
COMB: A Portable Benchmark Suite for Assessing MPI Overlap

William Lawry, Christopher Wilson, Arthur. B. Maccabe
�
, and Ron Brightwell†

April 2002

Abstract

This paper describes a portable benchmark suite that as-
sesses the ability of cluster networking hardware and
software to overlap MPI communication and computa-
tion. The Communication Offload MPI-based Bench-
mark, or COMB, uses two different methods to charac-
terize the ability of messages to make progress concur-
rently with computational processing on the host proces-
sor(s). COMB measures the relationship between overall
MPI communication bandwidth and host CPU availabil-
ity. In this paper, we describe the two different approaches
used by the benchmark suite, and we present results from
several systems. We demonstrate the utility of the suite
by examining the results and comparing and contrasting
different systems.

1 Introduction

Recent advances in networking technology for clus-
ter computing have led to significant improvements in
achievable latency and bandwidth performance. Many
of these improvements are based on an implementation
strategy called Operating System Bypass, or OS-bypass,

�
W. Lawry, C. Wilson, and A. B. Maccabe are with the Computer

Science Department, The University of New Mexico, FEC 313, Al-
buquerque, NM, 87131-1386,

�
bill,riley,maccabe � @cs.unm.edu. This

work was supported in part through the Computer Science Research In-
stitute (CSRI) at Sandia National Laboratories under contract number
SF-6432-CR.

†R. Brightwell is with the Scalable Computing Systems Depart-
ment, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM,
87111-1110, bright@cs.sandia.gov. Sandia is a multiprogram labora-
tory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-
94AL85000.

which attempts to increase network performance and re-
duce host CPU overhead by offloading communication
operations to intelligent network interfaces. These inter-
faces, such as Myrinet [1], are capable of “user-level”
networking, that is, moving data directly from an appli-
cation’s address space without any involvement of the op-
erating system in the data transfer.

Unfortunately, the reduction in host CPU overhead,
which has been shown to be the most significant factor
in effecting application performance [7], has not been re-
alized in most implementations of MPI [8] for user-level
networking technology. While most MPI microbench-
marks can measure latency, bandwidth, and host CPU
overhead, they fail to accurately characterize the actual
performance that applications can expect. Communica-
tion microbenchmarks typically focus on message pass-
ing performance relative to achieving peak performance
of the network and do not characterize the performance
impact of message passing relative to both the peak per-
formance of the network and the peak performance avail-
able to the application.

We have designed and implemented a portable bench-
mark suite called COMB, the Communication Offload
MPI-based Benchmark, that measures the ability of an
MPI implementation to overlap computation and MPI
communication. The ability to overlap is influenced by
several system characteristics, such as the quality of the
MPI implementation and the capabilities of the under-
lying network transport layer. For example, some mes-
sage passing systems interrupt the host CPU to obtain
resources from the operating system in order to receive
packets from the network. This strategy is likely to ad-
versely impact the utilization of the host CPU, but may
allow for an increase in MPI bandwidth. We believe our
benchmark suite can provide insight into the relationship

1

between network performance and host CPU performance
in order to better understand the actual performance deliv-
ered to applications.

One particular characteristic that we are interested in
determining, is whether an MPI implementation is able
to make progress on outstanding communications inde-
pendently of calls to the MPI library. MPI provides an
immediate, or non-blocking, version of its standard send
and receive calls that provide an opportunity for overlap-
ping data movement with computation. When messages
make progress independently of the host CPU(s), we re-
fer to this semantic as application offload, since part of
the application’s activity or protocol is offloaded to the
operating system or the network interface.

The rest of this paper is organized as follows. Section 2
describes the approach that our benchmark suite employs.
Section 3 outlines the hardware and software components
of the platform used for gathering results. We present
these results along with an analysis and discussion of im-
portant findings in in Section 4. Section 5 describes re-
lated work. We conclude in Section 6 with a summary
of the contributions of this research, and describe our in-
tentions for future work related to this benchmark suite in
Section 7.

