
Elastic Monte Carlo Tree Search
with State Abstraction for Strategy Game Playing
Linjie Xu, Jorge Hurtado-Grueso, Dominic Jeurissen and Diego Perez Liebana

Department of EECS
Queen Mary University of London

London, UK
{linjie.xu,diego.perez}@qmul.ac.uk

Alexander Dockhorn
Faculty of EECS

Leibniz University Hannover
Hannover, Germany

dockhorn@tnt.uni-hannover.de

Abstract—Strategy video games challenge AI agents with their
combinatorial search space caused by complex game elements.
State abstraction is a popular technique that reduces the state
space complexity. However, current state abstraction methods for
games depend on domain knowledge, making their application
to new games expensive. State abstraction methods that require
no domain knowledge are studied extensively in the planning
domain. However, no evidence shows they scale well with the
complexity of strategy games. In this paper, we propose Elastic
MCTS, an algorithm that uses state abstraction to play strategy
games. In Elastic MCTS, the nodes of the tree are clustered
dynamically, first grouped together progressively by state ab-
straction, and then separated when an iteration threshold is
reached. The elastic changes benefit from efficient searching
brought by state abstraction but avoid the negative influence
of using state abstraction for the whole search. To evaluate our
method, we make use of the general strategy games platform
Stratega to generate scenarios of varying complexity. Results
show that Elastic MCTS outperforms MCTS baselines with a
large margin, while reducing the tree size by a factor of 10.
Code can be found at https://github.com/egg-west/Stratega

Index Terms—State Abstraction, Monte Carlo Tree Search,
Game Artificial Intelligence, Strategy Games

I. INTRODUCTION

The design of artificial intelligence (AI) for strategy game
playing is a challenging problem. Human players can handle
strategy games without much training when they possess
knowledge about the game rules, opponent behavior, etc. AI
solutions have different ways to gain knowledge about the game.
Given domain knowledge, heuristics or scripts can be created.
Heuristics can be used to guide the search of search-based AI
agents [1]. In combination with scripts, agents are able to deal
with more complex strategy games [2]. However, those scripts
are rigid and limited by the programmer’s ability to capture
the complexity of decision-making in strategy games (as most
rule-based systems are). These scripts, once implemented, are
static and they cannot adapt to new features introduced in the
game, which is something typical during the game development
cycle. In this case, these scripts need to be repeatedly updated
to introduce new design updates.

An approach to get knowledge about the game is using a
forward model. A forward model is a simulator that returns
the next state given a state and an action. By simulating future
states with the forward model, agents can sample different

playing trajectories and store this knowledge in a data structure
such as a tree [3]. However, the size of the search space in
strategy games increases combinatorially with the number of
units under the control of the player, making existing search-
based methods unable to find good solutions in a reduced
time frame. Improving sampling efficiency is one of the main
challenges for search-based methods in most domains (and, in
particular in strategy games).

Game state and action abstraction [4] are efficient techniques
that reduce the search space for search-based methods. Current
works on state abstraction [5], [6] and action abstraction [2],
[7], [8] have shown their improved performance over non-
abstracting algorithms in playing StarCraft. Although these
methods gain performance by utilizing abstraction techniques
to reduce the search space, domain knowledge is indispensable
for them. In the planning domain, methods that require no
domain knowledge for abstraction are studied extensively [9]–
[15]. However, those have been limited to applications of lesser
complexity, e.g. Othello [9]. In our study, we aim to test if
similar concepts can be scaled up to strategy games.

In this paper, we propose an algorithm that employs state
abstraction by approximate homomorphism [16] for Markov
Decision Process (MDP). The generated state abstraction
is used to merge tree nodes in Monte Carlo Tree Search
(MCTS), which reduces the size of the tree. This paper
shows the challenges derived from implementing this approach
and the solutions proposed to address them. One of these
challenges is that, in order to obtain a good approximate
homomorphism, a high number of samples is required. In
fact, this number increases with large state and action spaces,
which is problematic for strategy games where the state space
and action space increases exponentially with the number of
units and other elements of the game.

We alleviate this problem in two ways. First, we implement
a modification in MCTS (which we call MCTSu) so that, for
each node, the algorithm only considers the actions available for
one unit (rather than for all of them). Secondly, we introduce
an iteration threshold αABS ∈ N that indicates a stopping
iteration for the use of abstractions. When the MCTS iteration
number Nmcts ∈ N reaches αABS , the state abstraction is
abandoned and the tree is “expanded” again (abstract nodes
are eliminated) to continue the search as in normal MCTS.

ar
X

iv
:2

20
5.

15
12

6v
1

 [
cs

.A
I]

 3
0

M
ay

 2
02

2

https://github.com/egg-west/Stratega

Given the fact that the size of the tree changes during search,
we call our algorithm Elastic MCTS.

Our contributions can be summarized as follows:
• Automatic state abstraction for strategy games with

no domain knowledge: Our method applies a state
abstraction that requires no domain knowledge for com-
plex environments such as strategy games, in contrast to
existing methods which require domain knowledge. While
this work focuses on strategy games, the method proposed
in this paper may be applicable to other genres, as it
does not require game-specific knowledge. We assume
the multi-unit setting in this paper while our method can
be used for both single-unit and multi-unit settings.

