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Abstract—We propose a tunable location-dependent base
station (BS) cooperation scheme by partitioning the plane into
three regions: the cell centers, cell edges and cell corners. The
area fraction of each region is tuned by the cooperation level
γ ranging from 0 to 1. Depending on the region a user resides
in, he/she receives no cooperation, two-BS cooperation or three-
BS cooperation. Here, we use a Poisson point process (PPP) to
model BS locations and study a non-coherent joint transmission
scheme, i.e., selected BSs jointly serve one user in the absence
of channel state information (CSI). For the proposed scheme, we
examine its performance as a function of the cooperation level
using tools from stochastic geometry. We derive an analytical
expression for the signal-to-interference ratio (SIR) distribution
and its approximation based on the asymptotic SIR gain, along
with the characterization of the normalized spectral efficiency
per BS. Our result suggests that the proposed scheme with a
moderate cooperation level can improve the SIR performance
while maintaining the normalized spectral efficiency.

Index Terms—Cellular networks, BS cooperation, geometric
division, stochastic geometry.

I. INTRODUCTION

The link quality in a cellular network strongly depends on

the location of the users relative to the serving and interfering

BSs. Specifically, in dense networks where interference is the

limiting factor, the signal-to-interference ratio (SIR) for users

distant from the serving BS is on average lower than that

near the serving BS. Such a variation induces unfairness and

harms the performance of users near the cell boundary [1]. BS

cooperation is one of the methods to ameliorate the problem.

By allowing selected BSs to jointly serve one or more users,

the interference originating from nearby BSs can be turned into

useful signals. Nonetheless, practical BS cooperation schemes

need to be evaluated under the constraint of limited time-

frequency resource blocks (RBs) at each BS. If the number

of cooperating BSs per user keeps increasing, the gain will

gradually diminish because distant BSs have little impact

on the SIR, and the overall throughput will be reduced. In

this respect, it is thus crucial to devise a location-dependent

cooperation scheme and limit the number of cooperating BSs

per user.

BS cooperation schemes vary based on how to group

cooperating BSs, how BSs jointly serve users and whether

they are adaptive to the user location.

[2] proposes a pairwise BS cooperation scheme where

users within the cooperation region can be served by the

two nearest BSs using coherent multi-user joint transmission.

The transmission scheme, however, relies on precise channel

state information (CSI) and intensive computation. A trans-

mission scheme that is less sensitive to channel estimation

and backhaul capacity is analyzed in [3], where the authors

study a single-user joint transmission scheme in heterogeneous

networks. Selected BSs non-coherently transmit the same

desired symbol to serve a user. While the cooperation scheme

is not location-dependent, two types of users are studied,

namely the general user and the worst-case user (users located

at the Voronoi vertices). It is shown that the cooperation

scheme benefits the worst-case user more significantly than

the general user in terms of the SIR. In our paper, location-

dependent BS cooperation will be studied to account for such

a difference and the two types of users will be generalized

to three types of users. Further, [4] proposes a user-centric

method of clustering BSs to maximize each user’s normalized

spectral efficiency, raising the importance of evaluating BS

cooperation schemes in terms of the number of serving BSs

per user. The evaluation of the normalized spectral efficiency

as a function of the cooperation level will be included in this

paper.

Here, our focus is the single-user non-coherent joint trans-

mission scenario as in [3]. We propose a cooperation scheme

that favors users relatively distant from their serving BS. We

first offer a crisp mathematical definition of the cell center,

the cell edge and the cell corner. The division is adjusted by

the cooperation level γ that ranges from 0 to 1. Users in the

cell center are served by only the nearest BS, while users in

the cell edge and the cell corner are served by the two and

the three nearest BSs, respectively.

