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Abstract—Cloud provider barriers still stand. After a decade of
cloud computing, customers struggle to overcome the challenge
of crossing multi-provider clouds to benefit from fine-grained
resource distribution, business independence from CSPs and
cost savings. Although increasingly popular, most adopted IaaS
intercloud solutions are generally limited to specific public
cloud providers or present maintainability issues. Remaining
hurdles include complexity of management and operations of
such infrastructures, in presence of per-customer customizations
and provider configurations. The Infrastructure as Code (IaC)
paradigm is emerging as key enabler for IaaS multi-clouds, to
develop and manage infrastructure configurations. However, due
to complexity of the infrastructure life-cycle, to heterogeneity of
composing resources and to user-customizations, this approach is
far from being viable. In this paper, we explore an aspect-oriented
approach to IaC deployment and management. We propose
Mantus, a IaC-based multi-cloud builder composed of an aspect-
oriented Domain-Specific Language called TML, or TOSCA
Manipulation Language, and a corresponding aspect weaver to
inject flexibly non-functional services in TOSCA infrastructure
templates. We show the practical feasibility of our approach, with
also good results in terms of performance and scalability.

I. INTRODUCTION

After a decade of existence, cloud infrastructures are the
omnipresent foundation of IT services. Cloud consumers may
now orchestrate fine-grained, easy-to-scale, micro-service-
built applications in a homogeneous domain. This may also
include the network edge, overcoming the geographical barrier
of data centers. However, cloud consumers seldom accept –
and only when strictly needed – the challenge of crossing
Cloud Service Provider (CSP) domains [1].

Interconnection of multiple provider resources promises
important benefits [1, 2] compared to the single-CSP model:
(1) finer-grained distribution of resources across multiple
countries, improving QoS; (2) business independence from
a single CSP; and (3) cost savings, optimizing expenditures
through dynamic price comparisons between providers (e.g.,
for Spot instances).

Unfortunately, it seems that no current generic approach
really fully satisfies customer requirements [1]. Provider-
centric architectures (e.g., hybrid clouds, cloud federations)
have the great benefit of resource location transparency from

the user perspective but lack effective market-adoption by
providers [3]. Hybrid clouds [4, 5] provide a seamless exten-
sion of private clouds but are limited to a single CSP. Client-
centric approaches (e.g., library-based multi-clouds) are gain-
ing popularity [6, 7]. However, they remain limited to a least
common denominator of CSP features, without providing full
control over the infrastructure, with also some maintainability
issues [1]. In addition, broker-oriented approaches [8] have not
gained the expected popularity so far [9].

To address those challenges, we designed ORBITS (OR-
chestration for Beyond InTercloud Security), an overlay inter-
cloud architecture providing simultaneously flexible applica-
tion provisioning across multiple providers with a homo-
geneous service abstraction across multiple clouds enforced
at the IaaS level [10]. ORBITS conciliates: (1) flexible
provisioning requirements of microservice-based applications,
handling placement, elasticity and availability; and (2) infras-
tructure homogeneity over generic CSPs through the Infras-
tructure as Code (IaC) paradigm [11]. IaC enables to develop
and manage infrastructure configurations, notably for cloud
infrastructures, automating resource provisioning in addition
to software deployment.

However IaC-based deployment and management of a
generic IaaS multi-cloud requires to overcome a number
of roadblocks. Traditional infrastructure user-customization
should notably be coupled with the heterogeneity of under-
lying providers. This requires to flexibly (1) inject/remove
non-functional services, (2) reduce at a minimum the multi-
provider overhead and (3) orchestrate in an interoperable
manner resources over multiple CSPs.

Introduced in [12], Aspect-Oriented Programming aims to
regroup in a single place code fragments implementing a
non-functional property using the aspect programming ab-
straction. Leveraging a ”weawing” process, the aspect code
will be scattered across the overall program at compilation
or execution time. We adapt this approach to declarative-
based Infrastructure-as-Code systems, in order to flexibly and
dynamically inject non-functional services, decoupling those
from the rest of the system.

In this paper, we present MANTUS, an aspect-oriented
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Fig. 1: Cloudbursting Use-Case

multi-cloud builder, designed to generate the IaC template
to deploy an overlay infrastructure-oriented multi-cloud. At
a cost of an acceptable overhead, aspect-oriented weaving
separates cross-cutting concerns, fostering reuse of extra code
and infrastructure life-cycle automation.