• An analysis on the effects of state abstraction on
the recommendation policy: Previous works keep the
generated abstraction within the tree of MCTS during all
iterations. This approach is based on the assumption that
the policy resulting from the abstraction is better than the
policy from the original state space, neglecting the risk
of using a bad-quality state abstraction. Our algorithm
sets up an iteration threshold for using the abstractions,
which we tune to analyze the impact of turning back to
the original tree at different times during the search.

The rest of the paper is structured as follows: In Section II,
background knowledge about MCTS, state abstractions and
approximate MDP homomorphism is introduced. The Stratega
framework is introduced in Section III. Section IV summarizes
related works on state abstraction for strategy games and
abstractions used in the context of planning. Section V describes
Elastic MCTS, and in Section VI we evaluate Elastic MCTS
empirically and compare it with other algorithms. Section VII
concludes our work and gives ideas for future directions.

II. BACKGROUND

A. Monte Carlo Tree Search (MCTS)

MCTS [3] generates a search tree to estimate the state-action
values of the current state. In this tree, each node represents a
state and each branch represents an action, with the current state
located at the root node. Each node stores the cumulative reward
X and the visit count N . Each MCTS iterations consists of 4
phases: selection, expansion, simulation, and backpropagation.

During the selection phase, a tree policy is used to traverse
the tree from the root until we reached a node on which we
have not yet expanded all possible child nodes. A popular
choice for the tree policy is Upper Confidence Bounds (UCB)
applied to Trees (UCT) [17]. For a node representing state s,
connected with its parent who has an edge representing action
a, its UCB value is:

UCB1(s, a) =
X(s, a)

N(s, a)
+ C

√
lnNparent

N(s, a)
, (1)

where the X(s, a) is the cumulative reward, N(s, a) is the
visit count of this node, and Nparent is the visit count of the
parent node. A constant C ∈ R controls the trade-off between
exploration (selecting nodes of low visit count) and exploitation

(selecting known high-value nodes). The tree policy selects
action with the highest UCB1 value, descending the tree until
a non-fully-expanded node is reached.

In the expansion phase, a child node is generated that
represents the next state retrieved from applying a previously
unexplored action. After expansion, it enters the simulation
phase, where a roll-out policy will be used to continuously
sample actions for a fixed amount of turns or until the end
of the game. A classic roll-out policy is the random policy
that chooses available actions uniformly. This final state is
then evaluated by a state evaluation function and a score R is
backpropagated along the path taken during the selection and
expansion phases. This value R is normally the game outcome
in terminal states, and a value returned by an heuristic function
for non-terminal states.

B. State Abstraction and approximate MDP Homomorphism

A Markov Decision Process (MDP) is defined as
< S,A, R, T, γ >, with state space S, action space A, reward
function R : S×A 7→ R, transition function T : S×A×S 7→ R,
and discount factor γ ∈ R, 0 < γ < 1 for discounting future
rewards. State Abstraction for MDPs can be formalized as a
mapping φ(s) = sφ, s ∈ S, sφ ∈ Sφ. The Sφ is an abstract state
space. Usually, we wish the size |Sφ| < |S| to reach a better
sample efficiency or a shorter searching time. The approximate
MDP homomorphism [16] defines the similarity between two
states s1, s2 by defining two approximation errors:

εR(s1, s2) = max
a
|R(s1, a)−R(s2, a)| ≤ ηR (2)

εT (s1, s2) =
∑
s′

|T (s′|s1, a)− T (s′|s2, a)| ≤ ηT (3)

εR is the reward approximation error, while εT is the transition
approximation error. ηR and ηT are the respective approxima-
tion thresholds. Two states are consider similar if they hold that
εR(s1, s2) ≤ ηR and εT (s1, s2) ≤ ηT . In MCTS, similar states
from the same depth are considered candidates to construct a
local approximate homomorphism. For each depth of the tree,
two or more similar original (or ground) states can be grouped
into the same abstract state or node. The reward and visiting
count of the abstract node are X̂ =

∑
Xi

m and N̂ =
∑
Ni

m ,
where m is number of original nodes in this abstract node.
When a new ground node is added to an abstract node, the
statistics of this abstract node will be updated accordingly.

III. STRATEGA

The Stratega [18] framework (see screenshot in Figure 1)
is developed for studying AI agents in general strategy game
playing. Stratega uses an isometric view for the battlefield,
where there are different tiles for game elements: landforms,
buildings, resources, and army units. It allows developers
to create their own turn-based and real-time strategy games
through the YAML markup language, by setting up game
elements and their parameters. One of the important features
of Stratega is that it provides a forward model that can be
used by statistical forward planning methods, such as MCTS
or Rolling Horizon Evolution [19].

Fig. 1. A classic scene of Stratega framework.

We use the game Kill The King from Stratega for the
evaluation of the search methods presented in this paper. Kill
The King is a turn-based, two-player strategy game where each
player commands their units to defeat the opponent’s king for
a win. We limited the maximum number of turns to 100. If
after 100 turns and no king dies, the game ends and returns a
draw. In this game, we designed 4 different unit types: King,
Warrior, Archer, Healer. King, Warrior and Archer share the
same action types: [Move, Attack, Do-nothing]. The action
types for Healer are: [Move, Heal, Do-nothing]. The action
space of a unit depends on their action types and unit attributes.
For example, the Move Range of King is set to 2, resulting
in 12 surrounding tiles for its Move action. Its Attack Range
is 2, enabling it to choose any opponent unit to attack within
2 tiles. In this case, the maximum size of its action space is
(12 + 1) × (12 + 1) = 169, as units can first move (+1 for
not moving) and then attack (+1 for not attacking). A player,
at the beginning of their turn, can act with n units, providing
a combinatorial space bounded at 169n for a turn. In this
paper, we experiment with a number of units between 4 and
11, which constitutes an action space bounded between 105

and 1014 actions. The game is also complex from a strategic
point of view: different unit types have distinct attribute values,
which makes their behavior different and forces units to use
different strategies. The attribute set for this game consists
of: Health Points, Move Range, Attack Range, Attack Damage,
Heal Strength. The maps for Stratega are grid-like 1, where
tiles such as mountains or water block the way, requiring an
aspect of coordination between units for effective movement.

