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Abstract—Spectrum inference, also known as spectrum pre-
diction in the literature, is a promising technique of infer-
ring the occupied/free state of radio spectrum from already
known/measured spectrum occupancy statistics by effectively
exploiting the inherent correlations among them. In the past
few years, spectrum inference has gained increasing attention
owing to its wide applications in cognitive radio networks (CRNs),
ranging from adaptive spectrum sensing, and predictive spectrum
mobility, to dynamic spectrum access and smart topology control,
to name just a few. In this paper, we provide a comprehensive
survey and tutorial on the recent advances in spectrum inference.
Specifically, we first present the preliminaries of spectrum infer-
ence, including the sources of spectrum occupancy statistics, the
models of spectrum usage, and characterize the predictability of
spectrum state evolution. By introducing the taxonomy of spec-
trum inference from a time-frequency-space perspective, we offer
an in-depth tutorial on the existing algorithms. Furthermore, we
provide a comparative analysis of various spectrum inference
algorithms and discuss the metrics of evaluating the efficiency
of spectrum inference. We also portray the various potential
applications of spectrum inference in CRNs and beyond, with an
outlook to the 5th generation mobile communications (5G) and
next generation high frequency (HF) communications systems.
Last but not least, we highlight the critical research challenges
and open issues ahead.
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I. INTRODUCTION

A. Background and Motivation

The contradiction between spectrum shortage and spectrum
under-utilization has motivated the emergence of dynamic
spectrum access (DSA) or opportunistic spectrum access (OS-
A) [1]. Cognitive radio (CR) [2] has been well recognized
as one of the crucial techniques of realizing the DSA/OSA
concept. Since its conception, CR has been designed for
autonomous reconfiguration by learning from and ultimately
adapting to the continuously changing radio environment [3].

The first step of implementing a CR is to capture the
relevant information about the spectral evolution. In the spec-
trum management framework relying on spectrum sensing,
spectrum allocation decisions, spectrum sharing, and spectrum
mobility proposed in [4], spectrum sensing has the task of
sensing its occupancy and capturing the characteristics of the
primary user (PU). However, in the practical sensing process,
some inevitable problems arise concerning the sensing speed,
the potentially excessive energy consumption and the limited
sensing scope, all of which hinder the efficient operation of
the CR. The main reason for these problems is that each CR
can only sense the current radio environment at its operating
location without any awareness of the unsensed bands or
locations and of the future trends of the spectral domain
activities [5]. This inevitably wastes precious information
about the evolution of spectral states between time slots,
frequency bands, geographical locations, etc.

Spectrum inference/prediction is known as an effective
technique complementary to spectrum sensing for capturing
the relevant information about the spectral evolution and iden-
tifying spectrum holes. Briefly, spectrum sensing determines
the spectrum state in a passive manner using various signal
detection methods. By contrast, spectrum inference/prediction
is a promising technique of inferring the occupied/free state
of radio spectrum from already known/measured spectrum
occupancy statistics by effectively exploiting the inherent
correlations among them, in a proactive manner. Fortunately,
some other fields of application, such as the atmosphere [6],
finance [7], network traffic [8] and human mobility [9],
inference/prediction techniques (including the popular big
data technique [10]) have provided potential techniques of
discovering the usage patterns hidden in the data and have
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succeeded in maintaining the stability of the economy, fore-
casting the weather conditions and so on. Similarly, spectrum
inference/prediction is a promising technique that can be
utilized for acquiring precious unknown spectrum occupancy
information in advance and for enhancing the performance
of the CRs by accelerating the process of choosing the
best channel and expanding the sensing scope in the time-
frequency-spatial-domain [11]–[13]. Therefore, an increasing
number of researchers have been focusing on using or de-
veloping effective inference/prediction techniques for CRs.
Preliminary results (see, e.g., [14]–[20]) demonstrate that
spectrum inference/prediction algorithms operating across the
time-frequency-spatial dimensions may equip CRs with an
accurate forecasting capability. Consequently, there is an
urgent need for a survey of the specific algorithms, since
the inference/prediction function is at the heart of the CR
architecture and operates in a realm, where communications
techniques meet artificial intelligence.

B. Comparison with Related Survey Articles

Historically speaking, there is only a brief survey relying
on 15 citations [21] on spectrum prediction in CRNs, which
is focused on a temporal scope. By contrast, the goal of this
paper is twofold. The first is to present an all-encompassing
systematic survey of the recent advances in spectrum in-
ference/prediction algorithms from a time-frequency-spatial
domain perspective. The second is to discuss the potential ap-
plications and prospects in order to emphasize the significance
of inference/predicton techniques in the context of the CR
technology and to provide guidelines for researchers focusing
on making CR more intelligent and efficient.

Notably, spectrum inference is also related to the subject of
spectrum occupancy measurements [23], [24] and primary user

activity modeling [22]. Briefly, primary user activity models
use mathematical or theoretical expressions to mimic the
underlying PU activities, while spectrum inference algorithms
use machine learning or data mining methods to predict
or infer the future or unknown PU activities based on the
available historic data. Refs. [22]–[24] are excellent survey and
tutorial papers on spectrum occupancy measurements and/or
theoretical modeling relying on statistical analysis, while our
paper focuses on presenting various data mining algorithms
conceived for spectrum inference/prediction. Indeed, the spec-
trum models in Refs. [22]–[24] are very useful for theoretical
performance analysis or simulated data generation. However,
they cannot be directly used for prediction.

Moreover, the work of this survey paper is also related
to the survey papers on various aspects of CRNs, such
as spectrum sensing [25]–[30], spectrum decision [31]–[35],
resource allocation [36]–[41], security and privacy [42]–[48],
MAC protocols [49], [50], routing [51], network coding [52],
various applications [53]–[56], to just mention a few. A list
of the related survey papers is provided in Table I for further
references. On one hand, the studies on spectrum inference
can find their applications in these aspects, which will be
discussed in detail in the following sections. On the other
hand, spectrum inference to some extent is a parallel or
complementary technique to those in Table I. This paper fills
the gap between them by providing a comprehensive survey
of spectrum inference in CRNs.

C. Organization and Notation

This paper is organized as illustrated in Fig. 1. We introduce
the necessary preliminary knowledge on spectrum inference in
Section II. Specific inference algorithms operating in the time-
frequency-spatial domain are detailed in Section III, while
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TABLE I: A List of Related Survey Articles

Topic Year Reference Contribution
Spectrum prediction 2013 [21] A brief survey of spectrum prediction in CRNs relying on only 15 citations, which

focused on spectrum prediction in time domain.

Spectrum measurements

2014 [22] A survey of primary radio user activity models for CRNs with spectrum measurements.
2016 [23] A survey of spectrum occupancy measurements and the use of interference maps.
2016 [24] A survey on measurement-based spectrum occupancy modeling for cognitive radios.

Spectrum sensing

2009 [25] A survey of spectrum sensing algorithms for cognitive radio applications.
2010 [26] A review on the challenges and solutions of spectrum sensing for cognitive radio.
2011 [27] A survey of cooperative spectrum sensing in cognitive radio networks.
2012 [28] A tutorial on spectrum sensing for cognitive radio.
2013 [29] A tutorial on kernel-based learning for spectrum sensing in CRNs.
2017 [30] A survey of the applications of spectrum sensing in CR interweave communications.

Spectrum decision

2013 [31] A survey of spectrum decision in CRNs and issues of spectrum characterization,
spectrum selection and CR reconfiguration.

2013 [32] An overview of Artificial Intelligence techniques, i.e, learning and reasoning for
optimzing spectrum usage and management in CRNs.

2013 [33] A survey of the approaches and techniques used to solve the spectrum assignment
problem in CRNs, including centralized, cluster-based, and distributed.

2016 [34] A comprehensive survey on the state-of-the-art channel assignment algorithms in CRNs.
2017 [35] A survey of the overlay spectrum access scheme in cooperative CRNs.

Resource allocation

2014 [36] A survey of resource allocation in cooperative CRNs.
2015 [37] An overview on robust design for power control and beamforming in CRNs.
2015 [38] A survey of the recent advances in radio resource allocation in CR sensor networks.
2016 [39] A survey of recent advances in resource allocation techniques and the CR networks

architectural design.
2016 [40] A survey of channel bonding schemes for traditional wireless networks and a detailed

discussion on the channel bonding schemes proposed for CRNs.
2017 [41] A survey for resource allocation in underlay CRNs.

Security and privacy

2012 [42] A survey of security aspects in software defined radio and CRNs.
2012 [43] A survey of security challenges in cognitive radio networks: Solutions and future

research directions.
2012 [44] A review of robust cooperative spectrum sesnsing techniques for CRNs.
2013 [45] An overview of the security threats and challenges that CRs and CRNs face, along with

the current state-of-the-art techniques to detect the corresponding attacks.
2015 [46] A survey and tutorial on the Byzantine attack and defense for cooperative spectrum

sensing in CRNs.
2015 [47] A survery of the recent advances on security threats/attacks and countermeasures in

CRNs focusing more on the physical layer.
2017 [48] A survey that investigates the various location privacy risks and threats that may arise

from the different components of this CRN technology, and explores the different
privacy attacks and countermeasure solutions.

MAC protocols
2012 [49] A survey on MAC strategies for CRNs.
2014 [50] Develops generic, modular and easily extensible layout for classification and system-

atization of Cognitive MAC protocols, offers extensive overview on the state-of-the-art
advances, and highlights the role of regulative and standardization activities.

Routing 2014 [51] A survey of the state-of-the-art routing metrics for multi-hop CRNs.
Network coding 2017 [52] A survey of network coding schemes in CRNs.
Cooperative communications 2014 [53] A tutorial on various cooperative techniques in CRNs.
Green-energy-powered CR 2015 [54] A survey of the energy-efficient CR techniques and the optimization of green-energy-

powered wireless networks.
Cognitive capacity harvesting networks 2017 [55] A tutorial that systematically summarizes the principles for CRN architecture design

and presents a novel flexible network architecture, termed cognitive capacity harvesting
network.

CR for smart grids 2016 [56] A survey on the CRN communication paradigm in smart grids.

Section IV proposes a macroscopic view of various inference
methods. The current and potential future applications are
introduced in Section V. Finally, a range of challenges and
future trends are presented in Section VI along with our
conclusions. The acronyms used in this article can be found
in the Table VII for convenience.

II. PRELIMINARIES FOR SPECTRUM INFERENCE IN CRNS

A. Sources of Spectrum Data

Empirical real world spectrum measurements constitute the
very important source of spectrum data and play a fundamental
role in supporting the research and development of spectrum

inference techniques. Numerous spectrum occupancy measure-
ment campaigns have been conducted all over the world (see,
e.g., [23], [24], [59]–[87]). Excellent surveys and tutorials
on the latest advances of worldwide spectrum occupancy
measurements can be found in [23] and [24]. Briefly, here we
highlight some common features of the spectrum measurement
campaigns as follows.

Firstly, the campaigns have covered various frequency
ranges. For example, the probably earliest measurement cam-
paigns conducted by the Institute of Telecommunication Sci-
ence in the USA around 1995 [59] measured very broad
frequency bands spanning from 108 MHz to 19.3 GHz. One
the other hand, the very recent ones carried out in Beijing [86]
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and London [87] focused on TV bands (e.g., 470 MHz∼790
MHz) to identify TV white spaces. Moreover, there are many
other campaigns that measured specific licensed bands (like
WiFi bands, TV bands, radar bands and cellular bands) relying
on diverse lengths of measurement periods (from a few hours
to several years) as well as different places (e.g., Denver,
Dublin, Aachen, and Singapore, etc) and scenarios (including
rural, suburban and urban areas, indoor and outdoor cases)
[23], [24], [59]–[87].

Second, the campaigns have had various measurement se-
tups. In terms of hardware devices, the spectrum measurement
systems generally consist of the antenna, the filter, the ampli-
fier and the spectrum analyser to collect the spectrum data.
Most of the spectrum measurement campaigns specify several
common setups. For example, both the sampling rate and the
measurement period, as well as the frequency span and fre-
quency points, the measurement location, antenna polarization
and direction have to be chosen according to the particular
applications considered. Moreover, since the various settings
may lead to different levels of measurement complexity and
accuracy, the tradeoffs among of these potentially conflicting
factors have been carefully taken into consideration.

Third, the campaigns have a tendency to bridge real
world spectrum measurements and the public/private spectrum
databases [247]–[250]. On one hand, the collection, storage
and evaluation of massive amounts of spectrum measurements
requires advanced databases. On the other hand, spectrum
measurements ensures a data-driven approach, complementar-
ily to the traditional propagation model-based approach [242],
when aiming for improving the accuracy and the update
speed of the spectrum availability provided by the geoloca-

tion spectrum databases [5], [88], [246]. Moreover, spectrum
measurements are also coupled with the building of radio
environment maps (REM) [255]–[257].

B. Models of Spectrum Usage

Exploiting the statistics of spectrum use or the determin-
istic status of PUs have been one of the critical issues for
secondary use of the licensed spectrum. The research on the
PU’s behavior gleans lessons from the spectrum measurement
campaigns. A brief conclusion is that the obtained spectrum
occupancy results, e.g., in terms of the duty cycle, from
spectrum measurement campaigns run by different groups are
not always the same at different measurement time, locations,
frequency bands with various measurement hardware and
softwares. However, the primary user occupancy models (e.g.,
DTMC and CTMC) discussed in the following are widely used
by different measurement campaigns associated with various
parameter setups for specific bands, locations, and time.

