tion that is set up between the untrusted terminal and the
home computer (the untrusted terminal, of course, would
not have the necessary keying material to inject those mes-
sages itself). This way, the VNC server on the home com-
puter would have only needed to deal with one incoming
connection (which would have required fewer changes to
the original code base).

However, this design overlooks the fact that the untrusted
host needs to also send messages, not only to receive mes-
sages from the home computer. The reason is the design of
the RFB protocol, which is the underlying protocol for VNC
(see Section 3.3). First, in the RFB protocol, there is an
initialization phase in which the server and client establish
some parameters that the connection uses: the protocol ver-
sion, the type of encoding and the pixel format. Secondly,
during the VNC session, the viewer responds to Frame-
bufferUpdate messages (these denote changes in the screen
since the last message) from the server with a Framebuffer-
UpdateRequest message. The server sends a new Frame-
bufferUpdate only if there is a screen update and the client
has sent a FramebufferUpdateRequest message. This mech-
anism is useful for allowing the client to regulate the rate
at which it receives FramebufferUpdate messages, depend-
ing on its characteristics and network connection. Taking
this into account, we need to provide the untrusted termi-
nal with the means of sending messages to the home com-
puter, i.e., with the necessary MAC and encryption keys.



This means that the input (mouse and keyboard) messages
need to be authenticated with different keys, which we ac-
complish by opening a separate SSL connection to the home
computer.

CAPABILITIES . In our protocol, time is divided into equal
time intervals and capabilities are issued by the trusted de-
vice to the untrusted host at the beginning of each time in-
terval. We chose the capability for time intervali to be a
session key used by the home computer to encrypt the com-
munication to the untrusted terminal. It is derived from the
master secretms of the SSL session between the PDA and
the home computer and from the time period indexi as
Ki = h(ms‖i), whereh is a cryptographically secure hash
function such as SHA-1. The overhead for the PDA is the
computation of a hash function every time interval.

The PDA also needs to provide the untrusted terminal
with an initial VNC password and CA root certificate for the
home network so it can connect to the home computer (see
paragraph “VNC password” below). This can be viewed as
an initial capability (at the initial time 0).

Alternatively, we considered a second instantiation for
the capabilities: the capability for time intervali is a cer-
tificate signed by the PDA valid for that time period. At
the beginning of every time period, the home computer re-
quests a proof of possession of the certificate for that period
and closes the connection if the untrusted terminal is unable
to provide such a proof. We decided against this approach as
it increased the computational burden on the PDA (to sign
a certificate every time interval). In addition, it would have
added additional communication between the untrusted ter-
minal and home computer and would require much greater
changes to the VNC and SSL protocols to incorporate a
challenge-response exchange between the untrusted termi-
nal and home computer every time interval.

RESTRICTING DELEGATION. The communication between
the home computer and the untrusted terminal needs to be
restricted only to the time when the PDA is in the proxim-
ity of the untrusted terminal. In our solution, the mechanism
for achieving this is encrypting all the communication be-
tween the home computer and the untrusted terminal with a
key provided by the PDA to the untrusted terminal.

LENGTH OF THE TIME INTERVAL t. We recommend a
fairly large value for the parametert (around 1 minute). We
believe that allowing the untrusted terminal to continue to
display the home computing environment for at most one
more minute after the PDA has left from its proximity is
reasonable. From the perspective of the PDA, computing a
hash function every minute is a negligible overhead.

We emphasize that we only require fairly weak time syn-
chronization in our protocol. The home computer starts a
timer for generating the capabilitiesKi when the untrusted
terminal connects to it, and then sends a ”start timer” mes-

sage to the PDA. When receiving this message, the PDA
also starts a timer, which is delayed with the time it takes
the packet to reach the PDA (typically under a second). All
the messages sent from the home computer to the untrusted
terminal contain a key identifier so that the untrusted termi-
nal knows which key it has to use to decrypt that packet. If
the untrusted terminal has not yet received the key from the
PDA, it waits an amount of time equal to double the length
of the time interval. If the timeout has elapsed, the untrusted
terminal concludes that the PDA is not in its proximity any-
more. This works as long as the clocks on the PDA and
home computer run at roughly the same speed. If the clock
speed differs significantly, we could add a resynchroniza-
tion message from HC to PDA to our protocol. In our tests,
we did not find this to be necessary.