We evaluate the performance of the proposed scheme by

two metrics: the SIR distribution and the spectral efficiency

normalized by the number of cooperating BSs. The former

characterizes the typical link quality and the latter character-

izes the overall throughput. Exact analytical expressions of

the metrics are given, followed by an approximation based on

the asymptotic SIR gain [5]. It is found in [5] that with the

same diversity order, the SIR gain between different schemes

can be captured using the horizontal gap given by the ratio of

the mean interference-to-signal ratio (MISR). Here, we study

the analytical SIR gain between the standard Poisson point

process (PPP) without cooperation and our scheme. We show

that with the increase of the cooperation level, the SIR gain

amounts more slowly and essentially saturates. The relative
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Fig. 1. Illustration of the cooperation region when γ = 0.2 and γ = 0.5.
Blue circles denote points generated from a PPP of intensity 3. Red lines
are the edges of the associated Voronoi cells. Blank, green and blue regions
denote the non-cooperation region C1, the two-BS cooperation region C2 and
the three-BS cooperation region C3 respectively. The area fractions are 0.64,
0.2304, 0.1296 for γ = 0.2 and 0.25, 0.1875, 0.5625 for γ = 0.5 obtained
from (4).

ditance process introduced in [6] is used to obtain this result.

II. MODEL

A. Geometric Division

For a cooperation level γ (0 ≤ γ ≤ 1) we partition the

plane into three disjoint regions. Letting ρ = 1− γ we define

C1 , {x ∈ R
2 :
∥

∥x−NP1(x)
∥

∥ ≤ ρ
∥

∥x−NP2(x)
∥

∥},
C2 , {x ∈ R

2 : ρ
∥

∥x−NP2(x)
∥

∥ <
∥

∥x−NP1(x)
∥

∥ ,
∥

∥x−NP1(x)
∥

∥ ≤ ρ
∥

∥x−NP3(x)
∥

∥},
C3 , {x ∈ R

2 :
∥

∥x−NP1(x)
∥

∥ > ρ
∥

∥x−NP3(x)
∥

∥},

(1)

where NPi(x) is the ith nearest BS to x. Note that in a

2D Voronoi diagram, any location on a Voronoi edge is

equidistant from its two nearest BSs, and any Voronoi vertice

is equidistant from its three nearest BSs. Intuitively, C1 denotes

the cell center region where users are only close to the nearest

BS and relatively far from other BSs, C2 denotes the cell edge

region where users are relatively close to the two nearest BSs,

and C3 denotes the cell corner region where users are relatively

close to the three nearest BSs.

Without cooperation, all users are connected to their nearest

BS only. With location-dependent cooperation, a user residing

in Ci is served by its i nearest BSs. Note that γ = 0 corre-

sponds to the non-cooperation scheme and γ = 1 corresponds

to the full cooperation scheme where all users are connected

to their three nearest BSs.

B. System Model

Consider the downlink transmission in a cellular network

with orthogonal RBs. Each BS transmits with unit power and

is connected with its geometrical neighbors via backhaul links

of sufficient capacity. We use a 2D PPP with intensity λ to

model BS locations, denoted as Φ. Each BS/user is equipped

with a single antenna. We focus on the typical user located at

the origin o. The effect of Rayleigh fading from the point x is

denoted by hx and the path loss exponent by α. The received

signal at the typical user can be written as

∑

x∈C

hxX

‖x‖α/2
+
∑

x∈Φ\C

hxXx

‖x‖α/2
+ Z, (2)

where the first sum is the desired signal from the set of serving

BS(s), denoted by C and the second sum is the interference

from the other BSs. X denotes the channel input symbol sent

by the serving BS(s) with zero mean and unit variance and is

uncorrelated with other symbols Xx sent by BSs not in C. Z is

a zero mean complex Gaussian random variable with variance

σ2 modeling the background thermal noise.

Consider an interference-limited scenario, where the noise

has little impact compared to the aggregated interference. The

SIR at the typical user is

SIR =

∣

∣

∣

∑

x∈C hx‖x‖−α/2
∣

∣

∣

2

I

with

I ,
∑

x∈Φ\C

|hx|2‖x‖−α
.