Specifically, in CRNs, spectrum usage models of the pri-
mary system usually determine both the action and the perfor-
mance of a secondary network and thus they play a significant
role in spectrum inference, since the exploration and evaluation
of inference algorithms as well as techniques is often based on
them [90]. Spectrum usage models can be utilized to discover
patterns of the PU’s activities by analyzing the spectrum
data and by reconstructing the statistical properties of the
spectrum usage in real radio communication systems. By
taking advantage of these models, we can generate simulated
data for validating the inference algorithms. In order to prepare
a solid basis for our discussions in the next section, we will
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Fig. 3: DTMC model.

briefly present the most common approaches of modelling
spectrum usage across the three orthogonal dimensions of
time, frequency and space, as illustrated in Fig. 2 [19], [22],
[89], [91]–[93]. Explicitly, in Fig. 2, there are several primary
transmitters having their own primary coverage area, which are
carefully coordinated for mitigating the interference arising
from the others. A number of PUs and CRs are roaming
either within or outside the coverage area of these primary
transmitters. Furthermore, every primary transmitter has its
spectrum for licensed or unlicensed use.

1) Time Domain Model: In the time domain, the spectrum
usage may simply be modeled by a Markov chain having two
states, one representing that the channel is busy and the other
one representing that it is idle. In terms of temporal continuity,
these models can be classified either into the discrete-time
Markov chain (DTMC) model or into the continuous-time
Markov chain (CTMC) model.

a) DTMC Model: Since the PU’s states can be described
as being either busy or idle and most measured data are usually
represented in the form of binary sequences, the spectrum
usage patterns are reflected by bits of zero value indicating
having no traffic and logical ones indicating that the spectrum
is being used by the PU at a particular time instant [94], [95].
The state space of a primary radio channel obeying the DTMC
is denoted by S = {0, 1}. The time index set is discrete,
t = tk = kTs, where k is a non-negative integer representing
the step index and Ts is the time period between consecutive
transitions or state changes.

The most important parameter of the DTMC model is the
transition probability pij(tm, tn) ∈ {0, 1}, which represents
the probability that channel state moves from state i in the m-
th slot to state j in slot n. In this particular case, the transition
matrix is given by:

P =

[
p00 p01

p10 p11

]
. (1)

The overall DTMC model describing the activity of a
PU’s channel is illustrated in Fig. 3. We can use the above-
mentioned concept of DC, denoted by Ψ, as a metric of
describing the ratio of time during which the channel is
declared busy as well as idle [89], [91].

In terms of stationarity, the DTMC models fall into two
categories: stationary and non-stationary DTMC models. In
the stationary DTMC model, the transition matrix can be
formulated as,

P =

[
1−Ψ Ψ

1−Ψ Ψ

]
, (2)

where Ψ is a constant parameter and it can be selected as
Ψ = p01 = p11, especially in the long term Ψ = P (s = 1). In
this way, the DTMC model becomes capable of reproducing
the mean DC of a real channel. However, the stationary DTMC
may only be valid for a limited time period, if the system
exhibits only an approximately stationary behavior during
this period, where the reproduced average DC approximately
matches the instantaneous DC at all times [89].

If the modeled system does not appear to exhibit strictly sta-
tionary characteristics, a non-stationary DTMC model should
be considered. In this case, the transition matrix should be
defined as,

P (t) =

[
1−Ψ(t) Ψ(t)

1−Ψ(t) Ψ(t)

]
, (3)

where Ψ(t) is a variable, which is a function of the discrete
time t. Based on different patterns of the channel’s load,
DC models can be developed using both deterministic and
stochastic modelling approaches [89]. On one hand, in many
particular services, like GSM and TETRA, common human
habits and social behaviors impose a significant impact on the
load patterns, which deterministically shape the characteristics
of Ψ(t). On the other hand, the stochastic DC modelling
approaches are presented to describe the random variable Ψ(t)
as a function of numerous random factors contributing to the
PU’s behavior in real scenarios. It was found that the empirical
PDFs of Ψ(t) can be modelled by the Beta distribution [96]
and the Kumaraswamy distribution [97].

Furthermore, extensive empirical measurement results have
shown that the DTMCs associated with the deterministic
and stochastic DC models mentioned above are capable of
reproducing the average DC value and the statistical properties
of the PU’s idle or busy duration in real-world channels. The
DTMCs have also been widely used in the literature to analyze
the system throughput, the average packet delay and the end-
to-end packet delay (see, e.g. [98], [99]).

b) CTMC Model: In contrast to the DTMC model, the
CTMC model pays closer attention to modeling the length of
a state’s holding time. Note that the traditional exponential
distribution used for characterizing the state holding time
in CTMC is not necessarily accurate enough, according to
a range of realistic measurements and analysis conducted
across the globe [91], [100]–[106]. In view of this, many
researchers considered the Continuous-Time Semi-Markov
Chain (CTSMC) models, where the sojourn time may obey
arbitrary distributions. In [104], [105], [107], [108], the idle
duration was assumed to obey either a generalized Pareto
distribution [108], or a mixture of uniform distribution and
the generalized Pareto distribution, or alternatively, obey a
hyper-Erlang distribution [104], [105] and so on. In [89], the
Lopez et al. employ goodness-of-fit metrics to evaluate several
common distributions and to demonstrate that in real-world
systems CTSMC models have a better performance in terms
of reproducing the statistical properties of the busy and idle
durations. Additionally, the correlation between the busy and
idle durations, which the CTSMC fails to reproduce has been
analyzed in [91], [109].
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2) Frequency Domain Model: In this paper, the frequency-
domain model can also be termed as the time-frequency model,
since we do analyze the properties of spectrum data over the
allocated frequency band based on the channel’s DC which is
a temporal parameter. Although the channels are considered
to be mutually independent within a spectrum band [90],
[110], this may not be the case for adjacent frequency-domain
channels [92]. Hence, when modeling the spectrum usage in
the frequency domain, the dependency among neighboring
channels should be taken into consideration. With respect
to the statistical correlation across the frequency band, two
aspects can be investigated through the analysis of real-world
spectrum data. The first one is the DC distribution within an
allocated band, while the second is the cumulative distribution
function (CDF) of the DC distribution, which are closely
matched by the Beta distribution, by the Kumaraswamy dis-
tribution and so on [89].

Another aspect to consider is the DC clustering across
the frequency bands. In [111], the similar DC values of the
adjacent channels were classified into the same group, and the
distribution of the size of the cluster group was described by an
appropriately shifted version of the geometric distribution [96].

3) Spatial Domain Model: In recent years, numerous s-
tudies considered the relationships among the channel states
observed by CRs in different scenarios [112]–[114]. Making
use of the location information beneficially supports the CR’s
initial awareness of the environment and its ability of taking
actions efficiently [115], [116]. Based on the above-mentioned
DC models in the time- and frequency- domains, the spatial
DC models and the modelling of simultaneous observations
are briefly introduced below. Reference [89] discussed the
spatial DC models under different conditions, namely when
concerning either time-varying or constant power and contin-
uous or discontinuous transmitters.

The DC values, Ψ , are calculated after the process of
energy detection. The authors in [89] also discussed the
conditional and the joint probabilities of the state observed
at an arbitrary location and the simultaneously observed state
at the reference location. Given these two probabilities, we
will be able to model the spectrum usage at another location
based on the model at the reference location. Therefore,
the spatial modelling procedure attaches importance to the
correlation of the spectrum usage at various locations for
supporting spectrum inference/prediction. However, it should
be noted that generally spectrum measurement campaigns are
conducted by measuring the received signals and then esti-
mating the status of the PUs using various spectrum sensing
techniques, such as energy detection [117], matched filtering,
and waveform based sensing. Due to the inevitable noise,
incomplete observations, and the ambiguity of parameters like
the energy decision threshold and the undiscovered spectrum
features, such formulations are unable to accurately infer the
PUs’ true status and to capture the real characteristics of
the PU’s activity [117]–[119]. In this sense, all the models,
including those introduced above may be imperfect, which
necessitates further research.

C. Spectrum Inference in Various CRNs

Depending on the type of available side information and
on the regulatory constraints, there are three main CRNs
paradigms: underlay, overlay, and interweave [120]. Briefly,
the underlay CRN allows CRs to operate if the interference
they cause is below a given threshold. In overlay CRNs, the
CRs overhear the transmissions of the PUs, and then use
this information along with sophisticated signal processing
techniques to improve the performance of PUs, while also
obtaining some additional bandwidth for the CRs’ own trans-
mission. In interweave CRNs, the CRs sense the absence of
a PU signal in the time, frequency, and/or spatial domains,
and opportunistically communicate during the PUs’ absence.
Generally, underlay, overlay, and interweave can be used in
different bands (e.g., TV white space, radar bands and cellular
bands) according to the specific regulations in a separate or
hybrid manner [121], [122].

Most of the existing studies on spectrum inference focus
their attention on interweave CRNs, i.e., on predicting the
spectrum occupancy state in terms of being idle (i.e. the
absence of a PU signal) or occupied (i.e. the presence of a PU
signal), by licensed users. There are relatively few studies on
spectrum inference in other types of CRNs such as underlay,
overlay and hybrid CRNs. It is an interesting and fruitful
research direction to extend the research from interweave
CRNs to other types of CRNs. Technically, a key difference is
that the inference of binary spectrum state (i.e. idle or busy) in
interweave CRNs should be extended to the inference of multi-
level or even continuous spectrum state values in underlay and
overlay CRNs, relying on the knowledge of the channel state
information between PU transmitters and PU receivers.

III. SPECTRUM INFERENCE ALGORITHMS IN CRNS

Numerous prediction algorithms have been proposed for
forecasting the channel state, the spectrum occupancy, the
potential interference imposed, the PU’s coverage area and so
on. In this section, the common spectrum inference/prediction
algorithms found in the literature will be surveyed in the
time, frequency and spatial domains by adopting a multi-
dimensional approach. The taxonomy of these spectrum in-
ference algorithms is illustrated in Fig. 4.

A. Temporal Spectrum Inference Algorithms

The three main branches of Fig. 4 will be surveyed in
Subsections A, B and C respectively, commencing with the
temporal techniques. In the time domain, spectrum prediction
infers the status of spectrum according to the historical in-
formation on the evolution of the spectral occupancy [128].
The information gleaned is represented by a series of numbers
extracted from the original data, with the aid of linear predic-
tion, Markov modelling, neural networks, pattern mining, etc.
After acquiring the regular patterns of the PU, we can sense
the spectrum in less time than usual, conserve precious energy
and make collisions among PUs and CRs more infrequent.
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1) Linear Prediction (LP): Let us commence with LP algo-
rithms seen at the top of the temporal branch. Linear prediction
is an important branch of mathematical statistics, where future
values are predicted as a linear function of previous samples.
The LP based approach is widely used in digital signal
processing for predicting the signal power as a benefit because
of its remarkable simplicity, and it has also been invoked for
implementing temporal-domain spectrum prediction [15], [93],
[128]–[130]. Other applications include speech- and audio-
compression [131] as well as video compression [132].The
most commonly used linear prediction models include the
autoregressive (AR) model, the moving average (MA) model,
the autoregressive moving average (ARMA) model and the
autoregressive integrated moving average (ARIMA) model.

a) AR Model: With reference to the left column of the
middle branch in Fig. 4, the AR model of order m, AR(m),
can be formulated as [133],

X(t) =

m∑
i=1

αjX(t− i) + e(t). (4)

In the spectrum prediction context, X(t − i) represents
the past observation before the t-th slot, while X(t) and
e(t) represent the observation and error terms of the t-th
slot. The expression

∑m
i=1 αjX(t− i) aims for weighting the

historical observations, where m is the length of the prediction
memory window and αj is the weighting parameter of the
AR model. Reference [15] used a second-order autoregressive
model, i.e. AR(2), for performing spectrum prediction in the
time domain, where the coefficient αj has been obtained as
the solution of the Yule-Walker equations. Then a Kalman
filter has been used for predicting the state of a spectrum
hole. In [130], the channel occupancy status is converted
into a binary form and the AR model is used for spectrum
occupancy characterization as well as for prediction. Finally,
artificial signals complying with the Global System of Mobile

(GSM) communication standard were generated for testing the
performance of prediction. Furthermore, AR models have also
been applied for predicting both the channel state transitions in
fading channels [134], [135] and the channel occupancy [93].

b) MA Model: The MA model is similar to the au-
toregressive model, except that the predicted value for the
observation in the t-th slot depends on the error values
observed in the past [136], rather than on the current values.

The MA model of order n, namely MA(n), can be formu-
lated as [133],

X(t) =

n∑
i=0

βie(t− i), (5)

where, the notations X(t) and e(t) are the same as in the
AR model, while βj is the parameter of the MA model and
β0 = 1.

In [137], when analysing the Chinese TV-band channel-
s spanning from 603.25 MHz to 843.25 MHz, the results
indicate that the MA model is more suitable for predicting
the strength of television signals than the ’experience based’
method. Additionally, in [129], a non-linear exponential mov-
ing average (EMA) model is proposed, whose weighting factor
decreases exponentially for each older data point, in order to
put more emphasis on the recent observations, while giving
some cognizance to former observations.

c) ARMA Model: Still referring to the left column of the
middle branch in Fig. 4, the MA model is combined with the
AR model to form an autoregressive moving average model
ARMA(m,n) [16] as follows:

X(t) +

m∑
i=1

αjX(t− i) =

n∑
i=0

βie(t− i), (6)

where the notations of X(t) and e(t) are the same as in the AR
and MA models. Furthermore, αj and βj are the parameters
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Fig. 5: Linear prediction (LP) structure.

of the ARMA model, β0 = 1. In [138], the ARMA model
shows a better prediction performance in channels which have
cyclic behaviors compared to the performance in forecasting
the Bluetooth and WiFi channels that have more random
behaviors.

d) ARIMA Modeling: The most important feature of the
more flexible ARIMA model is that it is capable of handling
non-stationary time series as well as rapidly decaying autocor-
relation functions [139], etc. The general ARIMA(m,n, d)
model is formulated as [136],

W (t) =

m∑
i=1

αjW (t− i) +

n∑
i=0

βie(t− i), (7)

where we have W (t) = X(t) − X(t − d), while αj and
βi are the parameters of the ARMA model of order m, e(t)
represents random errors, and d is the degree of non-stationary
homogeneity.