VNC PASSWORD. We chose not to change the password-
based authentication mechanism used to authenticate the
untrusted terminal to the home computer (we note that we
do use strong SSL client authentication to authenticate the
PDA to the home computer). The untrusted terminal (unlike
the PDA) has noa priori relationship with the home com-
puter, so strong authentication makes less sense . Therefore,
we found it unnecessary to replace the password-based au-
thentication mechanism inside the VNC server with some-
thing stronger.

The password we use to authenticate the untrusted ter-
minal to the home computer is a one-time password derived
both by the PDA and the home computer from the SSL mas-
ter secret negotiated in their SSL handshake. This gives the
home computer some assurance that the untrusted terminal
connecting is, in fact, connected to the trusted PDA.

TRUSTED OUTPUT. In our system, we assume that the un-
trusted terminal faithfully renders the frame buffer data sent
to it by the home computer. Although the untrusted ter-
minal cannot send output events to the home computer (it
has read-only access to the home environment), it is theo-
retically possible for the untrusted computer to manipulate
what it displays to the user in a way that tricks the user into
opening up resources he did not intend to open up.

We briefly experimented with a counter-measure that
consisted of displaying a snapshot of the screen (a small
portion around the location of the mouse pointer) on the
PDA. The user could move the PDA around, and thus
see faithful representations of different parts of the home
computer’s screen, and compare them to the display of
the trusted terminal. Apart from the questionable usabil-
ity properties of this approach it turned out that the perfor-
mance of the RFB protocol and VNC software on our PDA
was too poor to make this approach work efficiently.

Spoofing the output is therefore currently a vulnerabil-
ity in our system. We do point out, however, that using this
vulnerability to launch a targeted attack on a home comput-



ing environment (e.g., learning the content of a file of the
attacker’s choice) would require sophisticated software that
interpreted the frame-buffer data, drew conclusions about
the objects displayed, and then intelligently spoofed the dis-
play. While possible, we consider this threat mostly theoret-
ical. Users need to be aware, however, that our system does
not currently guarantee a trusted output path.

TRUSTED KEYBOARD INPUT. While it is quite natural to
use our augmented PDA as a mouse, generating keyboard
events on the PDA is somewhat awkward. Writing a whole
email message, for example, can be quite cumbersome. On
the other hand, we cannot let the untrusted terminal gener-
ate arbitrary keyboard events, as this would unduly expose
the home computer. As a middle ground, we considered the
following: The untrusted terminal could be allowed to send
certain restricted keyboard events to the home computer,
such as pure ASCII characters that are not accompanied by
any Ctrl or Alt keys. All other keyboard events (function
keys, those accompanied by Ctrl or Alt keys,etc.) would
be ignored by the home computer (unless they come di-
rectly from the PDA). Now, one could use our PDA/mouse
to open up, say, an email client, and compose a message
using the untrusted terminal’s keyboard. One would not be
able to switch applications (using Alt-Tab), or send the mes-
sage (using Ctrl-S) using the untrusted terminal’s keyboard.
To do this, the user would still have to use the PDA/mouse.
While this “sandboxing” is not part of our current imple-
mentation, we believe that it would be a useful addition to
future versions of our system.

SOFTWARE REQUIREMENTS. Our proof-of-concept pro-
totype requires adaptation of the VNC software on both
the untrusted terminal (the VNC client) and the home com-
puter (the VNC server), and a special-purpose client on the
trusted device to perform its part of the protocol. Requiring
software modifications on all three components of the sys-
tem seems a strong barrier to adoption. But, in order to pro-
vide a trusted secure remote access solution, it is clear that
all three components of the system must be “aware” of the
three-party nature of the interaction.