Kill The King is chosen to evaluate our proposed algorithm
because of the following characteristics. Firstly, although it
is not as complex as battles in Starcraft, these two games
share challenges such as combinatorial state and action space,
which is common in most strategy games. Second, the search
space can be controlled by the number of units. Therefore, by
increasing the number of units, we can test how the performance
of our method scales with the increasing complexity of the
search space and the size of the tree. Furthermore, varieties
of the game can be created by changing the unit composition.
These varieties are used to evaluate the methods by searching
strategies for different environments.

IV. RELATED WORK

State abstraction is a popular technique that shows its
application in strategy games in the following works. [20]
proposed a Monte Carlo planning algorithm to play Capture The
Flag game. To reduce the planning complexity, a handcrafted
game state abstraction that divides the game map into tiles
is used. [21] proposed a method that presents the map of
StarCraft with regions connected by checkpoints, largely
simplifying the state space. [5] combines the state abstraction
in [21] and action abstraction in playing Starcraft combats.
Combat-irrelevant units such as workers and buildings are
removed from high-level game state representation. With the
search space reduced by their abstraction, their search-based
method shows a performance close to a script-based agent.
[22] proposes to encode the game state with vectors that
contain information about entities. This representation enables
eliminating superfluous information and grouping nodes with
the same vector.

While the works mentioned above show that state abstraction
is a powerful tool in complex searching space, [6] investigates
the effect of different state abstractions. In their work, 4
different state abstractions are created and they show different
performance with MCTS in StarCraft. Among these works,
different kinds of state abstraction methods are proposed.
However, most of them require domain knowledge to construct
the state abstraction. [22] utilizes a parameter optimizer to
pick up entity information used for state abstraction, avoiding
the use of human knowledge. However, this method shows no
clear performance improvement in their evaluation.

Most existing state abstraction applications in strategy games
depend on domain knowledge. In the planning domain, state
abstraction that requires no domain knowledge is more common.
[9] proposed approximate MDP homomorphism to construct
state abstraction for MCTS. According to the state abstraction,
states in each depth of MCTS that have a similar transition
function and reward function are grouped. The similarity
definition for this approach is shown in Eqs. 2 and 3. The
approximate homomorphism is generated from the samples
collected by MCTS in a batch manner. Although their approach
is shown to improve the performance in the planning domain,
it requires extra action abstraction and pruning when applied
to a board game such as Othello. [11] applies the approximate
homomorphism to state-action abstraction, where the state-
action pairs are grouped in MCTS.

Progressive Abstraction Refinement for Sparse Sampling
(PARSS) [12], [14] is a method that starts with a coarse
state abstraction where all the states are clustered in the
same group and refining it progressively. [13] proposed On-
The-Go abstraction that abandons the batch style of updating
the abstraction [9], [11]. In their approach, the maintained
abstraction is updated more frequently. In their work, a variable
recent counts for counting the number of visits is stored in
each tree node. When it reaches a pre-defined threshold αotg ,
the abstraction for this state is updated and its recent counts is
reset. [15] proposed Abstraction Refining that rejects adding a

(a) Tree growth (b) Node grouping (c) More tree growth (d) Split groups

Fig. 2. Overview of dynamic changes of tree nodes in Elastic MCTS. Ground nodes are black while abstract nodes are yellow. At first, the tree grows as in
normal MCTS (a). After a number of B iterations, ground nodes are grouped by using Approximate MDP Homomorphism (b). Search then continues adding
more ground node (c), repeating state aggregation after every B iterations. When the abstraction iteration threshold is reached, abstract nodes are split (d) and
the search continues to explore the original game without using the state abstraction until the thinking budget expires.

state that is similar to a known state in the tree. Their approach
improves the performance of MCTS in stochastic environments.
In conclusion, these methods are general and can be applied
to different tasks. However, they are designed for planning
domains and did not show if they can be applied to complex
search spaces such as those from strategy games.

V. ELASTIC MCTS

We propose Elastic MCTS, which combines approximate
MDP homomorphism with MCTS, for strategy games. Our
method is described in detail in Section V-C and depicted
in Figure 2. Before this, we focus on two modifications that
are needed to adapt the principles of MDP homomorphism to
the large combinatorial search spaces present in this domain:
unit ordering to reduce the action space (Section V-A) and
introducing an iteration threshold to revert to the original
(ground) state space.

A. Approximate Homomorphism in Strategy Games

Our method is based on state abstraction in the planning
domain [9], where a local approximate homomorphism (see
II-B for details) is constructed and constantly updated from
trajectories sampled by MCTS. However, two issues occur
when this method is applied to complex search spaces such as
those from strategy games. The first issue is that the number
of samples required to generate a good-quality approximate
homomorphism depends on the sizes of the state and action
spaces. In strategy games, where the state space is combinatorial
and the action space changes according to different game states,
the small number of samples collected within a limited decision
budget results in a bad-quality state abstraction.