The overall process of using these models is illustrated in
Fig. 5 adopted from [128]. The samples XXX of the time series
constitute the input of this procedure. As seen in Fig. 5, we
first judge the degree of stationarity for the input data, and if
the samples are not deemed to be stationary, they will have to
be processed by different techniques. Following this step, we
calculate both the covariance function as well as the partial
autocorrelation function, and then classify XXX into a specific
model. Finally, we compute m and n. As seen in Fig. 5, we
also have to estimate the parameters αj and βi. Finally, we
use the selected model to forecast the prospective values.

2) Markov Model (MM) Based Methods: Let us now con-
sider the second column of the middle branch in Fig. 4.
The Markov chain based modelling of sub-band PUs was
validated by analyzing real-world measurements in the paging
spectrum band in [140]. The Markov model has an appealingly
simple structure characterized by its state-transition matrix. In
this subsection, we will discuss a pair of temporal prediction
methods, namely the Hidden Markov models (HMM) and
the partially observable Markov decision processes (POMDP),
also featuring in Fig. 4.

a) HMM: According to [141], an HMM is usually for-
mulated as λ = (πππ,AAA,BBB), where πππ represents the initial state
probability vector, defined as:

πππ = [πππi] = P (qt = si), 1 ≤ i ≤ N, (8)

where S = {s1, s2, , sN} denotes N different states in a
Markov chain and qt ∈ SSS represents the state at time instant

Initialization:
Set λ0 = (π0,A,B)

Observation, Training:
Collect observation O, 

Maximize P=(O|λ )

Decoding:
 Maximize P=(Q, O|λ )

P=(O, 1|λ )>P=(O, 0|λ )?oT+1 = 1 oT+1 = 0Yes No

Prediction

Fig. 6: HMM prediction process.

t, where πi satisfies the conditions 0 ≤ πi ≤ 1,
∑N
i=1 πi = 1.

Furthermore, AAA = [aij ] is the state transition matrix, which
defines the probability of traversing from one state to another,
formulated as:

aij = P (qt = sj |qt−1 = si), 1 ≤ i, j ≤ N. (9)

Furthermore,BBB = [bik] is the observation probability matrix
that offers the option of producing different observed values,
while being in a particular state, which is encapsulated in:

bjk = P (ot = vk|qt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤M, (10)

where VVV = {v1, v2, ..., vM} represents the space containing M
observed symbols and ot is the value observed at time instant
t, ot ∈ VVV . Note that we have 0 ≤ aij , bjk ≤ 1,

∑N
j=1 aij = 1

and
∑M
k=1 ajk = 1.

Traditionally, a standard HMM predictor is based on the
discrete-time model introduced in Section II, where the time
is slotted and the state space is binary, with the spectrum
slot being either in state si = 1 or si = 0. The set
OOO = {o1, o2, ..., oT } may be used for representing the past
observation sequence in T consecutive slots. In order to predict
the state in the (T + 1)-st slot, a HMM predictor of the
standard form may be designed by obeying the following four
steps [20], [111], which are illustrated in Fig. 6 and detailed
as follows:

Step 1: Initialization. Set the initial parameters of the HMM
λ0 = (πππ0,AAA0,BBB0).

Step 2: Observation. The CR senses the sub-band spectrum
and collects the observed data OOO = {o1, o2, ..., oT }.

Step 3: Training. Given the observed sequence, the param-
eters of the HMM will be adapted by invoking an appropriate
training approach, such as the Monte-Carlo method, and the
Baum-Welch algorithm [141], for maximizing the likelihood
associated with the model and defined as P (OOO|λ).

Step 4: Prediction. The state observed at slot (T+1), oT+1,
can be predicted by the following rule:

oT+1 =

{
1, if P (OOO, 1|λ) ≥ P (OOO, 0|λ),

0, if P (OOO, 1|λ) < P (OOO, 0|λ).
(11)
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This standard HMM approach has been investigated in [14],
[20], [95], [111], [140], [142], [143] for the sake of predicting
the future states and the idle/busy durations of the channel.
In [95], the HMM is used for predicting the spectrum us-
age patterns, which are assumed to be deterministic Poisson
distributed. Given a sequence of predicted states, the CR
will dynamically choose these surmised frequencies for its
use, even though the spectrum occupancy should generally be
modeled by stochastic distributions, as previously mentioned
in Section II. This algorithm was also advocated in [142],
matching its output to the data collected from the 450-470
MHz band in Australia, but the specific implementation of
the algorithm was not detailed in [142]. Meanwhile, the
authors of [14] considered a realistic propagation environment
that took into account the time delay incurred both by the
hardware and software. It should be mentioned that in [14]
the parameters of the HMM used are obtained statistically,
without employing any training for the model. Instead, the
authors verify the proposed method using measured WiFi data
instead of artificial data. Both the model complexity and the
computational complexity have been studied in order to pro-
vide a qualitative characterization of the HMM performance,
which were complemented by a range of implementation
issues arising during the design [118]. As the number of states
N increases, the number of model parameters to be estimated
also increases. The computational complexity of the HMM
based predictor is directly related both to the number of states
N and to the size of the observation sequence T .

Moreover, MM or HMM-based methods work well under
the assumption of having memoryless or Markovian spectrum
state evolution, where the future state depends only on the
relevant information about the current, not on information
from distant the past. The Markovian property has been
validated by analyzing real-world measurements in the paging
spectrum band in [140], which motivates the research of
HMM-based spectrum inference methods. Most of the related
studies have focused on first-order and stationary HMM.
However, in practical systems, the spectrum state of the
future may depend on a relatively long historical information
(see the tide effects in the GSM bands [209]). The state
distribution of PUs may also dynamically change. In order
to improve the performance of the standard HMM, in recent
years researchers have developed several sophisticated HMMs
by carefully considering the stationarity and the high-order
Markovian nature of the spectral slot occupancy pattern. Some
representative advances are summarized below as follows:

• Non-stationary Hidden Markov model (NS-HMM).
Here we are still considering the Markov-modeling be-
longing to the second branch of the temporal algorithms
seen in Fig. 4. As mentioned above, the PU’s spectral
slot occupancy pattern is assumed to be deterministically
distributed, when the standard HMM model is used.
However, in reality the PU’s behaviors obey time-varying
non-stationary DTMC [89]. Under these circumstance,
conventional HMMs may fail to adequately characterize
the PU’s dwelling time distributions [17]. For this reason,
the NS-HMM was employed for modeling the channel’s

status in [17] in order to characterize the idle/busy
duration of the PU’s channel. The NS-HMM can be
described as λNS = [πππ,AAA(t),BBB], which replaces the
static transition probabilities of the conventional HMMs
with dynamic ones. In [17], the parameters of the NS-
HMM are inferred through Bayesian inference with the
aid of Gibbs sampling, and the impact of different model
parameters on the model’s accuracy has been investigated.
It was found that as expected the channel quality experi-
enced by the CR is an increasing function of the sensing
accuracy and of the estimated idle duration. In [118],
the so-called expectation maximization based algorithm
was developed for calculating the parameters of a NS-
HMM. Numerical experiments relying on real spectrum
measurement data have been carried out for demonstrat-
ing that the NS-HMM outperforms the traditional HMM-
based approaches.

• Hidden Bivariate Markov Model (HBMM). As an
extension of the standard HMM, HBMMs have been
proposed for more accurately characterizing the transmis-
sion pattern of a PU [144]. In contrast to the standard
univariate HMM, the HBMM incorporates a number of
additional variables by introducing a state duration distri-
bution for modeling the channel usage in CR, rather than
using the geometric duration distribution of a standard
HMM. In [144], the HBMM was described in form of
the function λB = (πππ,GGG,µµµ,RRR), where πππ is the initial
state probability vector reminiscent of that in the standard
HMMs, GGG is the state transition matrix, while µµµ and RRR
represent the vector of observed receive signal strength
average and variance. Repeatedly using the definitions of
the standard HMM parameters, let ZZZ = OOO ×SSS = [Zt] =
(ot, qt) denote the specific value returned by the bivariate
Markov chain. The state transition matrix can be defined
as:

GGG = [gab(ij)] = [P (Zt+1 = (b, j)|Zt = (a, i))]. (12)

The parameter λB may be estimated by extending the
Baum algorithm [145], which is simpler than an explicit
duration estimating algorithm. When determining the
model parameters, the authors of [144] apply forward-
backward recursions for predicting the spectral slot state
at a future time instant. The performance of the HBMM
in spectrum sensing and prediction was characterized
by numerical results in [144], demonstrating that the
HBMM is capable of more accurate state predictions than
a standard HMM.

• Higher-order HMM. Still referring to Fig. 4, we note
that although the first-order standard HMM has been
broadly adopted for predicting the channel’s state, this
model does not make full use of the historical infor-
mation, since a state only depends on the immediate
preceding state. To alleviate this problem, a higher-order
HMM was also proposed for predicting the next channel
state [146]. A higher-order HMM can be formulated as
λHO = (πππ,AAAHO,BBB). In contrast to the standard HMMs,
AAAHO = [aHOij ] is the state transition matrix representing
the transition from the states in the previous D slots to
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the current state, which can be defined as [146]:

AAAHO =[aHOij ] = P (qt+1 = siD+1
|qt = siD , ...,

qt−D+1 = si1), i1, i2, ..., iD, iD+1 = 1, ..., N.

When considering the computational complexity versus
model accuracy trade-offs, there are several variants of
the higher-order HMMs [146]–[149]. By relying on real-
world WiFi signals recorded, it was shown that the
performance of the proposed approach is significantly
better than that of the nearest neighbor prediction relying
on first-order HMMs, especially when the order of the
HMM increases [146].
b) POMDP: The last member of the MM-based temporal

methods seen in Fig. 4 is constituted by the POMDP family,
which is a generalization of a Markov decision process that
tolerates uncertainty about the state of a Markov process and
allows the acquisition of environmental information [150].
Based on DTMC model of Section II [89], a POMDP applied
in CRNs is defined by the six-tuple (SSS,AAA,TTT ,RRR,ZZZ,OOO) [151]–
[154], where
SSS is the channel state space {0(idle), 1(busy)};
AAA is a discrete and finite set denoting the CR actions, i.e.

as {a1(access), a2(no access)};
TTT : SSS × AAA → ΠΠΠ(SSS) is the state-transition function. If s

is the current channel state and action a is chosen by the
decision maker, the process will move to a new state s with
the probability of TTT (s′|s, a).
RRR : SSS × AAA → R is the reward function that defines the

expected immediate rewardRRR(s, a) received, when the process
is in state s and action a is taken;
ZZZ is a finite set of observations the CR infers from the radio

environment;
OOO : SSS×AAA→ ΠΠΠ(ZZZ) is the observation function and for each

action and resultant state, O(s′|a, o) denotes the probability of
observing o and moving to state s′ after taking action a;

The POMDP based CR engine [155] is depicted in the
Fig. 7, with the state predictor being the core component in
the process [151], [153]. In this procedure, b is the ‘belief
state’, which describes the probability that the channel’s state
is idle, summarizing all the past information necessary for
formulating the allocation decision π [154]. The channel state
predictor computes the probability b based on a combination
of the most recent value, on the current observation and on
the previous action. More specifically, the authors of [153]
proposed an approach for channel state prediction based on
POMDP by finding the optimal policy that maximizes some
aspect of the reward. In this approach, the probability b′(s′)
that the future state s′ is idle can be calculated by the Bayesian
formula as follows

b′(s′) = P (s′|a, b, o) =

∑
S O(ot+1|s′, a)T (s′|s, a)b(s)

P (ot+1|b, a)
.

(13)

The numerical results provided in [152], [156] have shown
that the performance of the spectrum access approach using
the POMDP based CR improves over time upon gleaning in-
creasingly more accurate information concerning the channel’s
state inferred from the accumulated observations. As a benefit,
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Fig. 7: POMDP based prediction.
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the collisions of CRs with PUs were substantially reduced.
However, a problem concerning the POMDP based approach
is its potentially excessive complexity, especially when the
number of channels is high. To tackle this problem, more
research is required for developing efficient algorithms for
solving POMDP problems.

3) Artificial Neural Network (ANN) Based Methods: Let
us now move on to the third family of the temporal methods
portrayed in Fig. 4. As a key technique in machine learning,
the ANNs have been extensively applied to communications,
signal processing, intelligent control, etc. They represent a
class of flexible nonlinear models based on parallel compu-
tation, which consist of both input and output layers as well
as intermediate layers composed of artificial neurons [157].
In CRNs, an ANN allows for learning the PU’s behavioral
patterns by invoking a training set of spectrum data, learn
these patterns, and then capitalize on it for classifying new
patterns and for making forecasts. Because of its high predic-
tion accuracy and capability of learning, ANNs constitute a
popular approach of predicting the spectrum state’s evolution.
Generally, depending on their architecture, we can categorize
ANNs into two classes: feedforward and feedback neural net-
works [158]. The architecture of ANNs invoked for predicting
channel states is depicted in Fig. 8.

a) Feedforward Neural Networks (FFNNs): Feedforward
neural networks enter the spectrum data strictly into the input
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layer and give the states predicted by the output layer without
any feedback. Referring to the rich literature concerning FFNN
based algorithms invoked for spectrum prediction [20], [157],
[159]–[168], we will first provide a brief overview of typical
multilayer feedforward neural networks (MFNNs), also known
as the multilayer perceptron (MLP). Then we will describe the
overall spectrum prediction procedure of neural networks.