The contributions of this paper are as follows. First, we pro-
pose an aspect-oriented approach to IaC multi-cloud deploy-
ment and management. Second, we propose the TML (TOSCA
Manipulation Language) aspect specification language and the
MANTUS aspect weaver to realize an aspect-oriented IaC
multi-cloud builder, injecting flexibly non-functional services
in TOSCA infrastructure templates. Third, we validate a first
prototype in terms of performance, scalability, and dynamicity,
showing the practical feasibility of our design approach.

This paper is organized as follows. Section II first analyzes
requirements for an IaC multi-cloud, and identifies a number
of key guiding principles. Section III then introduces the
aspect-oriented IaC approach, and presents TML, with some
examples. Sections IV and V describe a prototype implemen-
tation of the aspect weaver and validation results. Section VI
discusses related work. Finally, Section VII concludes.

II. TOWARDS IAC-BASED MULTI-CLOUDS

We start from a sample use-case to motivate the need for
IaC-based multi-clouds. We then detail requirements and key
design principles to realize an IaC-based multi-cloud builder.

A. Motivating Use-Case Example

We consider a generic cloud-bursting use-case, shown in
figure 1: an organization wishes to enhance the resources
available on its private cloud, embracing simultaneously more
than one public cloud provider.

We take the example of a Care-Delivery Organization
(CDO) managing different classes of workloads, ranging from
telemedicine, e.g. remote healing, to data mining on sensitive
data, e.g., electronic health records (EHR). Cloud adoption
may bring some benefits. However, requirements in terms of
Quality of Service (QoS) or Quality of Protection (QoP) may
overwhelm the SLA guarantees a single CSP may offer.

On the one hand, telemedicine services have severe con-
straints hardly satisfied by a single CSP [13]. In particular,

CDOs must face stringent law prescriptions for geographical
data location, replication and service availability. Therefore,
more than one CSP is often needed. On the other hand, a CDO
may also need to perform analysis on medical data, possibly
using records coming from other institutions. Handling such
class of records usually requires a lot of effort to avoid
unwanted disclosures, using techniques such as Multi-Party
Computation (MPC) [14]. The resource overhead imposed by
such protection techniques could benefit from cloud economies
of scale. However, a single CSP does not fulfill the security
model requirements of MPC algorithms that are based on
secret-sharing techniques [15].

B. Design Requirements (DRs)

We already defined a first overlay infrastructure com-
pletely managed through IaC templates [10]. This infrastruc-
ture extends the idea of a client-centric virtual infrastructure
layer [16, 17] for enhanced resource control and multiple CSP
support. A full text-based description of software and hard-
ware infrastructure resources is key to control the complete
infrastructure life-cycle, which has proven tough to manage
even in single cloud provider settings [18]. However, several
challenges remain open for this to be possible.

A IaC-based virtual infrastructure layer should meet three
requirements:

1) DR1: Non-functional extensibility Desired cloud infras-
tructures may differ a lot depending on the functional
services deployed (e.g., Cloud Management System, SDN
Controller). However, those basic infrastructure should be
manipulated in order to add complementary non-functional
services (e.g. monitoring, auditing). This makes easily com-
plexity explode and does not allow to dynamically inject
services inside basic templates.

2) DR2: CSP-aware feature selection To compete on the
market, CSPs provide a number of differentiating ser-
vices (e.g., DBMS-as-a-Service (DBMSaaS), Firewall-as-
a-Service (FWaaS)) additional to traditional resource pro-
visioning (e.g., VMs, Object Storage). CSPs also propose
differently-flavored resources (e.g., high I/O VM types,
accelerated NICs) to better satisfy specific workloads. To
effectively leverage CSP features, the interoperable virtual
infrastructure should overcome simple “least common de-
nominator” limitations to adapt instantiations to specific
CSPs.