2 Approach

Our main goal in developing this benchmark suite was
to be able to measure overlap as accurately as possible
while still being as portable as possible. We have chosen
to develop COMB with the following characteristics:

� One process per node

� Two processes perform communication

� Either process may track bandwidth

� One process performs simulated computation

� Both processes perform message passing

� Primary variable is the simulated computation time

The COMB benchmark suite consists of two different
methods of measuring the performance of a system, each
with a different perspective on characterizing the ability
to overlap computation and MPI communication. This

read current time
for(i = 0 ; i � work/poll factor ; i++) �

for(j = 0 ; j � poll factor ; j++) �
/* nothing */�

if(asynchronous receive is complete) �
start asynchronous reply(s)
post asynchronous receive(s)�

�
read current time

Figure 1: Polling Method Psuedocode For Worker Pro-
cess

multi-method approach captures performance data on a
wider range of the systems and allows for results from
each benchmark to be validated and/or reinforced by the
other. The first method, the Polling Method, allows for
the maximum possible overlap of computation and MPI
communication. The second method, the Post-Work-Wait
Method tests for overlap under practical restrictions on
MPI calls. The following sections describe each of these
methods in more detail.

2.1 Polling Method

The polling method uses two processes, one process,
the worker process, counts cycles and performs message
passing. A second, support process, runs on the sec-
ond node and only performs message passing. Figure 1
presents pseudo code for the worker process. All receives
are posted before sends. Initial setup of message passing
as well as conclusion of same are omitted from the figure.
Additionally, Figure 2 provides a pictorial representation
of the method.

This method uses a ping-pong communication strategy
with messages flowing in both directions between sender
node and receiver. Each process polls for message arrivals
and propagates replacement messages upon completion of
earlier messages. After a predetermined amount of com-
putation, bandwidth and CPU availability are computed.
The polling interval can be adjusted to demonstrate the
trade-off between bandwidth and CPU availability. Be-
cause this method never blocks waiting for message com-

2

poll
interval

T

T

Progress
MessagingW

or
k

T time stamp

Po
lli

ng

Messaging

Pre−Post

Wait

Worker Process

Support Process

Figure 2: Overview of Polling Method

pletion it provides an accurate report of CPU availability.

As can be seen in Figure 1, after a fixed number of it-
erations in the inner loop the worker process polls for re-
ceipt of the next message. The number of iterations of the
inner loop determines the time between polls and, hence,
determines the polling interval. If a test for completion is
negative, the worker process will iterate through another
polling interval before testing again. If a test for comple-
tion is positive, the process will post related messaging
calls and will similarly address any other received mes-
sages before entering another polling interval. The sup-
port process sends messages as fast as they are consumed
by the receiver.

We vary the polling interval to elicit changes in CPU
availability and bandwidth. When the polling interval
becomes sufficiently large all possible message transfers
may complete during the polling interval and communi-
cation then must wait, resulting in decreased bandwidth.

The polling method uses a queue of messages at each
node in order to maximize achievable bandwidth. When
either process detects that a message has arrived, it iter-
ates through the queue of all messages that have arrived,
sending replies to each of these messages. When we set
the queue size to one, a single message passed between
the two nodes then the polling method acts as a standard
ping-pong test and maximum sustained bandwidth will be
sacrificed.

The benchmark actually runs in two phases. During the
first, dry run, phase the amount of time to accomplish a
predetermined amount of work in the absence of commu-
nication is recorded. The second phase records the time
for the same amount of work while the two processes are
exchanging messages. The CPU availability is reported

T

T

work
interval

T time stamp

T

T

Po
st

−
W

or
k−

W
ai

t

Messaging

Pre−Post

Wait

W
or

k

Worker Process

Support Process

Figure 3: Post-Work-Wait Method

as:

availability �
time(work without messaging)

time(work plus MPI calls while messaging)

The polling method reports message passing bandwidth
and CPU availability, both as functions of the polling in-
terval.

2.2 Post-Work-Wait Method

The second method, the post-work-wait method or PWW,
also uses bi-directional communication. However, this
method serializes MPI communication and computation.
The worker process posts a collection non-blocking MPI
messages (sends and receives), performs computation (the
work phase), and waits for the messages to complete. This
strict order introduces a significant (and reasonable) re-
striction at the application level. Because the application
does not make any MPI calls during its work phase, the
underlying communication system can only overlap MPI
communication with computation if it requires no further
intervention by the application in order to progress com-
munication. In this respect, the PWW method detects
whether the underlying communication system exhibits
application offload. In addition, as we will describe, this
benchmark identifies where host cycles are spent on com-
munication.