Based on the PU’s activity modeled by DTMC, where the
input and output data are represented by binary sequences,
MFNNs rely on neurons as their basic computing unit for
calculating a weighted sum of the inputs and perform a
nonlinear transformation of the sum [20], [160], [168], which
can be expressed as follows [20], [168]:

ylj = f
(
alj
)
, (14)

alj =
∑
i

yl−1i wlji, (15)

where ylj is the output of a neuron j in the lth layer; wlji
represents the adaptive weights connecting the neuron j in
the lth layer and neuron i in the (l − 1)st layer; alj is the
weighted sum of the inputs yielding the outputs of the former
layer, and f(alj) is the activation function, often represented
by the tangent sigmoid function [160]:

ylj =
2

1 + e−2a
l
j

− 1. (16)

Before performing spectrum prediction, there should be a
training process for MFNNs. First, the observed spectrum data
vectors XXX(t − τ + 1, t) = {xt, xt−1, ..., xt−τ+2, xt−τ+1} are
imported into the input layer and the estimated output data
yot+1 is calculated using the activation function. Then, the
difference between the desired value xt+1 and its estimation
yot+1 is denoted as the error et, which can be expressed as
follows [20], [160]:

et = xt+1 − yot+1. (17)

Finally, in order to minimize the prediction error et, the
adaptive weight wlji will be updated by repeatedly using the
back propagation algorithm [169] until the prediction error
reaches its minimum. In [160], the prediction error is measured
by the mean squared error (MSE), denoted as E(w), which
can be computed as follows [160]:

E (w) =
1

2

∑
t

e2t =
1

2

∑
t

(
xt+1 − yot+1

)2
. (18)

Once the training process is completed, the future spectrum
state can be predicted by capitalizing on the observations with
the aid of the MFNNs. In [20], the predicted value yot+1 is
decided by invoking a threshold at the output layer, which
can be expressed as follows:

yot+1 =

{
0, if yot+1 ≥ 0,

1, if yot+1 ≤ 1.
(19)

It is noteworthy that the learning speed of the traditional
FFNNs, like MFNNs, is generally slower than desired, which
would naturally evolve the attainable prediction efficiency.
This problem was solved by the extreme learning machine

(ELM) of [177]. Furthermore, the authors of [159] optimized
the original ELM, while in [158] the optimally pruned extreme
learning machine (OP-ELM) was used for spectrum prediction.
OP-ELM based spectrum prediction also relies on the structure
of single hidden layer neural networks (SLFNs), just like the
original ELM, where the input weights are randomly assigned,
but the output weights are calculated using a different proce-
dure. According to the experiments conducted in [158], [159],
the OP-ELM algorithm is more robust and flexible than the
original ELM, showing a higher learning speed and a higher
accuracy compared to other FFNNs.

b) Feedback Neural Networks (FBNNs): The only differ-
ence between FBNNs and FFNNs is the presence or absence
of feedback links that span from the outputs of neurons to
the inputs of neurons in the previous layer [178], [179],
as depicted in Fig. 8. The FBNN requires the data to be
passed both forward as well as backward, hence imposing a
high complexity and often making the FBNNs ‘confused’ or
unstable. In this sense, the forecasting performance of FBNNs
may become less attractive than that of FFNNs [180]. FBNNs
gleam information from the sequence or time dependence of
the inputs and the inputs themselves, which means that the
features detected in previous patterns form a part of each new
pattern.

Therefore, when we want to take the previous spectrum
observations into consideration in order to sense or predict the
spectrum, the FFNNs discussed above are less pragmatic for
us. In [178], Elman recurrent neural networks (ERNN) is used
for radio frequency (RF) multivariate time series modelling in
order to predict the spectral evolution. This feedback method
leads to more intelligent CR decisions for exploiting the
expected spectrum opportunities, thereby leading to optimized
spectrum usage and interference avoidance [178]. Although
ERNN is powerful in predicting the time domain sequences,
it has slow convergence and does not excel in terms of deter-
mining the network structure [181]. The Echo State Network
(ESN) concept is proposed as a new technique of overcoming
these problems in [182]. Taking this as a basis, the authors
of [183] further proposed a method based on an improved
form of ESN for spectrum prediction. The proposed ESN
structure is also visualized in [183]. In contrast to the ERNN,
the intermediate hidden layers are replaced by a cycle reservoir
associated with fixed feedback connections and randomly con-
nected neurons [183]. The parameters of the improved ESN are
calculated using particle swarm optimization (PSO). It should
be noted that the PSO is known to outperform the traditional
back propagation algorithms in training ANNs, as a benefit
of their faster convergence and lower complexity [165], [184].
Experiments have been conducted in [183] to demonstrate that
the performance of the optimal ESN is better than that of
the ERNN in predicting both the specific state and the state
duration of the primary spectrum, since it reduces the training
time required for obtaining a higher prediction accuracy.

4) Pattern Mining (PM) Based Methods: PM is a classic
data mining technique conceived for discovering underlying
patterns in large amounts of data. In CRNs, the patterns
usually reflect the rules hidden in the spectrum occupancy of
a channel. The motivation of finding the rules arises from the
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desire to analyze historical spectrum data for predicting the
future channel states, so as to improve the attainable spectral
efficiency and hence to reduce the collision rate. In previous
research, the spectrum usage prediction has relied on frequent
pattern mining (FPM) [119] and partial periodic pattern mining
(PPPM) [16]. Both methods are based on a binary channel
state model.

• FPM. In the context of CRNs, the channel state values
observed are delivered in a sequence and serve as the
spectrum occupancy history database. The mission of
FPM is to find the specific sequences that appear in
the data set with a frequency above a threshold, which
are referred to as a frequent sequential patterns [185].
Thus, it becomes possible to predict the next state or next
sequence. Although the FPM of [119] is two-dimensional,
its ability to predict the future spectral states is only
known in the time domain.

• PPPM. In contrast to FPM, the partial periodic patterns
observe the PU’s features during certain time periods in-
stead of the entire time span [186]. Since the propagation
environment is stochastic and the PU’s behaviors may not
show an obvious regularity. The patterns only become
relevant for certain time periods of the day [16]. The
procedure of PPPM based prediction can be described as
follows [16]:

Step 1: Process the binary channel state values and
generate candidate patterns;
Step 2: Count the support of each candidate pattern;
Step 3: Eliminate the redundant candidate patterns;
Step 4: Generate the prediction rules and calculate the

probability of the future channel states.
Additionally, the algorithm based on PPPM was also used
for predicting the channel state duration in [16] so as to
reduce the collision probability owing to the PU’s short
absence.

5) Other Algorithms: Other relevant temporal methods
found in the literature include Bayesian inference (BIF), learn-
ing automata (LA) and support vector machines (SVM). BIF
is known as a classic method of solving the state prediction
problem in CRNs as a critical part of the Markov systems,
like the aforementioned NS-HMM and POMDP. It provides
a general unifying framework for sequential state estimation.
The procedure of BIF based prediction continuously updates
the a posteriori distribution in a recurrent manner, based on
the influx of spectrum data. Assuming that the evolution of
the state is Markovian, BIF can make predictions based both
on the observations and on the a posteriori distribution. BIF-
based prediction is proposed in [17] [187] for estimating the
distribution of idle durations in the PU’s traffic. The algorithm
proposed in [17] combines BIF with NS-HMM to predict the
channel quality, which is capable of improving the efficiency
of dynamic spectrum access. Compared to the traditional
maximum likelihood technique, the BIF technique is capable
of performing better, when processing a limited number of
samples, and the channel availability may be reliably predicted
after estimating the prevalent spectrum usage patterns [188].
In [157], a LA technique is utilized for predicting the spectrum

opportunities in CRNs. The LA technique first generates the
PU’s activity model according to the characteristics of the
PU’s behavior. Then, the training and testing stage updates
the parameters of the models, and finally the performance of
the model is assessed in order to correct the prediction of the
system’s behavior. In comparison to the MFNNs, the LA has
shown a high performance, despite its simple structure [157].

The SVM technique has been widely used to make time
series predictions in many scientific fields, such as financial
marketing, power supply and medical sciences [189] as well
as for spectrum prediction in CRNs. The application of SVM
to solve regression problems is termed as support vector
regression (SVR). In [190], SVR is used for predicting the
probability density of the idle/busy CR state duration. In [191],
SVR is applied for processing the spectrum occupancy data.

B. Spectrum Inference in Frequency Domain
Section III-A has reviewed some of the popular techniques

conceived for predicting the future spectrum occupancy in the
time domain. Further studies are well dedicated to inferring the
states of other channels in the light of already acquired sensing
or predicted results [93], [119], [130], [192], [193]. The
spectral occupancy correlation between adjacent channels has
been evaluated by experiments in [194]–[196]. This correlation
serves as the most important information representing the
relationship of different channels within the same services. In
other words, the more correlated two channels are, the more
accurate predictions will be made. The authors of [192] ex-
ploited the spectral correlations for inferring the availabilities
of other channels in order to improve the throughput. The
new concept of channel availability vector was introduced for
characterizing the spectral occupancy information.

In [193], predicting the states of unsensed channels is for-
mulated as a matrix completion problem. The classic technique
of belief propagation (BP) [197] is applied to fill the matrix
with predicted states. It is found that the BP scheme is more
suitable for specific matrix types, where the adjacent elements
are highly correlated [29]. In [198], Bayesian networks are
proposed for jointly modeling the spectral-domain and spatial-
domain correlations, where the authors introduced statistical
inference for evaluating the spectrum occupancy. The correla-
tion across the frequency dimension was exploited to enhance
the estimation of spectrum occupancy in wideband spectrum
sensing [195], [196].

Yin et al. [119] has proposed a frequency pattern match-
ing algorithm operating in two-dimensions (FPM-2D) for
spectrum inference, which searches through all relevant 2D
patterns [119]. Once these patterns have been obtained, we can
compute the probabilities of future channel states and estimate
the channel’s availability. Their algorithm outperforms the
first-order HMM-based predictor in terms of its prediction
accuracy. Similarly, frequency domain correlation techniques
were also introduced in [93] by modeling the neighboring
channels in pairs. Simultaneously considering multiple fre-
quency bands, the classic AR models which do not need a
priori knowledge on the communication environment were
also employed to reduce the complexity [93]. This algorithm
performs well for deterministic usage patterns.
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The investigations of [93], [119], [192], [196] clearly
quantify the performance improvements achieved by spectral
correlation based inference.

C. Spectrum Inference in the Geographic Spatial Domain

From a spatial-domain perspective, there are two directions
for spectrum inference:
• One of them aims to infer the spectrum state information,

while taking both the positions and movements of CRs
into consideration;

• The other one infers geographical information, including
the primary system’s coverage contours, service areas and
so on.

1) The first direction: In the first direction, both the BP
technique and the Bayesian networks discussed in the frequen-
cy domain are also capable of taking the spatial correlations
into account for inferring the channel states from those of other
locations.

In the static spectrum environment, the interference powers
experienced at different CR nodes are inferred by exploiting
the spatial variation of interference. Specifically, both semi-
supervised dictionary learning [200] and compressive sensing
are employed for the interpolation of unobserved interference
in the spatial domain, incorporating the CR network topology.

Since the movement of CRs directly affects the spectrum
availability in a specific geographic area, spectrum prediction
in the time-space domain constitutes and important research
area. The traditional static model is extended to a dynam-
ic mobililty model in [201]. The CRs’ mobility and the
PUs’ activity can be jointly considered to infer both the
spectrum occupancy and the interference constraints for a
certain period under different relative positions between the
PUs and CRs. Based on this scheme, both a greedy and a
fair prediction algorithms were proposed in [201] to make
the spectrum exploitation more effective, hence maintaining
fairness in spectrum allocation. A SVM is used for inferring
the spectrum occupancy evolution considering both the time-
domain and geographic distribution characteristics [202]. A
joint feature-vector extraction method is designed by analyzing
both the CRs’ movement and the PUs’ behavior. Again, a
SVM based inference mechanism is introduced for expediting
the convergence speed, which is shown to have a better
inference performance than the algorithms solely depending
on the speed and location information, as in [202]. It was
found that carefully choosing the parameters is capable of
mitigating the performance loss caused by high-speed CRs
having erratic movements. In [203], the SVM was invoked
both for predicting the handoff point and the idle channels
with a high precision. In addition to the spectrum availability,
the link availability between the CRs was also inferred by the
authors of [204]. By invoking this novel approach, a more
reliable path can be found for dynamic routing in CRNs.

2) The second direction: For the TV services, the primary
receivers must be protected from harmful interference [18].
This approach makes full use of the effective antenna height,
effective isotropic radiated power and terrain information to
map the primary users’ coverage contour through Fresnel

diffraction theory. The Google Earth software plays an in-
dispensable role in TV white space prediction. Based on
the primary users’ coverage contour inference, the potential
interference and the collisions imposed by the CRs may
be significantly reduced. In [205], a location predictor is
proposed, where the historical changes of the PU’s geographic
locations are represented by a directed graph having weighted
edges. Once a spectrum occupancy prediction is requested, all
the edges originating from the starting point are listed and
then the destination is predicted according to the calculated
maximum weights.