The second issue is that the reward and transition approxima-
tion errors εR and εT (Eqs. 2 and 3) are calculated executing
all possible actions available in two states. For two states that
have different action spaces, the original definitions of εR and
εT conflict with the fact that most actions are likely not legal
in both states s1 and s2 at the same time. It is quite common
in strategy games to observe different states with different sets
of available actions. While it would be possible to resolve the
approximation errors by only using the (small) set of common
actions, the resulting values would not represent the true futures
of both states in terms of rewards and transitions. Our initial

tests (not included in this paper) showed that this indeed does
not provide good abstractions for MCTS.

We alleviate these two issues by implementing a variant of
MCTS called MCTSu. In MCTSu, each node corresponds to
a state where a single unit can move. The node’s edges are
actions available to said unit only. Consequently, the action
space for states candidate for merging is much smaller than
the original combinatorial action space. Moreover, candidate
states have a large proportion of common actions in their action
space because they represent states where the same units act.

A consideration for MCTSu is to decide the units’ move
order. In our implementation, the move order (by the sole
purpose of the agent’s search process) is set randomly at the
beginning of the game and kept fixed during the whole game.
While, theoretically, this ordering removes the guarantee of
optimal convergence, empirically the advantage obtained by
reducing the action space creates stronger players. This is
shown in the results discussed in Section VI and is in line with
previous results in the literature [23].

B. Elastic State Grouping and Un-grouping

We apply the constructed state abstraction to MCTS for
grouping tree nodes. As [9], the state abstraction in our method
is also constructed in a batch manner: for every B iterations
of MCTS, the sampled trajectories are used to construct an
approximate homomorphism, which aggregates similar nodes
into groups according to the states they represent. Each MCTS
node stores statistics including cumulative reward and visit
count. For a node group, it stores these as the average of
the statistics of all its ground nodes. The following MCTS
iterations will be guided by these group statistics in two ways.
First, the UCT value of one node for the selection is calculated
based on the statistics of the group it belongs to. Second, when
updating a node’s statistic during back-propagation, their group
nodes also update their statistics.

Existing methods keep using the generated state abstraction
until the search is finished. However, abstractions are known
to introduce imperfections in the search space [13]. With an
erroneous abstraction, the policy obtained from abstraction
performs worse than the policy derived from the ground search
space. MCTSu reduces the size of action space and helps

Algorithm 1 Elastic MCTS. Nfm ∈ N: maximum forward
model calls. αABS ∈ N: MCTS iteration threshold. Nmcts ∈ N:
current MCTS iteration number. B ∈ N: batch size. φ(s) = ŝ:
state abstraction that maps an MCTS node representing s to
a node group ŝ. ηR ∈ R and ηT ∈ R are the reward function
error threshold and transition error threshold, respectively.
Require: Nfm, αABS , ηR, ηT

1: φ := s→ ŝ, ŝ = {s} # Initialize the abstraction
2: while USED FMCALL < Nfm do
3: MCTSIteration(φ)
4: if Nmcts > αABS then
5: φ := s→ ŝ, ŝ = {s} # Fig.2 (d)
6: else if Nmcts%B == 0 then
7: φ = ConstructAbstraction(φ, ηR, ηT) # Fig.2 (b)
8: Nmcts = Nmcts + 1

construct a better abstraction, but these imperfections remain.
Another issue is that states in the same abstract node share
their statistics while grouped, forcing the action selection for
the recommendation policy of MCTS to choose effectively at
random among actions that lead to the same group node.

We propose a novel approach to solve both problems men-
tioned above. We set up an iteration threshold for abstraction
αABS . After αABS iterations, MCTS assigns the node group
statistics to each node in this group and abandons the state
abstraction (breaking the node groups into ground tree nodes).
The remaining MCTS iterations follow the normal MCTS
algorithm. At this point, MCTS does not search in an imperfect
space and nodes split from the same group might be now
independently visited. The action-state values can become
different and MCTS’s recommendation policy can distinguish
better among the available actions to suggest.

C. Elastic MCTS

Algorithm 1 shows the pseudocode of Elastic MCTS, which
runs MCTS iterations (line 3) until the budget is exhausted
(given in forward model calls, line 2). The set of abstract
nodes is initialized to set of the ground states (line 1), and is
updated after every batch of B iterations (line 7). When the
number of iterations surpasses αABS (line 4), we abandon state
abstraction to return to the original ground search space (line
5), by splitting all the nodes from state groups and assigning
statistics of the state group to the ground nodes. This procedure
is also depicted in Figure 2.

Algorithm 2 shows the MCTS iteration step. This only
differs from normal MCTS in that it uses the statistics
(cumulative reward and visit count) of the node group rather
than the original tree nodes, for the selection (line 1) and
backpropagation (line 9) steps. Note that new nodes added in
the expansion phase are added as ground nodes to the tree,
merging into states after B iterations as shown in Algorithm 1.