Figure 3 presents a pictorial representation of the PWW
method. This method is similar to the polling method in
that each process sends and receives messages, but only
the worker process monitors CPU cycles.

With respect to communication, the PWW method per-
forms message handling in a repeated pair of operations:
1) make non-blocking send and receive calls and 2) wait

3

for the messaging to complete. Both processes simulta-
neously send and receive a single message. The worker
process performs work after the non-blocking calls be-
fore waiting for message completion. As in the Polling
method, the work interval is varied to effect changes in
CPU availability and bandwidth.

The PWW method collects wall clock durations for the
different phases of the method. Specifically, the method
collects individual durations for i) the non-blocking call
phase, ii) the work phase, and iii) the wait phase. Of
course, the method also records the time necessary to do
the work in the absence of messaging. These phase dura-
tions are useful in identifying communication bottlenecks
or other causes of poor communication.

It is worth emphasizing here that the terms “work inter-
val” and “polling interval” represent the foremost differ-
ence between the PWW method and the Polling method.
After the polling interval, the Polling method checks
whether or not there are arrived messages that require re-
sponse but in either case “computation” then proceeds via
the next polling interval. In contrast, after PWW’s “work
interval,” the worker process waits for the current batch of
messages even if the messages have not begun to arrive,
such as in the case of a very short work interval. This is
one of the most significant differences between the two
methods and is key to correctly interpreting the results.

3 Platform Description

In this section we provide a description of the hardware
and software systems from which our data was gathered.

Each node contained a 500 MHz Intel Pentium III pro-
cessor with 256MB of main memory and a Myrinet [1]
LANai 7.2 network interface card (NIC). Nodes were con-
nected using a Myrinet 8-port SAN/LAN switch.

The supported message passing software from Myri-
com for Myrinet is GM [9], which consists of a user-
level library, a Linux driver and Myrinet Control Program
(MCP) which runs on the NIC. Myricom also supplies a
port of the MPICH [5] implementation of the MPI Stan-
dard. Our results were gathered using GM version 1.4,
MPICH/GM version 1.2..4, and a Linux 2.2.14 kernel.

Results were also gathered using the Portals 3.0 [2, 3]
software designed and developed by Sandia and the Uni-
versity of New Mexico. Portals is an interface for data

movement designed to support massively parallel com-
modity clusters, such as the Computational Plant [4]. In
particular, the semantics of Portals 3.0 support applica-
tion offload. We have also ported the MPICH implemen-
tation of MPI to Portals 3.0.

The particular implementation of Portals for Myrinet
used in our experiments is kernel-based. The user-level
Portals library interfaces to a Linux kernel module that
processes Portals messages. This kernel module in turn
interfaces to another kernel module that provides relia-
bility and flow control for Myrinet packets. This kernel
module works with a Sandia-developed MCP that simply
acts as a packet engine. This particular implementation of
Portals does not employ OS-bypass techniques.

4 Results and Analysis

Figure 4 shows the results of the polling method for Por-
tals using message sizes of 10 KB, 50 KB, 100 KB, and
300 KB. In the CPU availability graph, availability re-
mains low and relatively stable until it rises steeply. Be-
fore the steep increase, polling is so frequent that mes-
sages are processed as soon as they arrive. This keeps
the system active with message handling and availabil-
ity is kept low due to related interrupts to the OS with
this particular version of Portals. CPU availability steeply
climbs when the poll interval becomes infrequent enough
to cause stops in the flow of messages; lack of message
handling equates to lack of interrupts and the application
no longer competes for CPU cycles.

Figure 5 shows the bandwidth calculated by the polling
method. Initially , the messaging bandwidth graphs ex-
hibit a plateau of maximum sustained bandwidth until a
point of steep decline. The point of steep decline oc-
curs when the poll interval becomes large enough that all
messages in flight are completed during the poll interval.
When this happens, messages are delayed until the occur-
rence of the next poll.