Of these, modifications to the untrusted terminal seem
the most difficult to accomplish in practice, as users cur-
rently install new server software on their home computers
in order to be able to engage in new remote access proto-
cols (e.g.,VNC itself, Microsoft’s remote desktop software,
or GoToMyPC [15]), and are likely to install client software
on their PDA that makes it easier for them to securely ac-
cess their home environment. We can actually deploy our
system without requiring any software to be pre-installed
on the untrusted terminal, by using a Java or ActiveX-based
viewer (e.g.,in our case, VNC client) program delivered via
a web browser. This is in fact the solution adopted by Go-
ToMyPC [15].

4.3. Implementation

For our implementation, we have used the Visual C++
6.0 and eMbedded Visual C++ 3.0 environments. Our pro-
totype consists of three applications.

The home computer application, developed for Mi-
crosoft Windows in Visual C++ 6.0, uses and modi-
fies the VNC server and OpenSSL sources. First, the VNC
server is modified to run over SSL sockets instead of stan-
dard sockets. The VNC server is also changed to send out-
put packets to a different host than the one from which
it receives input packets. Whenever it receives an in-
put message from the PDA (mouse or keyboard event),
it updates the screen and sends the update to the un-
trusted terminal. The VNC server discards any keyboard
or mouse input packets received from the untrusted termi-
nal after the initialization phase of the VNC protocol is
over.

Several modifications had to be made to the OpenSSL li-
brary. We needed to change the server encryption key pe-
riodically (without changing the master secret or any other
keys) and OpenSSL does not provide an interface for this
functionality. We also changed the SSL record header to in-
clude a key identifier, such that the SSL client (UT) knows
which key to use to decrypt that packet.

The untrusted terminal application is also developed in
Visual C++ 6.0 for Microsoft Windows. It is based on the
VNC client and OpenSSL sources. The VNC viewer is
modified to run over SSL and to receive the initial VNC
password and root certificate from the PDA. It also keeps
track of the 10 most recent encryption keys received from
the PDA and the index of the current key identifier. When-
ever it receives an SSL packet, it checks its key identifier.
If the key identifier is greater than the current one, it waits
for the key from the PDA; if it receives the key, it updates
the client read key in SSL; otherwise, if a timeout has ex-
pired, it concludes that it lost the connection with the PDA
and the application triggers an exception. If the key identi-
fier is less than the current one, then it retrieves the key from
the key table and changes the client read key in SSL.

The PDA application is written in eMbedded Visual C++
3.0 for Windows CE. From the VNC viewer sources, it uses
only those files that process keyboard and mouse events.
In our implementation, the untrusted terminal provides the
PDA with the necessary network connectivity once the PDA
is plugged into the terminal3. In particular, the connection
from the PDA to the home computer flows through the un-
trusted terminal. Remember, though, that this connection is
end-to-end SSL-protected.

3 The WindowsCE connectivity software for Windows (ActiveSync)
acts as a NATing gateway, sharing the untrusted PC’s network con-
nection with the PDA.



362
382

428

0

50

100

150

200

250

300

350

400

450

plain VNC VNC over SSL 3-party VNC

total traffic in KB

Figure 3. Overhead comparison of plain VNC, SSL-secured VNC, and three-party VNC

The application consists of a full-screen window, which
receives mouse events from the PDA stylus, thus acting
like a touchpad. The keyboard and mouse events are en-
coded and sent over the SSL tunnel to the home computer.
In addition, we augmented the PDA with (parts of) an op-
tical mouse (see Figure 1). In the current implementation,
the communication between the PDA and the untrusted ter-
minal takes place over a (USB) wire, but we could also
use a secure wireless connection authenticated through a
location-limited channel [4]. In the latter scenario, rather
than plugging our PDA/mouse into the terminal, we re-
quire that it has its own network connectivity, and we would
merely point the PDA/mouse at the untrusted terminal we
wish to use.