3) DR3: Multi-layer interoperability The multi-cloud should
also satisfy the following sub-requirements to achieve the
desired level of interoperability:

a) The user should be able to describe its service specifi-
cation (functional, non-functional, SLA) without know-
ing in advance on which CSP the multi-cloud will be
deployed, and how it will be actually implemented. In
addition, the virtual infrastructure layer should be interop-
erable, i.e., the same abstract definition may be deployed
on different CSPs, being “understood” by the different
CSP orchestration engines.
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Fig. 2: Mapping Design Principles to Design Requirements

b) The virtual infrastructure layer should guarantee porta-
bility of Execution Environments (EEs) where service
components are executed on any CSP part of the multi-
cloud. Deployed services should work similarly and
expose the same APIs, requiring little adaptions from
existing applications.

c) The architecture should provide a single point of orches-
tration of services (e.g. MPC, High-Availability Web Ser-
vices) over the distributed multi-cloud infrastructure. This
entry-point should be similar to widely-used frameworks
(Mesos, Swarm, Kubernetes) that integrate seamless ex-
tensions for multi-cloud enabled CSPs.

The deployment result is an interoperable software layer
over a selected set of CSPs, coordinated by an orchestration
layer having multi-cloud awareness without dealing with
hetereogeneity.

C. Design Principles (DPs)

To meet such requirements, we propose ORBITS, a
multi-cloud architecture overcoming limitations of application-
specificity of traditional multi-cloud libraries [10]. The OR-
BITS design is based on the following principles:

1) DP1: AOP-based weaving To satisfy the non-functional
extensibility requirement, we adopt an Aspect-Oriented
Programming (AOP) [12] design approach. AOP is a pro-
gramming paradigm that increases modularity by separating
cross-cutting concerns. Adding features does not require
persistent modifications to the base code. Additional behav-
iors (advices) need to be applied to the existing code, tracing
the modifications. This approach is not only applicable to
user-specified services but also to services whose aim is to
optimize the infrastructure life-cycle management.

2) DP2: Context-based matching To satisfy the CSP-aware
feature selection requirement, we leverage a flexible form of
matching derived from the TOSCA Substitution Matching.
In TOSCA, the abstract definition of resources is separated
from their actual implementations. According to inputs,
resources may be matched with a different equivalent im-
plementations of the same service. The best implementation
to fit a particular context (e.g., user-specified workload,
selected CSP) should be selected. We thus inflected this
mechanism to our setting, introducing different forms of
matching in TOSCA [19].

3) DP3: Per-provider IaC translation To satisfy the inter-
operability requirement, we defined a model of a cloud
infrastructure, capturing the distributed aspect of multi-
clouds, and the need of coordination between different
services. This model was specified using the TOSCA mod-
elling language [20]. We also implemented a translator to
transform a generic TOSCA description into code of a
specific cloud provider.
Figure 2 maps DRs to steps of a simple workflow descrip-

tion, showing how DPs handle different DRs. In the sequel,
we focus on DP1 and how our approach can satisfy the DR1
requirement, in terms of feasibility, scalability, and dynamicity.

III. ASPECT-ORIENTED WEAVING FOR IAC

We now introduce the principles of aspect-oriented approach
for IaC. We start with some background on the TOSCA
specification language. We then introduce TML for TOSCA
templates.

A. TOSCA Background

The OASIS TOSCA [20] format is designed for provid-
ing interoperability between templates of cloud applications,
leveraging an object-oriented resources modeling TOSCA
templates are composed of a graph of by nodes template in-
stances, which reifies abstract node types. Those ”equivalent”
classes not only described interactions between different parts
of the service but also their life-cycle.

TOSCA nodes are described by a set of 4 classes of
attributes: (1) capabilities that they are able to provide to
other nodes (Caps), (2) requirements that they need to run
correctly (Reqs), (3) properties (Props) and (4) interfaces
(Ints). In TOSCA, an interface models a way to modify the
resource dynamically at run-time, supporting the mapping of
(5) operations.

Such attributes model the life-cycle of the components and
may be provided through concrete artifacts 1.

A TOSCA ServiceTemplate is mainly composed of: (1) a
TopologyTemplate, a directed graph-oriented definition of ser-
vices; (2) NodeTypes, a list of definitions of nodes composing
the TopologyTemplate, and (3) RelationshipTypes, a list of
edge types for the TopologyTemplate, modelling custom links
between resources. In addition, a ServiceTemplate usually
includes: (4) a set of BoundaryDefinitions that specify which
capabilities and requirements have to be exported outside of
the ServiceTemplate; and (5) Plans, which specify how the
node operations should be executed to manage the service life-
cycle.