Algorithm 3 updates the state abstraction: from leaf nodes
to the root (line 1), for every ground tree node that is not part
of an abstract node (line 2), a similarity check is performed
against all sibling abstract nodes. This similarity is determined

Algorithm 2 MCTSIteration(φ)
1: while Select a child K with maximum UCT

value with φ: Vuct = X(φ(s), a)/N(φ(s), a) +
C
√
lnNparent/N(φ(s), a). do

2: if Node K is not fully-expanded then
3: Expand this node by generating a new child node P .
4: Rollout for P and obtain reward R from state

evaluation function.
5: Break the while loop.
6: else if Node K represents the end of game then
7: Obtain reward R from sate evaluation function.
8: Break the while loop.
9: Backpropagate R, updating X(s, a) and N(s, a) for node

group φ(s) in selection path.

Algorithm 3 ConstructAbstraction(φ, ηR, ηT), l is the tree
depth and L is the maximum depth of the current tree.

1: for l = L to 1 do
2: for all state s1 in depth l that is not grouped do
3: for all abstract state ŝ in φ do
4: s1 in ŝ = true
5: for all state s2 in ŝ do
6: εR = maxa |R(s1, a)−R(s2, a)|
7: εT =

∑
s′ |T (s′|s1, a)− T (s′|s2, a)|

8: if εR > ηR or εT > ηT then
9: s1 in ŝ = false, break

10: if s1 in ŝ == true then
11: Add s1 in abstraction node
12: else
13: Create a new abstract node

by computing the values of two errors εR and εT from samples.
The samples from MCTS are triplets that consist of a state, an
action and a return: < s, a,R >. For computing the εR error
between two states s1 and s2, we calculate |R(s1, a)−R(s2, a)|
for each action a present in either action space of s1 and s2,
with R(si, a) = 0 if a is invalid for any si. εR the takes
the value of the maximum difference found (line 5). εT is
also calculated for all actions (line 6), with |T (s′|s1, a) −
T (s′|s2, a)| = 0 only when the s1 and s2 both have action
a available and this action leads to the same next state s′.
Because we only consider two state representing the same unit
for state abstraction, their next state s′1 and s′2 are recognized
the same when the unit-related attributes have the same values.

If an abstract node is found where εR ≤ ηR and εT ≤ ηT ,
we add the ground node to this node (lines 7− 8). If no group
fulfills this condition, we create a new group including only
the ground node in it (line 10).

VI. EXPERIMENTS

Four agents are used for the experiments in this paper:
1) Combat Agent: This agent is based on a rule-based

agent [18] built-in Stratega. Its strategy is to concentrate
attacks to a single isolated enemy unit and assign healers
to heal the strongest ally units. The isolation score for a

unit depends on the number of nearby ally and enemy
units. Once a target is chosen, the agent searches available
action for each agent to i) get close to the target, ii-a)
attack the target or ii-b) heal the target.

2) MCTS: the default MCTS algorithm with no abstraction
nor unit ordering.

3) MCTSu: MCTS with unit ordering, no state abstraction.
4) Elastic MCTSu: Elastic MCTS with fixed unit ordering.
The same state evaluation function is used by MCTS,

MCTSu and Elastic MCTSu. This function gives an utility
value 0.0 ≤ R ≤ 1.0 to a state after normalization. The
utility values for win, loss and draw are 1,−1, 0, respectively.
If the given state is not terminal, the value of the state is
R = 1− dh

DH , where d is the distance between player’s units
and opponent’s king, h the health point of opponent’s king, and
D and H are the maximum values of d and h. In conclusion,
our state evaluation function encourages the agent to get close
to opponent’s king and attack it.

A. Parameter Optimization for Agents with NTBEA

All our agents are pitched against each other in 1vs1 games.
We use the optimiser N-Tuple Bandit Evolutionary Algorithm
(NTBEA) [24] to tune the parameters of each agent. NTBEA
utilizes a combinatorial multi-armed bandit to navigate the
parameter space, while building a landscape model for a noisy
evaluation function.

For NTBEA, we set the exploration factor for the multi-
armed bandit to 2, we use 50 neighbors, and a limit of 50
iterations. When tuning the agent parameters, the fitness is
set as the win rate of the agent playing against CombatAgent.
In these and all the following experiments, the computational
budget for each action decision by all search agents is set
to 30, 000 forward model calls. As an opponent model, all
search agents simply pick valid actions uniformly at random.
Additionally, for Elastic MCTSu, we empirically determined
the error approximation thresholds for ηR = 0.1 and ηT = 0.3.

The following describes the parameter space explored by
NTBEA: MCTS and MCTSu have the same parameter spaces:
we evaluate the exploration factor C ∈ {0.1, 1, 10, 100} and
rollout length L ∈ {20, 40, 60, 80, 100}. Elastic MCTSu adds
to these two parameters (C and L) the batch size B ∈
{20, 40, 60} and the iteration threshold to stop using ab-
stractions αABS ∈ {4 × B, 8 × B, 12 × B, 16 × B}. The
parameters found are {C = 0.1, L = 20}, {C = 10, L = 100}
and {C = 0.1, L = 40, B = 20, αABS = 12} for MCTS,
MCTSu and Elastic MCTSu.

B. Algorithmic Performance

Using the parameter values as tuned by NTBEA, agents are
evaluated by playing against each other in different variants
of KillTheKing. We designed two groups of experiments to
evaluate the performance of the proposed method. The first
group evaluates the presented agents across scenarios with
different amount of units, to observe how this performance
changes as the action space becomes larger. The second group
investigates the performance in maps with different layouts.