4.4. Performance Evaluation

We evaluated the overhead that our three-party secure re-
mote terminal introduces compared to a two-party remote
terminal application. We considered three protocols: plain
VNC, VNC over SSL and the three-party VNC. Using Ethe-
real [13], we measured the number of bytes sent in the
three-party VNC for a benchmark in which we connected to
the home computer, opened an email application, and com-
posed and sent an e-mail message. From this, we estimated
a lower bound on the traffic generated by the plain VNC,
and the VNC-over-SSL protocols.

We considered bandwidth overhead (rather than, say
measurements of latency) as the appropriate metric for our
system for several reasons. First, our benchmark applica-
tion, email composition, takes an amount of time primarily
dependent on how long it must wait for the user to enter the
message – it is not CPU bound. Second, timing measure-
ments for our protocol will depend heavily on both the pro-
cessor characteristics of the trusted device, and the band-
width of its network connection. Measurements of band-
width overhead are independent of these. Finally, latency
and timing requirements can be estimated from measure-

ments of bandwidth overhead using the characteristics of
the trusted device under consideration, the bandwidth of its
connections to the UT and HC, and existing benchmarks
showing the proportion of time of SSL exchanges spent in
cryptographic computation and other activities [8].

Let us detail our analysis. We measured the number of
bytes sent on the links HC↔ PDA and HC↔ UT for the
three-party VNC protocol4 and the results were:

S1 HC→ UT : 361.450 KB
S2 UT → HC : 31.815 KB
S3 HC→ PDA : 14.470 KB
S4 PDA→ HC : 20.611 KB

The total number of bytes sent in the three-party VNC
protocol isS1 + S2 + S3 + S4 = 428.346 KB. In the two-
party VNC over SSL protocol, the packets to be sent are
at least those on the linksS1 andS4, which are VNC out-
put and VNC input packets, respectively. The packets on the
links S2 andS3 are mostly ACK packets and some of them
may be sent in the VNC over SSL protocol. Thus, a lower
bound on the number of bytes sent in the VNC over SSL
protocol isS1 + S4 = 382.061 KB. In the worst case, our
three-party VNC protocol introduces an overhead of 12.1%
compared to the two-party VNC over SSL protocol.

We can evaluate how much overhead the SSL protocol
introduces in terms of the number of bytes. On the linksS1

andS4, there were a total of 792 (SSL) packets sent. With-
out SSL, each packet would have been 25 bytes smaller
(SSL adds to each record a 5 bytes header and a 20 bytes
MAC for data integrity), which means that in total, SSL in-
troduces an additional total of 19.8 KB compared to (the
estimated lower bound of) plain VNC, which corresponds
to an overhead of 5.5%. Figure 3 summarizes our findings:
Compared to plain VNC, we estimate that an SSL-based
version of VNC would add 5.5% of traffic overhead, and
our three-party-based protocol adds an additional 12.1%.

4 The traffic on the link PDA↔ UT is negligible.



5. Conclusions

Accessing a home computing environment from an un-
trusted public terminal is currently a risky endeavor, as
well-publicized security compromises show. In this paper
we have presented a system that lowers that risk consider-
ably: First, the public terminal never learns credentials that
allow it to gain full access to the user’s home computing
environment. Second, the access that we do grant to the
untrusted terminal is read-only – it cannot manipulate the
home computing environment in any way. Third, which part
of the home computing environment is exposed to the un-
trusted terminal is entirely in the hands of the user. This
unique combination of trusted input device and read-only
access for an untrusted terminal allows for a natural and
safe interaction with the user’s home computing environ-
ment while away from home. It introduces only moderate
overhead compared to insecure, or merely traffic-protected,
remote terminal applications, as we have demonstrated in
our prototype.