The PWW availability graph, Figure 6, lacks the ini-
tial plateau as seen in the polling availability graph for
Portals. This difference is due to the fact that the polling
method returns to work (i.e., to another polling interval) if
a message has not yet arrived, whereas the PWW method
waits regardless of what the cause is for the delay. This
wait while delayed functionality suppresses apparent CPU

4

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103 104 105 106 107 108

C
P

U
 A

va
ila

bi
lit

y
(f

ra
ct

io
n

to
 u

se
r)

Poll Interval (loop iterations)

10 KB
50 KB

100 KB
300 KB

Figure 4: Polling Method: CPU Availabilty

 0

 10

 20

 30

 40

 50

 60

101 102 103 104 105 106 107 108

B
an

dw
id

th
 (

M
B

/s
)

Poll Interval (loop iterations)

300 KB
100 KB
50 KB
10 KB

Figure 5: Polling Method: Bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

104 105 106 107

C
P

U
 A

va
ila

bi
lit

y
(f

ra
ct

io
n

to
 u

se
r)

Poll Interval (loop iterations)

10 KB
50 KB

100 KB
300 KB

Figure 6: PWW Method: CPU Availability

availability until the work interval becomes sufficiently
long to fill the delay period of time.

Figure 7 shows bandwidth as calculated by the PWW
method. Compared to the bandwidth graph for the polling
method, we see a more gradual decline in bandwidth as
the work interval increases. This is due to the ability of
the polling method to maintain sustained peak bandwidth
for longer polling intervals.

4.1 Testing for Application Offload

An important characteristic of communication systems
that we wanted to be able to identify is whether or not the
system provides application offload. In this section we
describe how results from the two methods can be used to
analyze and compare systems.

Figure 8 shows the bandwidth performance of GM and
Portals using the polling method. From the graph we can
see that the performance of GM is significantly better than
Portals on identical hardware. We would expect this to be
true given what we know about the implementations of
each system. GM is implemented using OS-bypass tech-
niques and is able to deliver messages directly from the
NIC to the application without interrupts or moving data
through buffers in kernel space. In contrast, Portals is im-
plemented using interrupts and copies data into user-space
from kernel buffers. The reliance on interrupts and mem-
ory copies each causes a significant performance degra-

5

 0

 10

 20

 30

 40

 50

 60

103 104 105 106 107 108

B
an

dw
id

th
 (

M
B

/s
)

Poll Interval (loop iterations)

300 KB
100 KB

50 KB
10 KB

Figure 7: PWW Method: Bandwidth (Portals)

dation for Portals.
Figure 9 shows the bandwidth performance of GM and

Portals using the PWW method. Again, we see that the
performance of GM significantly better than Portals for
smaller work intervals.

However, if we look at the different phases of the PWW
method more closely, we can gain more insight into these
two systems. Figure 10 shows the average time to post
a receive in the PWW method. Again, GM significantly
outperforms Portals. In contrast, Figure 11 represents the
duration of the wait phase or the time expended waiting
for message completion. This graph indicates that, given
a large enough “work” interval, Portals will virtually com-
plete messaging whereas GM will not. Recall that, in the
PWW method, the communication system will not make
progress unless it can proceed with messaging based on
only the initiating non-blocking posts. Therefore, this
graph indicates that GM does not provide application of-
fload while Portals does.

4.2 CPU Overhead

We now examine the work phase of the PWW method.
The duration of the work phase is of interest when con-
sidering communication overhead. Depending on the sys-
tem, a separate process or the kernel itself could facilitate
communication while competing with the user applica-
tion for CPU time. In such cases, the time to complete

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

101 102 103 104 105 106 107 108

B
an

dw
id

th
 (

M
B

/s
)

Poll Interval (loop iterations)

GM
Portals

Figure 8: Polling Method: Bandwidth for GM and Portals

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

104 105 106 107

B
an

dw
id

th
 (

M
B

/s
)

Work Interval (loop iterations)

GM
Portals

Figure 9: PWW Method: Bandwidth for GM and Portals

6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10000 100000 1e+06 1e+07

T
im

e
to

 P
os

t (
us

)