TABLE I
WIN RATES WITH STANDARD DEVIATION FOR GAMES WITH 1 KING, 1

WARRIOR, 1 ARCHER AND 1 HEALER.

Agent 1 Agent 2 Agent 1 Agent 2

MCTS Combat Agent 54.6± 4.7% 45.4± 4.7%
MCTSu Combat Agent 67.2± 2.9% 32.6± 2.9%

Elastic MCTSu Combat Agent 71.3± 3.1% 28.7± 3.1%
MCTSu MCTS 66.0± 5.7% 25.8± 5.0%

Elastic MCTSu MCTS 65.8± 4.0% 30.4± 4.4%
Elastic MCTSu MCTSu 51.6± 6.4% 40.8± 8.6%

TABLE II
WIN RATES WITH STANDARD DEVIATION FOR GAMES WITH 1 KING, 2

WARRIORS, 2 ARCHERS AND 2 HEALERS

Agent 1 Agent 2 Agent 1 Agent 2

MCTS Combat Agent 55.8± 3.2% 44.2± 3.2%
MCTSu Combat Agent 74.4± 2.4% 25.6± 2.4%

Elastic MCTSu Combat Agent 77.4± 2.1% 22.4± 1.7%
MCTSu MCTS 72.0± 2.8% 21.8± 2.4%

Elastic MCTSu MCTS 69.0± 4.5% 27.0± 3.0%
Elastic MCTSu MCTSu 54.4± 3.2% 37.0± 3.4%

Win Rates for both players are reported (draw rates can be
inferred). Each win rate is shown with its standard deviation,
obtained by running each pairing 5 times with 5 different seeds
on the same setting (game map, starting unit positions, etc.).

In the experiment for different unit numbers, we have 3
army compositions: (1 King, 1 Warrior, 1 Archer, 1 Healer),
(1 King, 2 Warriors, 2 Archers, 2 Healers) and (1 King, 3
Warriors, 3 Archers, 3 Healers). For each army composition,
50 game levels based on the map “lak110d” [25] are generated
by randomly choosing initial positions for each unit. In total,
there are 500 games played for each army composition (5
seeds, 50 game levels, ×2 from switching starting sides).

Tables I, II and III show the experimental results. As can
be seen in Table I, all three MCTS, MCTSu and Elastic
MCTSu clearly outperform the Combat Agent. When playing
against MCTS, MCTSu and Elastic MCTSu both outperform
MCTS by a large margin. The win rate of MCTSu is slightly
higher than the win rate of Elastic MCTSu, but the difference
is at a scale of the standard deviation. In the results of games
played between Elastic MCTSu and MCTSu, we can see a
higher winning rate for Elastic MCTSu, with a difference larger
than 10.0%. This consistently shows the improvement obtained
by introducing state abstraction to the algorithm, with Elastic
MCTSu showing good performance against all other agents.

When the search complexity increases from 4 units to 7
units (Table II) and 10 units (Table III), the results mentioned
above remain consistent. It is worth noting that the Elastic
MCTSu performs better when the number of units goes up
(see results when playing against Combat Agent and MCTSu),
which indicates that our method for state abstraction is able to
scale appropriately when using more units.

To evaluate the performance of the proposed method in differ-
ent maps, we choose 27 maps from [25]. 5 army compositions
from 4 to 11 units are tested in each map (see Table IV).

TABLE III
WIN RATES WITH STANDARD DEVIATION FOR GAMES WITH 1 KING, 3

WARRIORS, 3 ARCHERS AND 3 HEALERS

Agent 1 Agent 2 Agent 1 Agent 2

MCTS Combat Agent 59.6± 2.6% 40.4± 2.6%
MCTSu Combat Agent 84.8± 2.5% 15.2± 2.5%

Elastic MCTSu Combat Agent 82.6± 2.3% 17.4± 2.3%
MCTSu MCTS 77.6± 3.1% 15.2± 3.1%

Elastic MCTSu MCTS 75.8± 2.5% 20.8± 2.3%
Elastic MCTSu MCTSu 49.1± 1.9% 38.8± 2.7%

TABLE IV
WIN RATES WITH STANDARD DEVIATION FOR GAMES WHERE ELASTIC

MCTSu PLAYED AGAINST MCTSu IN 27 DIFFERENT LAYOUTS. THE ARMY
COMPOSITION COLUMN INDICATES THE NUMBER OF WARRIORS (XW),

ARCHERS (XA), HEALERS (XH) AND 1 KING (K).

Army Composition Elastic MCTSu MCTSu

K3H 61.1± 8.3% 33.3± 7.4%
K3W3A3H 51.1± 6.8% 30.0± 4.1%

K10A 59.3± 5.5% 25.2± 3.8%
K10W 54.8± 4.9% 35.2± 6.1%

K5W5A 53.0± 4.5% 30.7± 5.7%

We evaluate the performance of Elastic MCTSu playing
against MCTSu. Table IV shows the average win rate with
its corresponding standard deviation for both agents in each
army composition. In all games, Elastic MCTSu outperforms
MCTSu by large margins (between 19.6% and 34.1%). These
results show that the proposed method improves the perfor-
mance of the algorithm and its improvements are consistent in
different army compositions and game maps.