6. Acknowledgments

We would like to thank Paul Stewart for hacking an opti-
cal PS/2 mouse so that it can be used with the serial port of
a Compaq iPAQ, as well as creating the necessary cables to
connect (the remnants of) an optical mouse to the PDA, and
the PDA/mouse to the untrusted terminal. We would also
like to thank Mike Reiter for useful discussions concerning
the verification of the output displayed by the untrusted ter-
minal.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. D. Plotkin.
A calculus for access control in distributed systems.ACM
Transactions on Programming Languages and Systems,
15(4):706–734, September 1993.

[2] A. W. Appel and E. W. Felten. Proof-carrying authentica-
tion. In Proceedings of the 6th ACM Conference on Com-
puter and Communications Security, Singapore, November
1999.

[3] D. Balfanz and E. Felten. Hand-held computers can be better
smart cards. InProceedings of USENIX Security ’99, Wash-
ington, DC, August 1999.

[4] D. Balfanz, D. Smetters, P. Stewart, and H. C. Wong. Talk-
ing to strangers: Authentication in ad-hoc wireless networks.
In Proceedings of the 2002 Network and Distributed Systems
Security Symposium (NDSS’02), San Diego, CA, February
2002. The Internet Society.

[5] D. J. Barrett and R. E. Silverman.SSH The Secure Shell.
O’Reilly, 2001.

[6] Blaze, Feigenbaum, and Naor. A formal treatment of re-
motely keyed encryption. InEUROCRYPT: Advances in
Cryptology: Proceedings of EUROCRYPT, 1998.

[7] M. Blaze. High-bandwidth encryption with low-bandwidth
smartcards. InProceedings of the Fast Software Encryption
Workshop, number 1039 in Lecure Notes in Computer Sci-
ence, pages 33–40. Springer-Verlag, 1996.

[8] C. Coarfa, P. Druschel, and D. S. Wallach. Performance anal-
ysis of TLS web servers. InProceedings of Network and
Distributed System Security Symposium, NDSS ’02, Febru-
ary 2002.

[9] M. D. Corner and B. D. Noble. Zero-interaction authentica-
tion. In Proceedings of the eighth Annual International Con-
ference on Mobile Computing and Networking (MOBICOM-
02), pages 1–11, New York, Sept. 23–28 2002. ACM Press.

[10] M. D. Corner and B. D. Noble. Protecting applications with
transient authentication. InThe First International Confer-
ence on Mobile Systems, Applications, and Services (Mo-
biSys ’03), 2003.

[11] J. DeTreville. Binder, a logic-based security language. In
2002 IEEE Symposium on Security and Privacy, Oakland,
CA, May 2002.

[12] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen.SPKI Certificate Theory, Septem-
ber 1999. RFC2693.

[13] Ethereal Project. Ethereal.http://www.ethereal.
com.

[14] A. O. Freier, P. Karlton, and P. C. Kocher.The SSL Proto-
col Version 3.0. IETF - Transport Layer Security Working
Group, The Internet Society, November 1996. Internet Draft
(work in progress).

[15] GoToMyPC. GoToMyPC. http://www.gotomypc.
com.

[16] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: Se-
curely serving data from untrusted caches. InProceedings
of the 12th USENIX Security Symposium, Washington, D.C.,
August 2003.

[17] B. A. Myers, J. O. Wobbrock, S. Yang, B. Yeung, J. Nichols,
and R. Miller. Using handhelds to help people with mo-
tor impairments. InProceedings of the Fifth International
ACM SIGCAPH Conference on Assistive Technologies; AS-
SETS 2002, Edinburgh, Scotland, July 2002.

[18] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual network computing.IEEE Internet Computing,
2(1):33–38, 1998.

[19] T. Richardson and K. Wood.The RFB Protocol. ORL, Cam-
bridge, January 1998.

[20] The Register. Guilty plea in Kinko’s keystroke ca-
per. http://www.theregister.co.uk/content/
55/31832.html .