TOSCA fosters reuse of defined components and interoper-
ability through a mechanism of matching abstract NodeTypes
with ServiceTemplate implementations. TOSCA Orchestrators
match concrete implementations through a matching pro-
cess [19, 20]. The TOSCA templates get interpreted and
instantiated in a set of distinct resources called a topology
instance. Listing 1 presents a sample ServiceTemplate, which

1An artifact is a named and typed file used to implement deployment and
other interface operations. (e.g., build or configuration scripts).



1 t o s c a d e f i n i t i o n s v e r s i o n : t o s c a s i m p l e y a m l 1 0
2 d e s c r i p t i o n : Main demo f i l e
3 t o p o l o g y t e m p l a t e :
4 i n p u t s : # [ . . . ] Omi t t ed f o r b r e v i t y
5
6 node templates :
7 c o n t r o l l e r n o d e :
8 type : o r b i t s . nodes . ComputeBox
9 p r o p e r t i e s :

10 name : C o n t r o l l e r
11 f l a v o r : m1 . x l
12 # [ . . . ] Omi t t ed f o r b r e v i t y
13 c o n t r o l p o r t :
14 type : o r b i t s . nodes . ne twork . P o r t
15 p r o p e r t i e s :
16 o r d e r : 0
17 requirements :
18 − b i n d i n g : c o n t r o l l e r n o d e
19 − l i n k : c o n t r o l n e t w o r k
20 c o n t r o l n e t :
21 type : o r b i t s . nodes . ne twork . Network
22 # [ . . . ] Omi t t ed f o r b r e v i t y
23 i n t e r n a l p o r t :
24 type : o r b i t s . nodes . ne twork . P o r t
25 p r o p e r t i e s :
26 o r d e r : 1
27 requirements :
28 − b i n d i n g : c o n t r o l l e r n o d e
29 − l i n k : i n t e r n a l n e t w o r k
30 i n t e r n a l n e t :
31 type : o r b i t s . nodes . ne twork . Network
32 # [ . . . ] Omi t t ed f o r b r e v i t y
33 r o u t e r :
34 type : o r b i t s . nodes . ne twork . Ro u te r
35 p r o p e r t i e s :
36 e x t e r n a l n e t w o r k n a m e : ex t−n e t
37 r o u t e r i n t e r f a c e :
38 type : o r b i t s . nodes . ne twork . R o u t e r I n t e r f a c e
39 requirements :
40 − r o u t a b l e : c o n t r o l n e t w o r k
41 − r o u t e r : r o u t e r
42 s u b s t i t u t i o n m a p p i n g s :
43 # [ . . . ] Omi t t ed f o r b r e v i t y

Listing 1: TOSCA template with sample TopologyTemplate (extract)

Fig. 3: Graphic Representation of template resources

is graphically presented in figure 3 composed of one VM
(ComputeBox) with two NICs, two virtual networks (31-33,
and 21-23) and a virtual router (35-37) and a router interface
(38-42), with annex interface connected to control network
(lines 45-48). Resources and their requirements compose the
set of vertex and edges of the TOSCA graph.

B. AOP-Based Weaving

Mainstream cloud infrastructures do not always rely on
identical functional services to provide on-demand resources.
Two classes of extensibility challenges may be identified in a
multi-cloud setting with a continuously evolving infrastructure.

First, a number of non-functional services (e.g., security
middleboxes, monitoring services, network applications, OS

hardening profiles) which are not present in the description
of the basic infrastructure, are often required by users when
extending their private clouds to public CSPs. Those services
may offer a better integration with legacy, and enrich the
set of features available for the user. This may introduce
an interesting added-value for cloud brokers – beyond basic
resource brokering, thus enlarging the so far narrow market
share of the cloud brokering model [1].

Second, infrastructure templates are composed by a set of
functional services (e.g., cloud management system) which
must be debugged, tested and monitored through additional
non-functional services, which may change across the entire
life-cycle (development, auditing, production). The ability to
inject auxiliary services for different life-cycle steps may thus
represent a straightforward approach to simplify deployment
and operations. As part of this challenge are notably: (1) the
easiness of non-functional service injection/eviction (e.g., to
isolate the cause of a misbehavior); (2) possible code re-
use across different base templates (e.g., required by different
customers).