Poll Interval (loop iterations)

Portals
GM

Figure 10: PWW Method: Average Post Time (100 KB)

 0

 500

 1000

 1500

 2000

 2500

104 105 106 107

T
im

e
P

er
 M

es
sa

ge
 (

us
)

Poll Interval (loop iterations)

GM
Portals

Figure 11: PWW Method: Average Wait Time (100 KB)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

A
ve

ra
ge

 T
im

e
P

er
 M

es
sa

ge
 (

us
)

Poll Interval (loop iterations)

Work with MH
Work Only

Figure 12: PWW Method: CPU Overhead for Portals

the work phase during messaging will take longer than
the time to complete the same work in the absence of a
competing process.

Figure 12 depicts a PWW run on Portals. The graph
shows time to complete work as a function of work inter-
val. Recall that both methods time the duration needed to
complete work with and without communication. In Fig-
ure 12, the work with message handling takes a greater
amount of time relative to work without message han-
dling; the difference is due to the overhead of interrupts
needed to process Portals messages.

In contrast, Figure 13 displays results for GM and
shows virtually no communication overhead in that the
time to do work is the same regardless of the presence
or absence of communication. The lack of a time gap
between work with and without message handling is the
general indicator of a system that lacks communication
overhead. However, one needs to check a little further for
systems which lack application offload as does GM.

What about systems like GM that lack application of-
fload? Message handling is blocked during the work
phase of PWW. Because message handling is blocked,
there ought to not be any communication overhead dur-
ing the work phase as reflected in Figure 13.

When a system does not have application bypass, we
can look to the results of the polling method to assess
whether the system has communication overhead. Con-
sider Figure 14 which shows the relationship between

7

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

A
ve

ra
ge

 T
im

e
P

er
 M

es
sa

ge
 (

us
)

Poll Interval (loop iterations)

Work with MH
Work Only

Figure 13: PWW Method: CPU Overhead for GM

bandwidth and availability.

Note that in Figure 14, virtually all of the CPU cy-
cles are given to the application for work while the
network concurrently operates at maximum sustainable
bandwidth; this testifies to the OS offload to the NIC for
GM. If GM had communication overhead then the Polling
data in Figure 14 would rather have the shape of Figure
15. Figure 15 reflects the Portals communication over-
head which restricts maximum sustained bandwidth to the
lower ranges of CPU availability.

Finally, compare Figure 15 with Figure 14. As pre-
viously discussed, Figure 15 reflects the communication
overhead in terms of restricting maximum bandwidth to
lower CPU availability. For GM, Figure 14 shows the lack
of overhead except for the 10 KB message size. This dif-
ference is due to the large versus small message protocols.
For small messages, messages less than about 16 KB, GM
spends an increased amount of time in the non-blocking
send (about 45 microseconds per message versus about 5
microseconds with larger messages on our system). With
this extra time, GM completes the application tasks with
respect to sending the small message but the result is in
decreased CPU availability to the applicaiton as shown in
Figure 14.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

M
B

/s
)

CPU Available to User (fraction of time)

300 KB
100 KB
50 KB
10 KB

Figure 14: Polling Method: Bandwidth Versus CPU
Overhead for GM

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

M
B

/s
)

CPU Available to User (fraction of time)

300 KB
100 KB
50 KB
10 KB

Figure 15: Polling Method: Bandwidth Versus CPU
Overhead for Portals

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

M
B

/s
)

CPU Available to User (fraction of time)

Poll
PWW

Figure 16: Polling and PWW Method: Bandwidth for GM

4.3 MPI Library Call Effect

We have asserted that the PWW method detects lack
of application offload. We considered that, if this is
truly the case, then inserting a library call into the work
phase should extend the maximum sustained bandwidth
into higher CPU availabilities with MPICH/GM. We
chose to insert the one MPI library call contained in the
polling method that is not used in the PWW method:
MPI Test().

Figure 16 plots bandwidth versus CPU availability for
the standard COMB methods. Note that the benchmark
methods do not directly control availability. Instead, the
methods of the benchmark control the polling/work inter-
val and Figure 16 depicts the elicited relationship between
bandwidth and availability.