D. Spectrum Inference in Joint Multiple Domains

In addition to spectrum inference techniques in single
domain (i.e., time, frequency and space) mentioned above,
there are also recent studies on joint multiple-domain spec-
trum inference. Specifically, the work in [119] is one of
the first studies to develop joint time-frequency spectrum
prediction algorithm, where two-dimensional frequent pattern
mining is proposed to analyze binary historical spectrum
occupancy data. In [210], the authors develop an algorithm for
spectral-temporal two-dimensional spectrum prediction with
incomplete historical data by exploiting the approximate low-
rank property of real-world spectrum measurement matrices.
In [211], a robust spectral-temporal two-dimensional spectrum
prediction algorithm is proposed under an assumption on the
sparsity of abnormal or corrupted historical data. In [212],
a matrix completion-based algorithm is developed for TV
white space database construction via joint spectrum sensing
in time domain and spectrum inference in spatial domain.
In [213], the authors propose the concept of spectrum tensor
and develop a multi-dimensional (including, time, frequen-
cy, and space) spectrum inference algorithm for spectrum
map construction by invoking the recent advances in tensor
completion. Moreover, the recent tutorial papers [214], [215]
propose to combine spectrum sensing and spectrum inference
into spectrum database for providing spectrum services for
users, and also highlight that joint multiple-domain spectrum
inference is an active research trend.

E. Summary and Insights

As discussed above, there are a wealth of contributions
on spectrum inference. In this subsection, we offer a brief
summary and discussions of the existing spectrum inference
algorithms. First of all, the major developments of spectrum
inference/prediction techniques are summarized at a glance in
Tables II and III in the chronological order. Then, the advan-
tages and technical challenges of various spectrum inference
algorithms are summarized in Table IV, according to a priori
information concerning the processed data and to the resultant
complexity and accuracy constraints.

Furthermore, there are also several major insights based
on the comprehensive survey of the existing studies detailed
as follows. Firstly, while the majority of the existing studies
focused on spectrum inference in the time domain, in the
past decade, spectrum inference in joint multiple domains has
been gaining increasing research interests. For instance, the
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TABLE II: Major developments of spectrum inference techniques (Part 1) (T/E: Theoretic/Experimental work; U/O/I:
Underlay/Overlay/Interweave).

Year Dimension Algorithm Reference Key Contribution(s) T/E U/O/I

2007
Time

HMM [95] proposed to use the HMM based prediction algorithm in comparison with
traditional CSMA based algorithms.

T I

AR [130] proposed an AR algorithm with different orders in predicting spectrum occu-
pancy status.

T I

AR [135] proposed an AR algorithm to predict channel state transitions over fading
channels.

T I

2008 Time

FFNNs [168] proposed a spectrum prediction algorithm using multilayered feedforward neural
networks for better PHY rate adaption.

T I

SVR [191] proposed SVR-based prediction for nonlinear, non-stationary and complex data
series.

T I

ARIMA [206] proposed a seasonal ARIMA algorithm to analyse the spectrum occupancy and
make forecasts.

T I

AR [15] applied the AR model presented in [135] and a Kalman filter to predict spectrum
holes.

T I

MA [207] proposed an exponential weighted moving average based approach to predict
spectrum occupancy.

T I

2009 Time

FFNNs [167] adopted the approach of [168] for channel selection. T I
HMM [140] validated the Markov chain-based modeling of the spctrum usage. E I
POMDP [154] proposed a POMDP framework for DSA considering the energy constraint. T I
BIF [208] provided a fast Bayesian statistical approximation method to infer the radio

signal’s power.
T U/O

MA [128] discovered that the usage pattern of all Chinese TV band channels can be
modeled by the MA modeling method.

T I

MA [129] presented the EMA based prediction approach to improve energy detection in
order to reduce the sensing time.

T I

2010

BIF [198] invoked a Bayesian network to infer the spectrum occupancy. T I

Time

FFNNs [163] designed a MLP to predict the channel status without requiring a priori
knowledge of the statistics of channel usage.

T I

HMM [146] extended the standard HMM prediction method of [140] by considering the
latency between spectrum sensing and data transmission.

T I

BIF [187] proposed a BIF method to estimate the distribution of state duration. T I
Space SNG [205] proposed the SNG algorithm for predicting the mobility of cognitive users. T U/O
Frequency, Space MC [193] proposed an efficient framework of BP for matrix completion to achieve a

reduced error rate.
T U/O

2011

Frequency, Time AR [93] took the frequency dependence into consideration to optimize the performance
of the AR model.

T I

Time

SVM [203] introduced the SVM model to infer the handoff point to reduce the collision
rate.

T I

ERNN [178] proposed an ERNN approach and modeled the features of the PUs’ activity as
a multivariate chaotic series.

T I

FFNNs [162] applied the MLP to measured data. E I
HMM [14] modified the HMM approach for single-user prediction and considered the time

delay of hardware platforms.
E I

2012 Time PPPM [216] introduced a PPPM algorithm to mine the underlying spectrum occupancy
patterns to make forecasts.

T I

ARMA [217] proposed a multichannel ARMA prediction filter based on a particular lattice
filter structure.

T I

Frequency, Time FPM [119] developed a two-dimensional FPM algorithm for exploiting the spectral corre-
lations.

E I

2013

Space DL [200] proposed a specific dictionary learning framework to predict the interference
power levels in various locations.

T U/O

Time

FBNNs [183] proposed a ESN method to predict the state duration with the aid of an improved
parameter selection algorithm.

T I

HMM [111] applied the HMM algorithm in the HF spectrum for activity prediction. E I
HMM [144] proposed a hidden bivariate Markov model (HBMM) prediction method which

allows a phase-type dwell time distribution.
T I

HMM [17] proposed a NS-HMM to predict the channel quality. T U/O

2014

Space SVM [202] proposed a SVM based spectrum mobility prediction algorithm. T I

Time
LA [157] proposed the LA technique to predict spectrum holes. T I
HMM [118] extended the NS-HMM method with an expectation maximization based pa-

rameter estimation algorithm.
T I

Time, Frequency MC [210] developed a joint spectral-temporal spectrum prediction from incomplete his-
torical observations.

E U/O

authors of [209]–[211] proposed various joint two-dimensional
spectral-temporal spectrum prediction algorithms by leverag-
ing the low-rank nature of the spectral data. The authors of
[213] developed a multi-dimensional (time, frequency, and
space) spectral map construction method.

Second, there are some quantitative comparisons among
different spectrum inference techniques. Specifically, it was
reported in [20] that under the same traffic scenario, an
ANN based predictor performs slightly better than the HMM
predictor owing to having a flexible number of states and
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TABLE III: Major developments of spectrum inference techniques (Part 2) (T/E: Theoretic/Experimental work; U/O/I:
Underlay/Overlay/Interweave).

Year Dimension Algorithm Reference Key Contribution(s) T/E U/O/I

2015

Time ELM [225] proposed to use ELM to predict the spectrum data obtained from frequency
monitoring system of high-frequency radar.

E I

BPNN [226] designed an improved-back-propagation neural networks to perform spectrum
prediction.

T I

SVR [227] performed spectrum prediction and channel selection using online learning
techniques.

T I

HMM [228] applied the HMM approach for spectrum occupancy prediction. T I
AR [229] proposed forward-backward-AR to perform spectrum prediction. T I

SpacE MC [212] developed a low rank matrix completion-based algorithm to enable efficient TV
white space database construction via spectrum sensing and spatial inference.

T U/O

2016

Time HMM [230] proposed to use a high-order hidden bivariate Markov model to inherit the
strengths of HBMM and high order and enhance the prediction accuracy by
combining observing multiple previous states and the underlying process.

T I

HMM [231] provided a thorough analysis on hard fusion-based cooperative spectrum occu-
pancy prediction where the local prediction utilizes HMM.

T I

NN [232] studied spectrum prediction in cognitive radio systems using a wavelet neural
network.

T I

HMM [233] introduced a HMM-based spectrum prediction algorithm for industrial applica-
tions that predicts multiple slots in the future.

T I

Space MC [213] developed a low rank tensor completion-based algorithm to enable multi-
dimensional spectrum map construction.

E U/O

Time, Frequency MC [232] studied spectrum prediction in cognitive radio systems using a wavelet neural
network.

T I

2017 Time, Frequency MC [209] developed a robust online spectrum prediction algorithm with incomplete and
corrupted historical observations via matrix completion and recovery.

E U/O

TABLE IV: Discussions on advantages and challenges of various spectrum inference algorithms.

TYPEs Advantages Challenges

Markov
HMM

1. solid statistics foundation
2. robustness in time sequence processing
3. flexibility in non-stationary scenarios

1. complex matrix operations and a large number
of previous data needed
2. large memory
3. hard to find the optimized number of states
4. high computational complexity
5. cannot capture the rich temporal covariance of
activity on the channel at multiple delays
6. discrete Gaussian models of observations is not
suitable

POMDP adapt to uncertain information in the environment

1. difficult to model the environment of dynamics
(estimate the probabilities of action outcomes
and the accuracy of data)
2. lacking efficient resolution algorithm

LP
AR

1. low complexity for low orders
2. convergence guaranteed
3. needs no thresholds

1. requires some training data
2. dependent on stationary processes (except ARIMA)
3. high accumulated errors for high order
4. computationally expensive for high order

ARIMA 1. able to process non-stationary sequences 1. needs considerable statistical skills
2. not suitable for fast learning

FFNN

1. flexibility in non-stationary scenarios
2. need no priori knowledge of the observed process
distribution
3. does not need to set parameters
4. needs no thresholds

1. computationally expensive training process
2. hard to identify the optimal number of intermediate
layers and neurons in each layer
3. large number of free parameters
4. local minima problem during training

FPM
1. robustness in time sequence processing
2. easy to implement
3. convergence guaranteed

dependent on stationary processes

BIF dynamic prediction for even incomplete data 1. no feedback
2. requires the knowledge of distribution

SVM

1. flexibility in non-stationary scenario
2. guarantees to converge to optimal solution
3. small number of free parameters
4. computationally efficient

1. requires prior knowledge of the observed process
distribution
2. computationally expensive training process

LA 1. simple structure increase model complexity

a more efficient training mechanism. Although having more
intermediate layers in the ANN increases their computational
complexity, the prediction results are improved [157]. As
expected, there is a tradeoff between the complexity and the
accuracy. Moreover, it is reported in [139] that the short-

term prediction performance of the ANN based predictor is
better than that of the ARIMA predictor, but their performance
degrades, when predicting further into the future. The per-
formance of the HMM predictor suffers from two inherent
limitations [218]. Since the radio environment is changing



16

all the time, the fixed states assumed in Markov modeling
fail to capture the rich temporal variations of the channel
activities. Another limitation of the HMM aided predictor is
that discrete or univariate Gaussian models of observations
often fail to adequately characterize the general situations. The
POMDP predictor gives full cognizance to random actions,
to incomplete information and to noisy observations of the
environment, but it may not be able to accurately calculate the
probabilities of specific action outcomes [219]. When it comes
to pattern mining based schemes, the partial periodic pattern
mining predictor is more robust than the HMM predictor
owing to extracting more channel state prediction rules, which
reduces the probability of spectrum usage prediction compared
to traditional frequent-pattern mining [16].

IV. ALGORITHM ANALYSIS OF SPECTRUM INFERENCE IN
CRNS

A. Performance Metrics

When evaluating or choosing a prediction algorithm, care-
fully selected metrics should be considered. Typically the
notion of detection probability (Pd) representing the correct
prediction of the busy states and the false-alarm probability
(Pfa) representing the rate of incorrect prediction of idle
states are used for studying the performance of algorithms
in spectrum occupancy prediction. A combination of a higher
Pd and lower Pfa suggests a better prediction performance.
Some other statistical criteria like the normalized mean square
error (NMSE), the mean absolute percentage error (MAPE),
and the root mean square error (RMSE) can also be introduced
to quantify the adequacy of prediction. In order to demonstrate
the advantage of using spectrum prediction, both the percent-
age improvement in spectrum utilization and the percentage
reduction in sensing energy can also be invoked.

Spectrum inference/prediction is an efficient technique com-
plementary to other techniques, such as spectrum sensing,
geolocation spectrum database, and radio environment map,
for capturing the relevant information about the spectral evo-
lution and identifying spectrum access opportunities. In this
subsection, we first briefly present the key ideas of each
technique one by one. Then, we discuss the relationships
between spectrum inference and the other techniques.

B. Relationship with Spectrum Sensing

Spectrum sensing determines spectrum state in a passive
manner using various signal detection methods. This approach,
however, suffers from the hidden node problem because of
shadowing [239]. In the past decade, intensive studies have
been carried out across the globe to improve the detection
performance of spectrum sensing. Excellent survey papers
in this direction can be found in [25]–[27]. Briefly, existing
studies on spectrum sensing in CRNs can be classified into
two groups: quiet-periods-based (see, e.g. [26]) and non-
quiet-periods-based spectrum sensing (see, e.g. [291]), also
known as spectrum monitoring in the literature. As the name
implies, in the former studies, a cognitive radio first spends
a time duration (known as quiet period) to perform spectrum
sensing and then determines whether to transmit based on the

sensing results. By contrast, spectrum monitoring in CRNs
is a relatively new technique, where the cognitive radios can
continue their communications while simultaneously monitor-
ing the band to detect any transmissions that are initiated by
primary radios. More specifically, the spectrum is monitored
by the cognitive radio receiver during reception and without
quiet periods [290]–[292]. So far, spectrum sensing has not
been widely accepted by regulatory bodies to ensure non-
harming the primary/licensed users. It is challenging to meet
the strict rules required by the regulators from FCC, such as
the detection of a primary signal at -114 dBm by FCC.