AOP [12] enables to separate cross-cutting concerns to
enhance modularity. Additional “behaviors’ to the base code
are described without having to modify the original code itself.
Code composition, or weaving, is behavior-oriented. It relies
on the concepts of point-cut and advice, which are respectively
the extra-code, and the code location where it should be
applied. We apply the “aspect” definition to “Infrastructure as
Code”, considering non-functional properties that are normally
scattered across several resources (e.g. Network topology,
OS configuration) implementing a common non-functional
service (e.g. Monitoring, Auditing). For example in case of
monitoring, we may have multi-layer agents inside user VMs
and alerts managers as standalone [21]. ]. Decoupling non-
functional and functional services results in (1) enhanced
reusability on different base TOSCA Templates and (2) dy-
namic injection upon events.

To address such extensibility challenges, we designed TML,
or TOSCA Manipulation Language. TML is an AOP-oriented
Domain Specific Language (DSL) to manipulate TOSCA
templates. Code weaving does not operate on imperative code,
but on the declarative graph in TOSCA files that are parsed,
analyzed and modified according to external TML scripts.

The objectives of TML are the following:
• Service weaving / un-weaving This means to inject /

evict flexibly non-functional services in / from a TOSCA
template.

• Semantic checking This means exploring the graph of
NodeTemplates in a ServiceTemplate for early detection
(i.e., before deployment) of semantic errors (connecting to
the wrong resource, security constraint violation), beyond
simple syntactic checking (missing connections, wrong ref-
erences).

C. The TOSCA Manipulation Language (TML)

TML scripts enable to modify a TOSCA graph, composed
by the resources specified in the node templates fields. This



graph is formed of a set V of vertices, capturing the set of
resources with their attributes (e.g., properties, interfaces with
annex artifacts), and of a set E of edges, capturing the set of
requirements for interconnection.

The structure of a TML script is the following:
• Filters They enable to navigate within the graph, and to

specify “anchor” resources (i.e., point-cut) from which rules
in the advice will be triggered. A filter is composed of a
name, a root field which identifies the type of resource to
be used as anchor, and a rule which defines the condition to
be verified to select the node when exploring the graph. The
operators used to build a rule are is presented in table ??.

• Actions They represent the core of the advice and define
the list of modifications to apply to the graph, leveraging
filtered resources as arguments. An action is composed of
an action type, and of arguments. Following a declarative
approach, their execution order does not correspond to their
specification order on how actions are specified. A priority
graph allows to create resources before they have to be
manipulated or connected with the others.

• Checks After executing actions, a list of statements is run to
validate the obtained template. In case of an empty actions
section, the advice simply attempts to verify some properties
on the template graph.
Weaving of a filter advice is straightforward. Starting from

resources of a specified type, the filters rules select resources
having specific requirements. The mandatory rules in the filter
act as trigger condition for the advice: when all mandatory
filter conditions are able to retrieve a resource, the actions sec-
tion is executed. Advices are atomic. Therefore, the TOSCA
template should be in a valid state after application of all
actions. If check statements are specified, they should be
verified to commit the template and accept the weaving.
Developers may also define an optional inputs section to
customize TML script inputs.

Actions may modify the graph according to TOSCA type
specifications, but cannot violate imposed constraints (e.g.,
introducing new requirements or capabilities). Actions cannot
use filters on temporary states of the graph as filters are
computed before execution – similarly for filters “embedded”
inside actions (e.g., for the select operator), and for checks
after weaving of any action.

D. An example for weaving from a TML advice: Injecting a
Floating IP within a VM

During infrastructure debugging, it may be useful to have
external IP addresses to inspect the status of all VMs – which
on the contrary should not be accessible in a production de-
ployment. Listing 2 shows a simple TML advice to selectively
inject in a VM a floating IP (also called elastic IP), or public
Internet-accessible IP, for each network port connected to the
Internet. However, not all ports should receive a floating IP,
as most are not connected to the Internet, but only to internal
virtual networks. This script may be useful in the Continuous
Integration (CI) chain to easily collect information about errors
while testing.