C. Influence of Abstraction Threshold

To investigate the influence of different iteration thresholds,
we pitch Elastic MCTSu against MCTSu, with the map settings
and army compositions used for the experiments whose results
are shown in Tables I, II and III. The values used for the agents’
parameters are those obtained by NTBEA, as mentioned in
Section VI-A, with the exception of the iteration threshold
αABS . The values of this parameter are explored in this
experiment to observe the effect of using state abstraction
during different proportions of MCTS iterations. We try with
proportions αABS ∈ {0%, 25%, 50%, 75%, 100%}. When it is
set to 0%, the algorithm behaves like (normal) MCTS. When
it is 100%, the state abstraction is used during all MCTS
iterations and the recommendation policy picks an action based
on statistics from the group nodes.

As Table V shows, the performance of the Elastic
MCTSu agent differs when the abstraction threshold changes.
Note these two agents use different hyper-parameters (tuned by
NTBEA) thus their win rates differ with proportion set to 0%.
There seems to be a sweet spot on the value of this threshold:
performance is best when using the state abstraction during
the first 50% and 75% iterations of Elastic MCTSu, obtaining
lower winning rates when closer to 0% and 100%. This result
is especially noticeable for a threshold value of 100%, where

TABLE V
WIN RATES WITH STANDARD DEVIATION OF ELASTIC MCTSu VS MCTSu .
THE PROPORTION COLUMN INDICATES AT WHICH % OF THE SEARCH STATE

ABSTRACTION IS ABANDONED.

Army Composition Proportion Elastic MCTSu MCTSu

KWAH

0% 47.4± 2.4% 46.0± 3.8%
25% 50.0± 2.7% 40.4± 3.1%
50% 51.6± 4.6% 39.4± 3.8%
75% 51.8± 4.4% 38.2± 6.0%

100% 39.0± 2.8% 45.0± 1.8%

K2W2A2H

0% 49.0± 3.6% 42.6± 4.0%
25% 49.8± 3.9% 42.6± 4.8%
50% 52.8± 4.8% 37.6± 4.1%
75% 52.8± 3.6% 39.2± 6.4%

100% 38.8± 3.3% 47.2± 1.5%

K3W3A3H

0% 49.0± 3.8% 38.8± 3.5%
25% 47.8± 4.3% 39.0± 3.8%
50% 55.3± 3.9% 33.8± 3.3%
75% 49.2± 3.3% 40.2± 3.1%

100% 40.0± 2.3% 44.4± 1.4%

the win rate is the lowest one for all army compositions. In
all these, MCTSu obtains a consistently higher winning rate
against Elastic MCTSu. Our interpretation of this phenomenon
is that nodes sharing the same statistics in abstracted nodes
until the end of the decision process makes the recommendation
policy of Elastic MCTSu behave suboptimally, as there is not
enough information to discern between the different available
actions at the root node. However, abandoning the abstraction at
an intermediate point during the search lands better results than
MCTSu also in all army compositions, showing the usefulness
of Elastic MCTS and these abstractions.

D. Compression Rate

To show the difference between the ground and the abstracted
state space, we define a compression rate as Ntree/Nabs tree,
where Ntree is the number of nodes generated by MCTS
and Nabs tree is the number of node groups generated by the
abstraction. Note that with the same tree from MCTS, fewer
groups mean more nodes are grouped together and the size of
the tree is reduced more. We evaluate this compression rate in
20 instances of the map “lak110d” with the army composition
(1 King, 1 Warrior, 1 Archer, 1 Healer). Figure 3 visualizes the
achieved compression rate against MCTS iterations, showing
a moderate increase of compression rate over time. In our
previous experiments, the state abstraction was abandoned in
the 240th iteration (αABS ×B = 12× 20), corresponding to
a compression rate of 10 states per group node.

The state abstraction does not influence the computing time
significantly. The average decision times are 667 ± 13 and
685± 13 ms for MCTSu and Elastic MCTSu, respectively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a variant of MCTS that generates
clusters of nodes by using state abstraction. Our work is inspired
by methods that use state abstraction in planning domains, but
it is adapted to target complex search and action spaces, while
still requiring no domain knowledge. Our experiments show

Fig. 3. Compression Rates with standard deviation from 40 game plays.

that the proposed method outperforms MCTS and a baseline
rule-based agent in multiple variants of a turn-based strategy
game, Kill the King. We also observe a reduction of the tree
size by a factor of 10 and a considerable improvement in the
agent’s performance when using the state abstraction during a
proportion of the search < 100%.

The results shown in this paper have been obtained in a turn-
based game, but we hypothesize that the gains in performance
may also benefit other real-time or more complex turn-based
strategy games. Due to the increased number of units controlled
in games like Starcraft and the restricted time to return an
action, we believe that the observed efficiency improvements
may transfer well to RTS games. This is an immediate case
for future work, where we’ll investigate the applicability and
scalability of Elastic MCTS to more complex games.

Besides aiming to improve the performance of the game
playing agent, other aspects can also be investigated. For
example, it is interesting to observe if different gameplay styles
can be obtained when using these abstractions or if, on the
contrary, the simplifications made in the tree prevent us from
that goal. Recent works on quality-diversity methods applied to
strategy games could be explored in conjunction with Elastic
MCTS [26]. Additionally, one of the most widespread methods
for strategy games and large action spaces is the use of portfolio
methods [2], and it will be interesting to see the potential
synergies of state abstraction with these algorithms. Finally, it
is also possible to try different mechanisms for state abstraction
(e.g. [12]), which could be an alternative to Approximante MDP
Homomorphism. In fact, considering the complexity of strategy
games, it’s possible that different abstractions can be applicable
to different moments of the game, which lies an interesting
line of research ahead to discover which abstraction methods
can be applied to which game situations.