C. Relationship with Geolocation Spectrum Database

By contrast, according to the regulations of FCC [240],
[241], the geolocation spectrum database approach seems
to provide a technically feasible and commercially viable
solution in the near future. This approach provides a service
ensuring that an unlicensed device can inquire the spectrum
availability from a geolocation database, which predicts the
spectrum availability at any location using propagation mod-
eling combined with terrain data [242], [246]. Based on the
guidelines provided by FCC [240], several TV white space
database systems have been developed by companies [247]–
[250]. A specific limitation of this approach is that the accu-
racy of the spectrum availability provided by the geolocation
database depends crucially both on the quality of the propa-
gation modeling and on the granularity of the terrain data. To
resolve this issue, a data-driven approach is presented in [5] to
build a spectrum database by learning the spectrum availability
from mobile crowd sensing and big spectrum data analytics.
Another limitation of this approach is that the update speed of
the spectrum availability provided by the geolocation database
is relatively slow (e.g., in the time scale of hours or days).

D. Relationship with Radio Environment Maps

The radio environment map (REM), concept was originally
proposed by scientists from Virginia Tech [251]–[253], which
is a promising tool that provides a practical realization of
CRNs, explicitly, it constructs a comprehensive map of the
CRN by utilizing multi-domain information from geolocation
databases, characteristics of spectrum use, geographical terrain
models, propagation environment and regulations [254]. In
contrast to the geolocation spectrum database, REM is an
advanced knowledge base that stores live multi-domain in-
formation on the entities in the network as well as on the
environment [255], [256].

Spectrum inference is an efficient technique complementary
to the above techniques. Spectrum inference, with spectrum
prediction in the time domain as a special case, infers
an unknown spectrum state from known spectrum data, by
effectively exploiting the inherent statistical correlations of
spectrum data in time, frequency and spatial domains. A key
distinguishing feature of spectrum inference is that it presents
a proactive view of the spectrum state. In terms of the relation
with spectrum sensing, spectrum inference can reduce the
sensing time and energy consumption [127]. Spectrum infer-
ence (e.g., in time domain) can also be fused with spectrum
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sensing to improve the detection performance of spectrum
access opportunities [12]. In terms of the relationship with
a geolocation spectrum database, spectrum inference (e.g., in
spatial domain) can be further used to calibrate the propagation
models and to improve the update speed of the database. In
terms of its relationship with REM, spectrum inference in
multiple domains (i.e., time-frequency-space) can be used to
construct dynamic interference maps for each frequency at
each location of interest [254], in a proactive and energy-
efficient manner.

V. EXPERIMENTATION-BASED APPROACHES IN CRNS

Although the majority of the existing spectrum inference
algorithms are mainly studied from a theoretical perspective,
there are some studies that aim for bridging the theory and
the practice. In this section, we present discussions regard-
ing real experimentation-based spectrum inference approaches
in CRNs. We begin with presenting several well known
spectrum-related experimental projects, which serve as the
hardware/software basis for the development of spectrum
inference algorithms. Then, we briefly comment on the anal-
ysis of real-world spectrum measurements. Furthermore, we
discuss the experimental results reported in the literature.

A. Spectrum-Related Experimentation Projects

During the past two decades, quite a few spectrum-related
experimental projects have been carried out all over the world,
which collected empirical real world spectrum measurements
and supported the development of spectrum inference tech-
niques. Excellent surveys and tutorials on the latest advances
of worldwide spectrum projects and occupancy measurements
can be found in [23] and [24]. In the following, we provide
a brief review of several well-known spectrum occupancy
evaluation projects to assist the readers.
• ORCA, which stands for Optimization and Rational use

of wireless Communication bAnds [294], is a project with
the general scientific objective of extensively evaluating
the spectrum occupancy in order to study the potential
for its exploitation by innovative wireless services. This
project developed DTV coverage prediction algorithms
by exploiting for example the Longley-Rice propagation
model [295], [296].

• WiSHFUL, which stands for Wireless Software and
Hardware platforms for Flexible and Unified radio and
network controL [297], is a project funded by the Euro-
pean Commission’s Horizon 2020 Programme with the
following objectives: i) to offer open, flexible and adap-
tive software and hardware platforms for radio control
and network protocol development; ii) to offer portable
facilities that can be deployed at any location; iii) to
attract and support experimenters for wireless innovation.

• CREW, which stands for Cognitive Radio
Experimentation World [298], is a project with the
main target of establishing an open federated test
platform, which facilitates experimentally-driven
research on advanced spectrum sensing, cognitive radio
and cognitive networking in view of both horizontal

and vertical spectrum sharing in licensed and unlicensed
bands. Parts of the research outputs of this project focus
on constructing radio environment maps using various
spatial inference techniques [299].

• FARAMIR, which stands for Flexible and spectrum-
Aware Radio Access through Measurements and mod-
eling in cognitive Radio systems [300], is a project
making CRs a reality, with the main goal of developing
techniques for increasing the radio environmental and
spectral awareness of future wireless systems. Parts of
the research outputs of this project focus on constructing
radio environment maps using various statistical inference
techniques [301], [302].

B. Predictability Analysis of Real Spectrum Measurements

With respect to spectrum inference/prediction, there is a
fundamental question: To what degree is the spectrum state
evolution predictable? In other words, the predictability of
spectrum evolution reflects the upper-bound performance of
all potential spectrum inference/prediction techniques. When
considering the temporal spectrum usage evolution for a given
frequency band in a given location as a random time series,
the entropy is the most fundamental quantity characterizing the
degree of predictability for this random variable. In general,
having a lower entropy implies a higher predictability and vice
versa. Entropy-based analysis has indeed been introduced in
diverse prediction scenarios, such as for the atmosphere [6], in
finance [7], for network traffic [8] and for human mobility [9].
The basic idea is that the entropy offers a precise definition of
the information content of predictions and it is renowned for its
generality due to relying on minimal assumptions concerning
the model of the scenario studied.

Recently, in [127], we have invoked an information theoretic
methodology of using statistical entropy measures and Fano’s
inequality to quantify the degree of predictability underlying
real-world spectrum measurements. We found that despite the
apparent randomness, a remarkable 90% predictability may be
achieved, in real-world RSS dynamics over diverse spectral
bands for several popular services, including the classic TV
bands, cellular bands, the (Industrial Scientific Medical) ISM
bands, etc. Similarly, Olivieri et al. [123] have applied the
information theoretic entropy as a measure of predictability in
the process of generating the ON- and OFF-period durations.
In [124]–[126], the authors have used state-of-the-art multi-
scale entropy metrics in order to examine the predictability of
the spectrum measurement traces recorded as a function of the
prediction complexity.

C. Experimental Spectrum Inference Approaches

As shown in Tables II and III, although the majority of
the existing spectrum inference algorithms are predominately
studied from a theoretical perspective, there are some studies
in the open literature that implement and test spectrum infer-
ence approaches from an experimental perspective.

To the best of the authors’ knowledge, [140] is one of the
earliest studies of this kind, where the Markovian property
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Fig. 9: Illustration of the applications and benefits of spectrum
inference in CRNs.

of the spectrum usage has been validated by analyzing real-
world measurements in the paging spectrum band (928-948
MHz). Experimentally, the HMM is used for predicting the
ON-OFF activity of the PU with a prediction accuracy of
about 76%. Similarly, Z. Chen, et al [14] verify the HMM
method using measured WiFi data instead of artificial data,
where the numerical results show that the prediction accuracy
for a single device is above 70 %, which can be improved
by cooperative prediction of multiple devices. In [111], the
authors train and validate the HMM model with the aid of real
measurements collected from the 14 MHz HF amateur band,
where an average of 10.3% prediction error rate is achieved.

In [162], a multi-layer perception ANN is applied to fore-
cast the idle or busy state of different channels, where the
performances are evaluated for a seven-day spectrum dataset
collected in a metro city located in south China and the
empirical results show a high prediction accuracy having a
mean RMSE as low as 0.04. In [119], based on spectrum
measurements ranging from 20 MHz to 3 GHz at four loca-
tions in Guangdong province of China, the authors develop
a 2-dimensional frequent pattern mining (FPM) algorithm to
predict the availability of multiple channels simultaneously,
where the numerical results show that the prediction accuracy
is higher than 95% for the GSM900/1800 downlink and for
the TV bands.

In [210] the authors develop a joint spectral-temporal pre-
diction from incomplete historical observations, where real
measurements of TV bands (614 MHz-698 MHz) are used for
quantifying the improvements over the one-dimensional neural
network-based temporal prediction scheme. In an extended
work [209], the authors develop a robust online spectrum
prediction algorithm relying on incomplete and corrupted
historical observations, where the real measurements of TV
bands, ISM bands and GSM bands are used for demonstrating
that the proposed algorithm performs well in the presence of
missing data.

VI. APPLICATIONS OF SPECTRUM INFERENCE IN CRNS

The specific benefits of cognitive radio networks depend on
our ability to infer/predict the unknown/unmeasured spectrum
states from known/measured spectrum data. To portray the
various applications of the spectrum inference technology, in
this section we first review the existing use cases and then we
portray spectrum inference in the context of: i) 5th genera-
tion mobile communications (5G) spectrum sharing, ii) next-
generation high-frequency (HF) automatic link establishment
(ALE), and iii) several other potential applications in various
future wireless networks, such as cognitive smart grid network-
s, cognitive radio sensor networks, cognitive cellular networks
(CCN), and cognitive machine-to-machine communications
(CM2M).

Based on the spectrum management framework proposed
in [4], the existing applications of spectrum prediction in
CRNs can be classified into four basic categories, namely,
spectrum sensing, spectrum decisions, spectrum evolution up-
on handover and spectrum sharing [21]. The corresponding
example applications of the inference algorithms discussed
in Section VI on each category are summarized in Table V.
Moreover, the applications and benefits of exploiting spectrum
inference/prediction in CRNs are presented in Fig. 9, Table VI
and briefly summarized as Section VI-A to Section VI-D.

A. Spectrum Inference for Sensing

Spectrum sensing is a critical aspect of spectrum inference
applications that aim to explore idle spectrum slots. In the
emerging spectrum sensing paradigms in the time, frequency
and spatial dimensions, inference techniques are widely used
to infer the most possible vacant channels for improving
the detection performance and reducing the energy and time
consumption of sensing.

In terms of spectrum inference in the time domain for
spectrum sensing, refs. [15], [93], [128], [129], [139], [187],
[220] use various linear prediction techniques, such as AR,
MA, ARMA and ARIMA to perform spectrum prediction,
where the output is used to improve the sensing accuracy
and reduce the sensing cost. In parallel, Markov models such
as HMM [14], [17], [20], [95], [111], [118], [140], [142],
[144], [146], [218], [221], [222] and POMDP [153] are also
widely used to perform similar tasks. These kinds of models
work well under the assumption of memoryless or Markov
property existing in the spectrum state evolution. That is,
the future state depends only on the relevant information
about the current, not on information from further in the past.
ANN models are another kind of techniques that are widely
investigated (see, e.g. [20], [119], [139], [158], [160]–[162],
[167], [168], [178], [183], [223], [224]), which show relatively
better prediction accuracy over other mondels. In addition,
pattern mining methods [119], [216], BIF methods [17], [187]
and SVM methods [190], [191] are also investigated.

In terms of spectrum inference in the frequency domain for
spectrum sensing, the spectral occupancy correlation between
adjacent channels has been evaluated by experiments in [194]–
[196]. Related studies are well dedicated to inferring the states
of other channels in the light of already acquired sensing or
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TABLE V: Existing applications of various spectrum inference algorithms.

Methodology
Application For spectrum sensing For spectrum decision For spectrum mobility For spectrum sharing

Time
Inference LP

AR [15], [93], [128], [187]
MA [128], [129]
ARMA [128]
ARIMA [139], [220] [220]

Markov
Models HMM [14], [17], [20], [95],

[111], [118], [140],
[142], [144], [146],
[218], [221], [222]

[17], [95], [111], [221]

POMDP [153] [153]

ANNs
FFNNs [20], [139], [158],

[160]–[162], [167],
[168], [223], [234]

[161], [167], [168]

FBNNs [178], [183], [224] [178]

PM
FPM [119] [119]
PPPM [216]

BIF [17], [187] [17], [208] [174]
SVM [190], [191] [190], [191] [202], [203]
LA [157] [157]

Frequency Inference [12], [93], [119], [192],
[193], [195]

[119], [198], [199] [175]

Geographic Inference [212], [213] [198], [201] [204], [205] [5], [18], [176], [200],
[238]

TABLE VI: A List of Reported Benefits/Gains of Exploiting Spectrum Inference in CRNs.

Reference Domain Application Benefits/Gains
[234] Time Sensing Spectrum prediction is designed to select the most likely idle channel for sensing and

brings 10-30% throughput improvement.
[237] Time Decision Spectrum prediction is introduced to be fuzed with sensing to improve the detection of

PU and enhance the throughput as large as 50%.
[192] Time, frequency Sensing Spectral correlation is introduced to prediction to decrease the time consumption in

spectrum sensing and brings roughly 20% throughput improvement.
[12] Time, frequency Sensing Spectrum prediction is introduced to select channels for sensing only from the channels

predicted to be idle and brings 5-30% throughput improvement when the probability
of wrong prediction is no larger than 0.2.

[236] Time, frequency Sensing Spectrum prediction is introduced to rank channels according to the availability and
quality and brings about 15% reduction of the link establishment time.