1 i n p u t s : #No i n p u t s
2 f i l t e r s :
3 p o r t s i n t e r n e t w i t h o u t f i p :
4 roo t : o r b i t s . nodes . ne twork . P o r t
5 r u l e : ” R . l i n k [ ] . r o u t a b l e <>. r o u i n t [ ] && !R . f l o a t a b l e <>”
6 mandatory : t r u e
7
8 \end{document}
9 a c t i o n s :

10 c r e a t e f i p :
11 type : c r e a t e a n d c o n n e c t
12 args :
13 for each : [ p o r t s i n t e r n e t w i t h o u t f i p , ” R” ]
14 name : c o m p u t e f i p
15 t o s c a t y p e : o r b i t s . nodes . ne twork . F l o a t i n g I P
16 c a p a b i l i t y : f l o a t a b l e
17 p r o p e r t i e s :
18 net name :{ s e l c u r : ” R . l i n k [ ] . r o u t a b l e <>. r o u t e r [ ] .

net name ”}
19 checks :
20 n o p o r t s i n t e r n e t w i t h o u t f i p :
21 roo t : o r b i t s . nodes . ne twork . P o r t
22 r u l e : ” R . l i n k [ ] . r o u t a b l e <>. r o u i n t [ ] && !R . f l o a t a b l e

<>”
23 mandatory : t r u e

Listing 2: TML Floating IP injection Script

Fig. 4: The template sample in figure 3 weaved with Floating ip
script

The filters rule starts looking-up and selecting Ports in
the graph, with the following point-cut conditions (line 4):
(1) selects all ports which have links connected to networks
connected to routers connected to Internet; and (2) avoid
interfaces already having a floating IP.

In the actions section (lines 8-17), the create fip item will
create the new resources for each selected port. It defines an
iterator (R) (line 12) to specify the set of new resources and to
complete the other resource parameters (net name). For every
matching resource, it will create and connect a new floating
IP resource, through the ”floatable” capability defined in the
type definition of orbits.nodes.network.Port.

Weaving the TML script to the template shown in Sec-
tion III-A (listing 1) yields the result shown in figure 4. When
run, the TML advice will create and connect a new floating
IP resource for the unique port connected to the Internet,
control port.

It is worth noticing that the TML aspect is completely
decorrelated from the base template, and may be applied to any
TOSCA ServiceTemplate. Moreover, if the ServiceTemplate
has more than one port connected to an external network,
multiple resources will be injected without requiring more
generated code.

In this paper, for sake of simplicity, we assume the ab-
sence of overlap between TML scripts in case of multiple



weaving, not focusing yet on idempotency and conflicts issues.
However, more sophisticated conflict resolution strategies have
already been explored, notably to satisfy an idempotency
property [22], and their integration in MANTUS represent
important direction for future work.

IV. IMPLEMENTATION

We now present a prototype of the MANTUS multi-cloud
builder, focusing on the TML weaver component. A MANTUS
implementation workflow includes the following phases, also
used for weaver benchmarking:
• Matching A ServiceTemplate is created, composed of

concrete nodes starting from an abstract specification. We
adopted the standard TOSCA plug-in matching developed
by Brogi et al. [19].

• Fusion The matched file is generated, reconnecting different
branches of matching.

• Weaving Non-functional services are injected by applying
TML scripts against the TOSCA ServiceTemplate as de-
scribed in the previous section.

• Translation Finally, the resulting TOSCA templates are
translated to the Heat Orchestration Language (HOT) to be
deployed on an OpenStack CSP on an OpenStack CSP as
a target example of CSP.

We implemented the MANTUS TML weaver in Python. MAN-
TUS first builds the expression abstract syntax tree for re-
sources in the TOSCA graph using the pyPlus2 LR-parser.
We used the tosca-parser3 library to manipulate TOSCA
ServiceTemplates for fully compliant TOSCA generation. We
also developed a driver-based small TOSCA translator sup-
porting HOT and CloudFormation back-ends. The translator
was developed from scratch to keep it minimal and to put
emphasis on polymorphism for multi-CSP support.