We inserted one call to MPI Test() early in the work
phase of the PWW method. The results are shown in Fig-
ure 17. For reference, the data from Figure 16 are re-
plotted in Figure 17. Clearly, the added library call has
aided the underlying system in progressing communica-
tion.

Previous versions of the PWW method interleaved
three and four batches of messages such that after com-
pletion of one batch the communication pipeline was still
occupied with a following batch. The purpose was to keep
a large numbers of messages in flight for full detection of
maximum sustained bandwidth. While the results from
such interleaving provides useful information, it is redun-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 (

M
B

/s
)

CPU Available to User (fraction of time)

Poll
PWW + Test

PWW

Figure 17: Polling and Modified PWW Method: Band-
width for GM

dant with information from the polling method, and can
lead to this MPI call effect. A high degree of inter-leaving
necessitates the interspersing of MPI calls for other mes-
sage batches inside of the PWW timing cycle of the cur-
rent batch.

We should point out that this behavior is typical of
many MPI implementations for OS-bypass-enabled trans-
port layers. Since the mechanism required to progress
communications is embedded in the MPI library, an appli-
cation must make frequent library calls in order for data
to move. This is actually a violation of the Progress Rule
in the MPI Standard which states that non-local message
passing operations will complete independently of a pro-
cess making library calls.

5 Related Work

Previous work related to assessing the ability of plat-
forms to overlap computation and MPI communication
have simply characterized systems as being able to pro-
vide overlap for various message sizes [11]. Our bench-
mark suite extends this base functionality in an attempt
to gather more detailed information about the degree to
which overlap can occur and the effect that overlap can
have on latency and bandwidth performance. For exam-
ple, our benchmark suite is able to help assess the overall
benefit of increasing the opportunity to overlap computa-

9

tion and MPI communication at the expense of decreasing
raw MPI latency performance.

The netperf [6] benchmark is commonly used to mea-
sure processor availability during communication. Our
benchmarks uses the same general approach as that used
in netperf. Both benchmarks measure the time taken to
execute a delay loop on quiescent system; then measure
the time taken for the same delay loop while the node
is involved in communication; and report ratio between
the first and second measurement as the availability of the
host processor during communication. However, in net-
perf, the code for the delay loop and the code used to drive
the communication are run in two separate processes on
the same node.

Netperf was developed to measure the performance of
TCP/IP and UDP/IP. It works very well in this environ-
ment. However, there are two problems with the netperf
approach when applied to MPI programs. First, MPI en-
vironments typically assume that there will be a single
process running on a node. As such, we should mea-
sure processor availability for a single MPI task while
communication is progressing in the background (using
non-blocking sends and receives). Second, and perhaps
more important, the netperf approach assumes that the
process driving the communication relinquishes the pro-
cessor when it waits for an incoming message. In the case
of netperf, this is accomplished using a select call. Unfor-
tunately, many MPI implementations use OS-bypass. In
these implementations, waiting is typically implemented
using busy waiting. (This is reasonable, given the previ-
ous assumption that there is only one process running on
the node.)

6 Summary

In this paper, we have described the COMB benchmark
suite that characterizes the ability of a system to overlap
computation and MPI communication. We have described
the methods and approach of COMB and demonstrated its
utility in providing insight into the underlying implemen-
tation of communication system. In particular, we have
demonstrated the benchmark suite’s ability to distinguish
between systems that provide application bypass seman-
tics and those that do not.

Of the two methods used in the suite, the polling

method is distinguished by providing a basis for view-
ing a systems performance in an unfettered manner. The
polling method makes periodic calls to the MPI library
and logs computation whenever the user application does
not need to progress messaging. The result is that max-
imum overlap between communication and computation
is allowed regardless of how the system might imple-
ment application offload and/or OS offload. As such, the
polling method provides a basis for an unqualified or gen-
eral comparison between different systems.

In contrast, the PWW method identifies actual limita-
tions with respect to application offload. Although there
may be some cost in terms of suppressed CPU availabil-
ity in the low range, this method detects whether a sys-
tem requires multiple MPI library calls in order to make
communication progress. The PWW method also pro-
vides timing information which identifies where the hosts
spent time on communication – whether it be as overhead
during the work phase, as a prolonged time in the non-
blocking posts, or potentially as some amount of time in
the wait phase. As such, the PWW method provides per-
formance comparisons in the area of application offload
as well as provides a means to help identify bottlenecks
during the post-work-wait cycle.