[5] Space Sharing Compared with the traditional propagation model-based approach, spectrum inference
in spatial domain brings roughly 20% improved spatial reuse between the PU and the
CRs and 15% reduced interference to the PU.

[212] Space Sensing Spatial inference is invoked as a complimentary method of spectrum sensing for
enabling efficient TV white space database construction with a 2-6 dB gain in terms
of root square error, compared with the traditional approach.

[175] Time Mobility Spectrum prediction and monitoring are jointly used via OR/AND fusion to improve the
perform of spectrum mobility/handoff, which brings 5-25% throughput improvement
by reducing the resource wastage.

[205] Space Mobility Moderate accuracy predictors improve routing reliability and bandwidth efficiency by
11% and 8%, respectively.

predicted results [93], [119], [192], [193]. Specifically, the
authors of [192] exploited the spectral correlations for infer-
ring the availabilities of other channels in order to improve
the throughput. In [193], predicting the states of unsensed
channels is formulated as a matrix completion problem and
the technique of belief propagation (BP) is applied to fill the
matrix with predicted states. Yin et al. [119] has proposed
a frequency pattern matching algorithm operating in two-
dimensions (FPM-2D) for spectrum inference, which searches
through all relevant 2D patterns. Similarly, frequency domain
correlation techniques were also introduced in [93] by mod-
eling the neighboring channels in pairs, where the classic
AR models which do not need a priori knowledge on the
communication environment were also employed to reduce the
complexity.

The existing studies on spectrum inference in the spatial

domain for spectrum sensing are relatively limited. In [212], a
matrix completion-based algorithm is developed for TV white
space database construction via joint spectrum sensing in time
domain and spectrum inference in spatial domain. In [213], the
authors propose the concept of spectrum tensor and develop
a multi-dimensional (including, time, frequency, and space)
spectrum inference algorithm for spectrum map construction
by invoking the recent advances in tensor completion.

B. Spectrum Inference for Decision

Spectrum inference for decision has been investigated in
various aspects such as, centralized spectrum allocation, de-
centralized channel selection, physical layer rate adaption,
dynamic spectrum access, to name just a few. In the following,
we introduce several representative examples.
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Akbar and Tranter in [95] proposed to use the HMM based
prediction algorithm for dynamic spectrum allocation, where
the superiority in terms of system throughput is present-
ed by comparing with traditional CSMA based algorithms.
Qin et al in [199] and Melián-Gutiérreza et al in [111]
respectively studied the problem of spectrum inference-based
channel selection in the HF spectrum. The authors of [153]
proposed an approach for channel state prediction based on
POMDP by finding the optimal policy that maximizes some
aspect of the reward. The authors in [167], [168] proposed
to use neural networks based cognitive controller for dynamic
channel selection and adaptation. In [178], Elman recurrent
neural networks was used for radio frequency multivariate time
series modelling in order to predict the spectral evolution,
which leads to intelligent CR decisions for exploiting the
expected spectrum opportunities, optimized spectrum usage
and interference avoidance.

C. Spectrum Inference for Mobility

The mobility terminology in the CRNs has double mean-
ings. On the one hand, it refers to ‘spectrum mobility or
spectrum handoffs’ from one spectral band to another, for ex-
ample, due to the appearance of PUs or owing to interference
avoidance for other CRs. One the other hand, the ‘mobility
of CRs and/or PUs’, for example in vehicular CRNs, may
also affect the surrounding geographical spectral environment
in terms of imposing additional interference, hence changing
channel conditions and spectrum availability, etc.

An excellent survey paper on spectrum mobility in CRNs
was conceived by [170], which starts from the consideration
that in highly dynamic environments, CR-aided communi-
cation is often interrupted and hence spectrum mobility is
recognized as a pivotal feature of enabling continuous CR
data transmission, by transferring ongoing sessions to an
idle channel. A recent classification and survey was provided
by [171]. In [172], a Poisson distribution based model of
spectral resources relying on a cross-layer spectrum handoff
protocol optimized for the minimum expected transmission
time was developed for cognitive LTE networks. However, the
fluctuating nature of the available spectrum makes it difficult
to support seamless CR communications. To address this
problem, a spectrum-aware mobility management scheme is
proposed in [173] for CR cellular networks, where a unified
mobility management framework is developed for supporting
the diverse mobility patterns in CR networks, which consists
of spectrum mobility management, user mobility management
and inter-cell resource balancing.

Over the years, most of the existing studies have been
focused on so-called reactive spectrum mobility, where the CR
switches its communication once a PU becomes active, where
the detection of the PU relies either on spectrum sensing or on
monitoring. However, there are also some emerging proactive
spectrum mobility solutions, based on prediction or inference
techniques. For instance, Bütün et al. [205] propose a static
neighbor graph (SNG) algorithm for predicting the mobility of
cognitive users. Wang et al. [202] proposed a support vector
machine (SVM) based spectrum mobility prediction algorithm

for mobile CRNs. In [203], the SVM was invoked both for
predicting the handoff point and the idle channels with a
high precision. In addition to the spectrum availability, the
link availability between the CRs was also inferred by [204],
where by invoking this novel approach, a reliable path can
be found for dynamic routing in CRNs. In [205], a location
predictor is proposed, where the historical changes of the
PU’s geographic locations are represented by a directed graph
having weighted edges. Once a spectrum occupancy prediction
is requested, all the edges originating from the starting point
are listed and then the destination is predicted according to
the approximately calculated maximum weights. Huang et al.
[174] propose a Bayesian inference-based prediction algorithm
for spotting the specific channel that is most likely to be
available for the CR-aided vehicular ad-hoc networks, where
the most critical challenges are the high-speed mobility of
vehicles and the dynamically-fluctuating channel availability.
As a further advance, P. Thakur et al. [175] propose a proactive
spectrum prediction technique, where the emergence of PU is
predicted before its true emergence, in order to avoid dropping
even a single packet.

D. Spectrum Inference for Sharing

In the context of spectrum sharing, there are different under-
standings in the literature. In the generalized sense, the concept
of spectrum sharing is inter-changeable with the concepts of
dynamic spectrum access or cognitive radio, which consists
of three paradigms of spectrum usage: underlay, overlay and
interweave [120]. This kind of understanding of spectrum
sharing makes its meaning too board to cover every aspects
of CRNs. On the other hand, in the narrow sense, spectrum
sharing focuses on the underlay mode, which allows CRs to
operate in the same band at the same time if the mutual inter-
ference among them is below a tolerant threshold. Spectrum
inference for sharing is invoked for supporting/facilitating the
coexistence of CRs with the PUs.

As shown in Table V, the research on inference-based
spectrum sharing is relatively limited and mainly focused on
spatial domain [5], [18], [176], [200]. In [5], a systematic
approach is developed to enable efficient spectrum sharing
between the PU (i.e., TV receivers) and the CR (e.g., smart
phone, tablet, mobile vehicles, etc) where matrix completion-
based spectrum inference technique is invoked to serve as a
spatial interpolator of unmeasured spectrum data. In [18], the
authors propose to predict the contour and service areas of the
PU for enabling unlicensed CR systems operating in the TV
white space without producing harmful interference to the PU
receivers. Recently, Kim and Giannakis in [200] have proposed
a dictionary learning framework to predict the interference
power levels in various locations for enabling harmonious
spectrum sharing between the PU and the CR. In [176], the
authors formulate the adaptive vehicular data piping problem
for dynamic spectrum sharing as a coalitional formation game
and propose a near optimal coalitional formation approach for
enabling vehicular data pipe selection partition in a distributed
way.
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E. Potential Use Case I: Spectrum Inference for Supporting
5G Spectrum Sharing

Radio spectrum sharing is an essential topic for 5G wireless
communications [259], [260]. The explosive growth of data
rates offered by smart phones, tablets, laptops, vehicles and
many other wireless devices is about to overwhelm the allocat-
ed 2G-3G-4G radio spectrum. Spectrum sharing is emerging
as an affordable, near-term method of meeting the 5G radio
spectrum shortage and increasing the radio access network
capacities for supporting 5G content delivery [261]. Spectrum
sharing may occur between an incumbent user (e.g., commer-
cial TV or public radars) and a secondary 5G user, when a 5G
device uses a spectrum band allocated for an incumbent usage
in a geographic place, time and RF channel that the incumbent
is not using, subject to the tolerable interference imposed on
the incumbent [5].

Fig. 10 presents a vision of spectrum inference/prediction-
based spectrum sharing conceived for 5G wireless communica-
tions. Specifically, in the basic operation cycle printed in light
color, the spectrum sensing module infers the observable RF
stimuli from the radio environment and outputs the predicted
RSS in various spectrum bands of the current time slot. Based
on the input from spectrum sensing, the spectrum sharing
module activates spectrum reuse and interference control to
ensure the safe coexistence between commercial or public
incumbent users and secondary 5G users. It may be deemed
inevitable for 5G devices to explore and exploit the benefits
of multiple (non-continuous) spectrum bands of a wide range,
spanning from a few hundred MHz in the VHF/UHF band
to the 30-300 GHz millimeter-wave length band. In this case,
predictive schemes are expected to obtain the RSS of such
wide spectrum bands and to enable wideband spectrum sharing
in a timely and cost-efficient manner based on time domain or
joint time-frequency domains spectrum inference algorithms
discussed in Section IV. Specifically, in Fig. 10, a spectrum
inference/prediction module is introduced, which infers the
future RSS based on the historical RSS data acquired by
spectrum sensing, which can further enhance 5G spectrum
sharing for example by,

• supporting adaptive PHY-layer spectrum sensing, i.e.
adaptive optimization of the sensing parameters, such as
the sensing time duration in each time slot,

• facilitating resource-efficient MAC-layer spectrum sens-
ing, for example by reducing the number of time-slots
required for multi-band sequential sensing as well as
scheduling and by reducing the energy consumption of
multi-sensor cooperative sensing as well as scheduling,

• supporting high-data-rate spectrum sharing by combining
the outputs of spectrum sensing and spectrum prediction,
for example by guiding the selection of spectrum bands
of high channel quality in carrier aggregation.

Specifically, in 5G systems, prediction-based spectrum shar-
ing can be arranged at the base stations (BSs) of macro/small
cells and at the access points (APs) of WLANs in a centralized
manner as well as more aggressively, by the autonomous user
equipment in a self-organized manner by relying on game
theory and graph theory.

F. Potential Use Case II: Spectrum Inference for Next-
Generation HF Automatic Link Establishment

High-frequency (HF) radio, also known as short-wave ra-
dio [262], operating in the 1.5-30 MHz spectrum band, is now
widely used, not only by the amateur community, but also
by worldwide governmental and non-governmental agencies
as an alternative to satellites for over-the-horizon wireless
communications. Typical application scenarios of HF radios
include ships at sea, aircraft out of range of line-of-sight radio
networks, disaster areas where the terrestrial communications
infrastructure has been destroyed, and distant regions lacking
other communications, to name just a few.

One of the key challenges in using HF communications
is finding a frequency that will support the desired tele-
traffic from a transmitter to a receiver. The reasons behind
this challenge are mainly two-fold: Firstly, over-the-horizon
HF communications often use skywave propagation paths
provided by ionospheric refraction, which physically makes
the window of usable frequencies time-varying throughout the
day, the season, the subspot cycle, the weather environment,
and the radio locations, etc [263], which is quite different
from terrestrial wireless communications, such as cellular and
WLAN systems. Second, there are many governmental and
non-governmental HF radio systems in the HF band, which
make it a nontrivial task for each transmission to find a
frequency without interfering with other users [264].

To tackle the above critical challenge, ALE [263] is well-
recognized as a promising technology, which automates the
process of finding a usable frequency and setting up links
between two or more radios. Since the late 1970s, three gen-
erations of automatic link establishment techniques have been
developed. Briefly, the first generation ALE was independently
developed by different manufactures to automatically identify
suitable transmission frequencies using microprocessors, in-
stead of the original manual operation. The second generation
ALE focused on standardized, interoperable HF radio systems,
relying on the standards such as MIL-STD-188-141A and
FED-STD-1045. The third generation ALE operates at a lower
SNR, carries more traffic and supports larger networks.

The ALEs of the first three generations are in essence
narrowband ALE operating over 3kHz HF channels. However,
in recent years we have seen an increasing demand for higher-
data-rate transmission over HF links, supporting services rang-
ing from voice and low-speed data to real-time video over
HF skywave channels from aircraft, which motivates us to
develop wideband ALE operating over HF channels wider than
3kHz, and up to 24 kHz [263]. Wideband ALE, also termed
as fourth generation (4G) ALE, introduces an increased band-
width flexibility as well as additional automated capabilities:
i) detect and characterize the occupancy or interference within
a wideband channel, and ii) coordinate the allocation of the
clear subchannel.

The literature [264]–[267] reports on the potential applica-
tion of cognitive radio techniques in 4G ALE, where consensus
ensures that spectrum sensing will indeed be used for HF
radios for detecting the occupancy or interference within any
portion of channels up to 24 kHz. Based on data link quality
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Fig. 10: Spectrum inference for spectrum sharing in 5G wireless communication systems. The basic operation cycle is in light
color and the functionality of spectrum inference/prediction is in dark color.

Frequency selection and 

linking

Sequential 

spectrum sensing

Sequential link quality 

analysis

Inference/Prediction

of spectrum occupancy 

 Predictive spectrum 
occupancy ranking

 Spectrum 
occupancy result

Inference/Prediction

of link quality 

Predictive link 
quality ranking

Links of high quality

Historical data of  
spectrum occupancy 

Historical data 
of link quality

Fig. 11: A vision of spectrum inference/prediction-based wide-
band 4G HF ALE. The basic operating cycle is in light color
and the functionality of spectrum inference/prediction is in
dark color.

analysis (LQA), the associated frequency selection algorithm
will be invoked for determining which channel(s) will be used
for data transmission. The research and development of 4G
ALE is still in its infancy [268].