We introduced a hierarchy of TOSCA resource types to
model infrastructure services, focusing on computing and
networking resources. Such types were then applied to a full-
fledged cloud infrastructure based on OpenStack and Mesos,
using Xen, KVM and LXC as core virtualization technolo-
gies: infrastructure components were described as TOSCA
templates using our custom nodeTypes. We also defined an
encapsulating Overcloud type to foster template reuse for
multi-cloud environments. Overcloud templates were then
refined using the MANTUS workflow to be finally translated to
the HOT format. We defined the infrastructure software life-
cycle through a interface Standard, with annexed operations
events (e.g.; Install, Start, Stop) with respective configuration
artifacts.

V. VALIDATION

In this paper, we presented an AOP-based approach to meet
the non-functional extensibility requirement for a multi-cloud
deployment context (DR1). We now validate our approach
through several benchmarks. Non-functional extensibility re-
quires three main properties to be satisfied:

2https://github.com/erezsh/plyplus
3https://github.com/openstack/tosca-parser

TABLE I: Benchmark Variables

Notation Meaning

T Number of initial Template Nodes
F Number of filters per TML Script
R Number of injected resources per TML script
E Number of injected ”edges” per TML script
S TML script characterized by S[R;E;F]
W Weaving operation W(T,S)
A Coefficient of replication

• Dynamicity: The support of dynamic reconfiguration of
service, in particular ”incremental injections” to be able
to add or drop services during execution.

• Scalability: The scalability of the system in terms of
number of injection and size of template.

• Performance: Incremental or reactive extension requires
service injection to be performant, supporting timely
weaving.

We used, as input template, the basic OpenStack-based
ORBITS template, introduced in the previous section, as
the testing input for all the benchmarks. This template is
an example of ”overlay infrastructure layer, composed of a
”controller” node and 3 different group instances of ”compute
nodes” (Xen, KVM, LXC), with two virtual networks (internal
and external access (Internet)) and relative network resources
(ports, routers). The resulting template used for running bench-
marks is a graph of 33 nodes after matching and fusion phases
in the MANTUS workflow, starting from a single Overcloud
component.

We evaluated the non-functional extensibility with different
criteria: (a) influence of aspect complexity to verify scala-
bility; (b) cost of incremental weaving during infrastructure
life-cycle to evaluate dynamicity; (c) weaving overhead in
overall deployment, and (d) compositional efficiency (multiple
weavings) to assess performance.

A. Scalability

1) Compositional Weaving Efficiency: First, we analyzed
scalability in terms of TML script complexity. A first com-
plexity metric is the number of injected resources (R) and
relationships (E) in the action section (resp. vertices and edges
of the graph). We thus evaluated weaver efficiency w.r.t. the
number of actions (A → [1 − 100]) in weaved script, adding
different amounts of resource nodes (A ∗R at each iteration)
and edges per script (A ∗ E).

In addition, complexity may also be captured by increasing
the number of rules in the filters and checks sections (Filter-
Rules curve, F ∗ A). The benchmarks were performed with
T = 1, S = 1. Each curve is characterized by a different
configuration of S w.r.t. R,E, F , we obtain crafting ad hoc
TML scripts. As shown in figure 5-a, weaving time increases
but remains linear with the amount of actions and resources
injected, which gives a good indication of scalability avoiding
combinatorial explosion. Those results indicates that look-up
operations in graph scales well and and should encourage TML
scripts developers to add extra-rules condition (e.g.; to verify
semantic properties after the weaving process).
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Fig. 5: The tests were performed on a Intel Xeon E5-2650 Haswell at 2.60GHz with 64 GB of RAM.

B. Dynamicity

1) Incremental Weaving Efficiency: In figure 5-b, we an-
alyze the weaving marginal cost, also showing standard de-
viation of samples. Starting from a base template (T = 1),
we performed incremental weaving (W i), iteratively adding
one additional TML script to a growing template T i =
W (Ti−1, S) with T0 = T ;A = 1;R = 3;E = 3;S = 1. This
benchmark suggests that the possibility weaving incrementally
new scripts may be affordable even with bigger ”previously-
weaved” templates, enabling the possibility to weave new re-
sources as reaction to specific events (e.g.; intrusion detection)
validating the ”dynamicity” property of DR1.