ACKNOWLEDGMENTS

Work supported by UK EPSRC grant EP/T008962/1.

REFERENCES

[1] David Churchill and Michael Buro. Build order optimization in starcraft.
In Seventh Artificial Intelligence and Interactive Digital Entertainment
Conference, 2011.

[2] David Churchill and Michael Buro. Portfolio greedy search and
simulation for large-scale combat in starcraft. In 2013 IEEE Conference
on Computational Inteligence in Games (CIG), pages 1–8. IEEE, 2013.

[3] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.
Monte-carlo tree search: A new framework for game ai. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 4, pages 216–217, 2008.

[4] George Konidaris. On the necessity of abstraction. Current opinion in
behavioral sciences, 29:1–7, 2019.

[5] Alberto Uriarte and Santiago Ontanón. Game-tree search over high-level
game states in rts games. In Tenth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2014.

[6] Alberto Uriarte and Santiago Ontanón. High-level representations for
game-tree search in rts games. In Tenth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2014.

[7] Nicolas Arturo Barriga, Marius Stanescu, and Michael Buro. Puppet
search: Enhancing scripted behavior by look-ahead search with applica-
tions to real-time strategy games. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference, 2015.

[8] Nicolas A Barriga, Marius Stanescu, and Michael Buro. Combining
strategic learning with tactical search in real-time strategy games. In
Thirteenth Artificial Intelligence and Interactive Digital Entertainment
Conference, 2017.

[9] Nan Jiang, Satinder Singh, and Richard Lewis. Improving uct planning via
approximate homomorphisms. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems, pages 1289–
1296, 2014.

[10] Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in
monte carlo tree search. In Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

[11] Ankit Anand, Aditya Grover, Parag Singla, et al. Asap-uct: Abstraction of
state-action pairs in uct. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015.

[12] Jesse Hostetler, Alan Fern, and Thomas G Dietterich. Progressive
abstraction refinement for sparse sampling. In UAI, pages 365–374,
2015.

[13] Ankit Anand, Ritesh Noothigattu, Parag Singla, et al. Oga-uct: On-the-go
abstractions in uct. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 26, 2016.

[14] Jesse Hostetler, Alan Fern, and Thomas Dietterich. Sample-based tree
search with fixed and adaptive state abstractions. Journal of Artificial
Intelligence Research, 60:717–777, 2017.

[15] Samuel Sokota, Caleb Y Ho, Zaheen Ahmad, and J Zico Kolter. Monte
carlo tree search with iteratively refining state abstractions. Advances in
Neural Information Processing Systems, 34:18698–18709, 2021.

[16] Balaraman Ravindran and Andrew G Barto. Approximate homomor-
phisms: A framework for non-exact minimization in markov decision
processes. 2004.

[17] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.
In European Conf. on machine learning, pages 282–293. Springer, 2006.

[18] Alexander Dockhorn, Jorge Hurtado Grueso, Dominik Jeurissen, and
Diego Perez Liebana. Stratega: A general strategy games framework. In
AIIDE Workshops, 2020.

[19] Alexander Dockhorn, Diego Perez-Liebana, et al. Portfolio search and
optimization for general strategy game-playing. In 2021 IEEE Congress
on Evolutionary Computation (CEC), pages 2085–2092. IEEE, 2021.

[20] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo
planning in rts games. In CIG. Citeseer, 2005.

[21] Gabriel Synnaeve and Pierre Bessiere. A bayesian tactician. In Computer
Games Workshop at ECAI 2012, pages pp–114, 2012.

[22] Alexander Dockhorn, Diego Perez-Liebana, et al. Game state and action
abstracting monte carlo tree search for general strategy game-playing.
In 2021 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2021.

[23] Naoyuki Sato and Kokolo Ikeda. Three types of forward pruning
techniques to apply the alpha beta algorithm to turn-based strategy
games. In 2016 IEEE Conference on Computational Intelligence and
Games (CIG), pages 1–8, 2016.

[24] Simon M Lucas, Jialin Liu, and Diego Perez-Liebana. The n-tuple
bandit evolutionary algorithm for game agent optimisation. In 2018
IEEE Congress on Evolutionary Computation (CEC), pages 1–9, 2018.

[25] Nathan R Sturtevant. Benchmarks for grid-based pathfinding. IEEE
Trans. on Computational Intelligence and AI in Games, 4(2):144–148,
2012.

[26] Diego Perez-Liebana, Cristina Guerrero-Romero, et al. Generating diverse
and competitive play-styles for strategy games. In 2021 IEEE Conference
on Games (CoG), pages 1–8. IEEE, 2021.

	I Introduction
	II Background
	II-A Monte Carlo Tree Search (MCTS)
	II-B State Abstraction and approximate MDP Homomorphism

	III Stratega
	IV Related Work
	V Elastic MCTS
	V-A Approximate Homomorphism in Strategy Games
	V-B Elastic State Grouping and Un-grouping
	V-C Elastic MCTS

	VI Experiments
	VI-A Parameter Optimization for Agents with NTBEA
	VI-B Algorithmic Performance
	VI-C Influence of Abstraction Threshold
	VI-D Compression Rate

	VII Conclusion and Future Work
	References