Fig. 11 presents a vision of spectrum inference/prediction-
based wideband 4G ALE. Specifically, in the basic operating
cycle printed in light color, firstly sequential spectrum sensing
is performed for detecting the occupancy or interference within
each channel. Based on the output of spectrum sensing,
sequential LQA is then performed on the particular channels,
which are deemed to be unoccupied. Based on the LQA result,
the frequency band(s) having a high quality will be selected
as the active transmission link. One of the main problems
of the basic operation cycle for wideband ALE is that the
amount of time required both by the process of spectrum
sensing and LQA increases proportionally with the number
of frequencies sensed and analyzed. To reduce the associated
delay, spectrum inference/prediction may be invoked as seen
in Fig. 11. Specifically, spectrum inference can be employed
in two specific ways:

• Inference/Prediction of spectrum occupancy, which out-
puts the predicted spectrum occupancy ranking. Based on
this output, the specific frequency of the particular bands
exhibiting a higher probability of being unoccupied will
be sensed first in the following process.

• Inference/Prediction of link quality, which outputs the
predicted link quality ranking. Based on this output, the
specific frequency of the links having a higher predicted
link quality will be firstly selected for LQA.

We note that in the basic operating cycle of wideband 4G
ALE, the specific order in which spectrum sensing and LQA
are carried out is generally random or predefined. By contrast,
the introduction of spectrum inference/prediction is capable
of providing an informative guidance considering the sensing
order and LQA order. Therefore, the link establishment time
is expected to decrease in 4G ALE, provided that the spectrum
inference techniques summarized in the previous sections are
invoked. To enable the vision shown in Fig. 11, time domain
or joint time-frequency domains spectrum inference algorithms
discussed in Section IV can be used.

G. Other Use Cases: The Applications of Spectrum Inference
for Various Future Wireless Networks

In addition to 5G and HF communications, there are
many other potential applications of spectrum inference for
various future wireless networks, such as cognitive smart
grid networks (CSGN) [269], [270], cognitive radio sensor
networks (CRSN) [271]–[274], cognitive cellular networks
(CCN) [275]–[277], and cognitive machine-to-machine com-
munications (CM2M) [278].

Specifically, in cognitive radio-enabled smart grid network-
s, spectrum sensing and spectrum inference techniques are
promising methods of providing timely smart grid wireless
communications by utilizing all available spectrum resources.
Besides the prediction of spectrum state evolution, various
statistical inference techniques can also be utilized to predict
the system state of the smart grid itself and the potential
faults resulting from environmental disasters, cyber attacks and
mechanical failures [269].

In CRSNs, wireless sensor networks benefit from the ad-
vantage of cognitive radio to overcome the spectrum scarcity
by enabling dynamic spectrum access [271]. Among others,
the limited energy/power supply and processing capability of
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wireless sensors impose additional constraints on the utiliza-
tion of various cognitive radio techniques. More specifically,
the design of spectrum inference in CRSNs should carefully
balance the tradeoffs among the inference accuracy, the com-
putational complexity, and the memory requirements.

In future CCNs, spectrum sharing-oriented cognitive radio
techniques can be used to improve the spectrum utilization
and to meet the dramatic increase of wireless data rate re-
quirements. Most of the studies on spectrum sharing in future
CCNs assume that the network will be i) multi-tier, including
macro cells, small cells such as micro cells and pico cells,
and device-to-device or machine-to-machine communication-
s [275]; ii) multi-band, including both licensed and unlicensed
bands [276]; and iii) software-defined, relying on various
intelligent learning or data mining algorithms operated in the
cloud radio access networks [277]. Inference of the spectrum
usage state and the users’ content demand will facilitate more
proactive and efficient network operations.

VII. OPEN ISSUES AND RESEARCH TRENDS

Although a number of studies have been carried out on
spectrum inference in CRNs, this research topic has a great
potential for future investigation. Actually, there are still a
number of unsolved challenges waiting for solutions. Based
on the above survey and tutorial, this section presents a range
of potential open issues and future research trends as follows.

A. Fundamental Performance Limits of Spectrum Inference

First of all, the fundamental performance limits on spectrum
inference are still unknown. Most existing work on spectrum
inference focus on applying various statistical inference tech-
niques for capturing the spectrum state’s evolution. However,
to the best of our knowledge, there is a paucity of studies
focusing on the theoretical performance analysis of spectrum
inference. Just as the Shannon capacity gives the upper bound
of various modulation and coding schemes, there should
be fundamental performance limits for the various spectrum
inference techniques. These fundamental performance limits
can guide the further development of spectrum inference
algorithms.

As mentioned above, recently, Olivieri et al. [123] have
applied the information theoretic entropy as a measure of
predictability in the process of generating the ON- and OFF-
period durations. In [124]–[126], the authors have used the
multi-scale entropy, in order to examine both the complexity
and the predictability of the spectrum measurement traces
recorded. In [127], from an information theory perspective,
the authors have introduced a methodology of using statistical
entropy measures and Fano inequality to quantify the degree of
predictability underlying real-world spectrum measurements.
However, there is no commonly accepted limit on spectrum
inference in the literature so far. Moreover, most of them have
focused on the performance limits of time-domain spectrum
prediction. No work has considered the limits of joint multi-
domain spectrum inference, intuitively, which is expected to
have a higher performance upper bound.

B. Spectrum Inference in Various Domains

Besides the time, frequency and spatial domains, in other
dimensions such as the code- and angular-domain, to the
best of our knowledge, inference/prediction of spectrum usage
has not been proposed. Once the system becomes aware of
the spreading code that the PU is going to use, the CRs
become capable of choosing orthogonal codes to simulta-
neously transmit information with little or no interference.
In the context of multiple input multiple output (MIMO)
techniques, the PUs may transmit data within a narrow beam in
a specific direction [282]. This provides opportunities for CRs
to simultaneously transmit over the same frequency band in
different directions. Inference/prediction techniques may help
the CRs to infer the PU’s transmit phase trajectory and pre-
shift the phase accordingly.

Moreover, most of the existing spectrum inference studies
focus on single domain spectrum inference, more specifically,
time-domain spectrum prediction, but only very limited work
consider joint multi-domain spectrum inference. Actually, no
individual spectrum data exists in isolation, there are inher-
ent correlations between this data and its neighbors in time
domain, frequency domain, and space domain. Consequently,
joint multi-domain spectrum inference is an active research
direction, which is expected to bring more comprehensive,
accurate and reliable spectrum information.

C. Spectrum Inference in Various Bands

Although there have been extensive spectrum measurement
campaigns all over the world during the past decade, the
majority of the efforts have been focused on TV bands to
identify TV white spaces (see e.g. [86] and [87]), which
to some extent represent the responses to FCC’s spectrum
policy task force in 2002 [57] and to FCC’s adoption rule for
unlicensed use of television white spaces around 2010 [240].
There is an urgent need to perform spectrum measurements
and inference, in order to document the usage of spectrum
bands that have attracted the recent interest of the regulatory
bodies. For instance, FCC issued a report and order in 2015,
adopting rules for the commercial use of 150 MHz of spectrum
in the 3550-3700 MHz band (known as 3.5 GHz band), where
the primary user is the US Department of Defense (DoD)
radar systems. There are relatively few studies on the spectrum
measurements in the new bands [285]–[287]. Interestingly,
spectrum sharing between the incumbent radar systems and
the Internet of Things devices or secondary WiFi networks
have been recently studied in [287]–[289].

D. Cooperative Spectrum Inference

In scenarios where there are multiple PUs and multiple CRs,
cooperative spectrum inference among CRs is a promising
research direction. Cooperative spectrum inference can ben-
efit from multi-user diversity gains since different CRs may
face different shadowing and fading environments and have
different spectrum consequences for inference. Furthermore,
cooperative spectrum inference can enable different CRs to
perform different inference subtasks, which may both re-
duce the computational complexity and the inference delay.
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Moreover, the geographical movements as well as the data
transmission trends of the CRs could be better predicted
by cooperative schemes. There are several studies in this
direction [258], [280], [281].

E. Deep Spectrum Inference

With the escalation of spectrum demand, there is a pressing
need to recognize, classify and to activate the available bands.
In fields like public health, economic development and climate
forecasting, data mining has shown a beneficial predictive
power [279]. Similar success may be anticipated in the ra-
dio environment conceiving the required transmission power,
spectrum state, PU/CR location, as long as there is sufficient
training data. To handle the flood of spectrum data, recent ad-
vances in artificial intelligence techniques, like deep learning
and reinforcement learning [283], [284], are promising tools
for improving the spectrum inference performance.

F. Spectrum Inference for Sensing

There are a number of interesting directions of exploiting
spectrum inference for sensing. Firstly, as is known, wireless
spectrum has a (time, frequency, space, etc) multi-domain
space. Due to either the hardware limitations or sensor deploy-
ment cost, spectrum sensing can only capture the state of a
partial of the spectrum space. To obtain a whole picture of the
multi-domain spectrum space, spectrum inference can help to
fill the unmeasured space via acting as an interpolator. Second,
to find idle spectrum from a large number of candidate bands,
the order of spectrum sensing is vital to minimize the sensing
time overhead. Spectrum inference can provide a predictive
input to spectrum sensing for enabling a better sensing order.
In addition, spectrum inference can output a complementary
spectrum state estimation to spectrum sensing. It’s possible to
fuze the output of spectrum inference and spectrum sensing
to get a more accurate state estimation.

G. Spectrum Inference for Sharing

In the context of spectrum sharing, spectrum inference is
invoked for supporting/facilitating the coexistence of CRs and
PUs. The current research on inference-based spectrum sharing
is limited and mainly focused on spatial domain [5], [18],
[176], [200], where the inference of spatial signal coverage is
used to improve the spatial reuse. One interesting direction is
to jointly predict/inference the spectrum demand of CRs and
the spectrum activities of PUs for proactively coordinating
the spectrum sharing among them. Another direction is to
predict/inference the statistical channel gains of CR links, PU
links and CR-PU interference links, which can facilitate the
resource allocation, especially when the channel gains cannot
be obtained due to various practical constraints.

H. Spectrum Inference for Mobility

As mentioned above, spectrum mobility in the CRNs has
a twin interpretation. On the one hand, it refers to spectral
handoff from one band to another, due to the appearance
of PUs or interference avoidance. One the other hand, the

mobility of CRs and/or PUs, for example, in vehicular CRN-
s, may also affect the geographically surrounding spectrum
environment in terms of imposing additional interference,
changing channel conditions and spectrum availability, etc.
Spectrum inference associated with in the former case has
been extensively studied. However, in the latter case, there are
only a few contributions.

Supporting high-throughput vehicular communications is
important for safety applications, traffic management and
mobile Internet access. One promising scenario of spectrum
inference for mobility can be found in railway, highway or
subway based cognitive communications, where the mobility
trajectory is fixed and thus the spectrum demand may be rela-
tively regular for inference. One interesting research direction
is to jointly consider the spectrum mobility with the user
mobility since the spectrum evolution patterns are generally
determined by the human’s usage of radio spectrum. Moreover,
it is reported in [293] that a 93% potential predictability
of human mobility can be expected, which in-turn can be
exploited for supporting accurate spectrum inference.

I. Spectrum Inference for Decision

As mentioned above, spectrum inference for decision has
been extensively investigated in various aspects such as, cen-
tralized spectrum allocation, decentralized channel selection,
physical layer rate adaption, dynamic spectrum access, to
name just a few. There are relatively few open issues found
on this topic. However, one direction is to design demos or
systems that utilizes the specific techniques with the well
known example as DAPRA’s spectrum challenges.

J. Applications of Spectrum Inference

Last but not least, more investigations on specific appli-
cations of spectrum inference techniques is also a fruitful
research direction. Although there are several common rules
for various applications, the requirements of spectrum in-
ference in different application scenarios are rather diverse.
For example, the spectrum occupancy state in TV bands
changes relatively slowly on a time-scale of several hours,
while the spectrum occupancy state in cellular bands or Wi-
Fi bands changes within several milliseconds. Considering
the fact that the outdated prediction or inference is useless,
the tolerance to time delay in the corresponding spectrum
inference is significantly different, which imposes different
design constraints on the specific inference algorithms.

VIII. CONCLUSION

Spectrum inference is a promising technique of improving
the spectrum exploitation in cognitive radio networks. In this
paper, we reviewed the recent advances in spectrum inference
based on an extensive study of the existing literature. We first
introduced the preliminaries of spectrum inference, including
the sources of spectrum data, the models of spectrum usage
and the predictability of spectrum evolution. Then we explored
various spectrum inference algorithms from a time-frequency-
spatial domain perspective and presented an in-depth tutorial.
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We proceeded by offering a comparative analysis of the
advantages and challenges of various spectrum inference tech-
niques. Additionally, we reviewed the applications of spectrum
inference both in existing and in future wireless networks,
including 5G cellular communications, next-generation HF
communications, cognitive smart grid networks, cognitive ra-
dio sensor networks, etc. We also highlighted a range of open
issues and research trends influencing the actual deployment
of spectrum inference. We conclude that the main goal of
the existing and forthcoming studies on spectrum inference
in CRNs is to achieve a compromise amongst the conflicting
objectives of improving the prediction accuracy, reducing
its computational complexity and memory requirement. This
forms a fruitful research area. Our hope is that this paper, with
its interdisciplinary perspective, will stimulate the research
and development of spectrum inference in future wireless
networks.
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