C. Performance

1) Relative Overhead of Weaving in Workflow: We first
studied the impact of the weaving phase in the overall MAN-
TUS workflow, to validate the performance of AOP-weaved
approach. We performed a full deployment workflow, weaving
10 independent TML scripts of size (A = 1, E = 3, R =
3, S = 10), for an increasing number of starting OverCloud
nodes(T → [0 − 100]). The TML script simply injects one
resource per compute node, with conditions which are always
verified and therefore each per-script iteration weaved. Results
are shown in figure 5c (log scale): for all phases, the execution
time is linear (logarithmic in log scale) w.r.t. the graph size,
the weaving phase overhead being less than that of matching.
Therefore, we can consider that the weaving operation remains
acceptable even with bigger templates.

2) Weaver Efficiency vs. Aspect Complexity: In figure 5-d,
to identify a valuable strategy to conceive and develop TML
scripts, we compared weaving overheads of multiple weaving
((W (T, S ∗ A) with S[R;E;F ]) injecting a single resource
and of a single script injecting multiple resources((W (T,A)
with S[R∗A,A∗E,F ]), according to the number of resources.
Due to the cost of YAML parsing and graph reconstruction,
the single-script approach show more efficiency compared to
using multiple scripts. This trend may lead to an interesting
direction for further work, somehow also overlapping the
conflict detection issue discussed in section III-C: detecting
and avoiding conflicts between TML scripts opens the door
to weaving performance optimizations, resulting in script size
increase, but reducing the number to be weaved.

VI. RELATED WORK

An increasingly popular way to deploy infrastructure in
traditional mono-cloud settings is to rely on Infrastructure-
as-Code (IaC) paradigms. For instance, in the context of the
OpenStack project, several approaches use IaC to simplify the
life-cycle management of a cloud infrastructure.

Library-based (e.g.; jclouds,libcloud) approaches provide
the best flexibility, supporting many different provider APIs.
Libraries are useful to express resource-oriented workloads
requirements, communicating with different APIs with a driver
mechanism. However, they fail to provide a global transparent
vision of the multi-cloud, and do not allow to easily control
resources (e.g., networking ) [1].



Extending and simplifying TOSCA templates writing,
Elastic-TOSCA [23] introduces support for dynamic scal-
ing for TOSCA templates. Cloudify [24] extends the basic
standard so that user can define application ”blueprints”,
proposing a ”driver” oriented type ontology for multi-cloud
application deployment. However, Cloudify does not approach
the challenge of non-functional extensibility. CloudMF [25]
provides a model-oriented framework to deploy and manage
multi-cloud applications leveraging provider-independent and
provider-dependent code. In CloudMF, application component
definitions are agnostic from the specificity of a single CSP
and are then adapted to a specific implementation. CloudMF
fosters re-usability and adaptability but without addressing
infrastructure issues (e.g.; non-functional injections).

Concerning the provider-centric approach, hybrid clouds [4,
5] usually provide a seamless extension of a private cloud,
supporting bidirectional workload migration. However, this
extension is limited to a single provider which normally
belongs is the same enterprise or a partner of the editor of
private cloud Cloud Management Systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented MANTUS, an aspect-
oriented multi-cloud builder, designed to generate an overlay
infrastructure-oriented multi-cloud. MANTUS flexibly weaves
non-functional services, translating the outcome to a provider-
specific language. At a cost of an acceptable overhead, aspect-
oriented weaving separates cross-cutting concerns, fostering
reuse of extra code and infrastructure life-cycle automation.
We validated the suitability of aspect-oriented approach for
non-functional service injection evaluating scalability, dynam-
icity and performance.

Future work will be oriented in three main directions. First,
we will explore idempotence and conflicts when weaving
multiple scripts. This axe of work is particularly interesting
due to the result of 5-d, where the weaver showed better
performance with few huge scripts compared to a multitude
of tiny scripts. A method to reduce in a single-script non
conflicting multiple-scripts would speed up significantly the
weaving process. Second, we will perform a complete set
of benchmarks, comparing the overall MANTUS approach to
existing baselines and measuring the gain in terms of dynamic
reconfiguration. Third, we would evaluate the complexity of
the filter rules language, elaborating more complex rules and
evaluating the performance w.r.t. the rule complexity and not
only their number.
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