We believe COMB is a useful tool for the analysis of
cluster communication performance. We have used it
extensively to benchmark several systems, both develop-
ment and production, and it has provided new insights into
the effects of different implementation strategies. COMB
has also been used by other researchers to assess their
NIC-level messaging system for Gigabit Ethernet with
programmable Alteon NICs [10].

7 Future Work

Our future efforts will take three paths. Our immediate
goal is to make both of these benchmarks available to
the community where they can be used to characterize the
performance of other systems. Second, we plan to address
multi-processor nodes. Our current method for measur-
ing CPU availability will not work on systems with mul-
tiple processors per node. Once we have addressed this
issue, we plan to benchmark several of the DOE ASCI
machines.

10

Acknowledgements

Jim Otto from Sandia National Labs was invaluable if get-
ting our Cplant setup for testing and development. Pete
Wyckoff from the Ohio Supercomputer Center offered
lots feedback in the early stages of development and actu-
ally used an early version of the benchmark. Wenbin Zhu
from the Scalable Systems Lab at UNM and Michael Lev-
enhagen of Sandia National Laboratories ran more recent
benchmark versions and helped with increasing cross-
platform compatibility. Patricia Gilfeather of the Scalable
Systems Lab at UNM offered lots of constructive criti-
cism and helped to improve the general methodology em-
ployed in the benchmark.

References

[1] Nanette J. Boden, Danny Cohen, Robert E. Felder-
man, Alan E. Kulawik, Charles L. Seitz, Jakov N.
Seizovic, and Wen-King Su. Myrinet-a gigabit-per-
second local-area network. IEEE Micro, 15(1):29–
36, February 1995.

[2] Ron Brightwell, Tramm Hudson, Rolf Riesen, and
Arthur B. Maccabe. The portals 3.0 message passing
interface. Technical Report SAND99-2959, Sandia
National Laboratories, December 1999.

[3] Ron Brightwell, Bill Lawry, Arthur B. Maccabe, and
Rolf Reisen. Portals 3.0: Protocol building blocks
for low overhead communication. In CAC Work-
shop, April 2002.

[4] Ron B. Brightwell, , Lee Ann Fisk, David S. Green-
berg, Tramm B. Hudson, Michael J. Levenhagen, ,
Arthur B. Maccabe, and Rolf Riesen. Massively par-
allel computing using commodity components. Par-
allel Computing, 26:243–266, February 2000.

[5] William Gropp, Ewing Lusk, Nathan Doss, and
Anthony Skjellum. A high-performance, portable
implementation of the MPI message passing inter-
face standard. Parallel Computing, 22(6):789–828,
September 1996.

[6] Rick Jones. The network performance home page.
http://www.netperf.org/netperf/NetperfPage.html.

[7] Richard P. Martin, Amin M. Vahdat, David E.
Culler, and Thomas E. Anderson. Effects of com-
munication latency, overhead, and bandwidth in a
cluster architecture. In Proceedings of the 24th An-
nual International Symposium on Computer Archi-
tecture (ISCA-97), volume 25,2 of Computer Archi-
tecture News, pages 85–97, New YOrk, June 2–4
1997. ACM Press.

[8] Message Passing Interface Forum. MPI: A message-
passing interface standard. The International Jour-
nal of Supercomputer Applications and High Perfor-
mance Computing, 8, 1994.

[9] Myricom, Inc. The GM message passing system.
Technical report, Myricom, Inc., 1997.

[10] Piyush Shivam, Pete Wyckoff, and Dhabaleswar
Panda. EMP: Zero-copy OS-bypass NIC-driven gi-
gabit Ethernet message passing. In Supercomputing,
November 2001.

[11] J. B. White and S. W. Bova. Where’s the over-
lap?: An analysis of popular mpi implementations.
In Proceedings of the Third MPI Developers’ and
Users’ Conference, March 1999.

11