The correlation of the interfering items in I resulting from

interfering BSs’ cooperation is ignored [3].

Further, let ri be the distance from the origin to its i-
th nearest BS ( ri ≤ ri+1 by definition). We define the

distance point process Φ′ = {r1, r2, ...} based on Φ. The joint

distribution of r1, r2 and r3 is

fr1,r2,r3(x, y, z) = (2λπ)3xyz exp (−λπz2). (3)

The area fraction of each region depends on γ as defined

in (1) and is equal to the probability that the origin falls into

each region [7]:

P(o ∈ C1) = (1− γ)2

P(o ∈ C2) = γ(1− γ)2(2− γ)

P(o ∈ C3) = γ2(2 − γ)2.

(4)

An illustration of the partitioned plane when the cooperation

level γ = 0.2 and γ = 0.5 is shown in Fig. 1. The

non-cooperation region corresponds to the locations near the

center of each cell, the two-BS cooperation region follows

the boundaries along the Voronoi cell edge, and the three-BS

cooperation region closes around the Voronoi vertices.

III. PERFORMANCE METRICS

A. Success Probability

For a given threshold θ, the success probability with coop-

eration level γ is defined as

F̄γ(θ) , P(SIR > θ), (5)

which is the complementary cumulative distribution function

(ccdf) of the SIR.



B. Asymptotic SIR Gain

The SIR distribution of all but a few basic network models

is complex or even intractable. In our scheme, the SIR

distribution varies with the cooperation level γ. Hence, we

simplify the success probability by calculating the asymptotic

SIR gain between our scheme and the standard PPP without

cooperation. It is shown in [5] that asymptotically,

F̄γ(θ) ∼ F̄PPP(θ/G), θ → 0, (6)

where F̄PPP(θ) denotes the ccdf of the SIR without coop-

eration. G is reflected by the horizontal gap between SIR

distributions and can be expressed as

G =
MISRPPP

MISRγ
, (7)

where MISRPPP denotes the MISR of the PPP without

cooperation and MISRγ denotes the MISR of our cooperation

scheme with cooperation level γ.

The MISR is defined as [5]

MISR = E

( I

S̄

)

, (8)

where I is the interference power as defined earlier, S =
∣

∣

∣

∑

x∈C hx‖x‖−α/2
∣

∣

∣

2

and S̄ = Eh(S) is the signal power

averaged over fading.

C. Normalized Spectral Efficiency

We define the normalized spectral efficiency as

C , N−1 log (1 + SIR), (9)

where N denotes the number of serving BSs. The ergodic

normalized spectral efficiency can be obtained by taking an

expectation over (9). N is a random variable that takes values

from {1, 2, 3} according to (4) whose mean is the mean

number of BSs serving the typical user, i.e.,

EN = γ4 − 4γ3 + 3γ2 + 2γ + 1, (10)

which is shown in Fig. 2. (9) captures the trade-off between

the spectral efficiency and the overall throughput. Note that

both N and the SIR depend on which cooperation region the

typical user falls in.

IV. ANALYTICAL AND NUMERICAL RESULTS

A. Success Probability

Without cooperation, the typical user is served by the

nearest BS only. The success probability is given in [7] as

F̄PPP(θ) =
1

2F1(1,−δ; 1− δ;−θ)
, (11)

where δ , 2/α and 2F1(a, b; c; z) is the Gauss hypergeometric

function. For α = 4 (δ = 1/2) we have F̄PPP(θ) =

(1 +
√
θ arctan

√
θ)

−1
.

In our cooperation scheme with cooperation level γ, we

obtain the success probability by calculating the distribution

of the SIR for the three regions. We obtain (12) for the success

probability when α = 4 (δ = 1/2) (see next page). The

derivation of (12) and the success probability for general α
is provided in the appendix.
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Fig. 2. The mean number of BSs serving the typical user with respect to
cooperation level γ.
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Fig. 3. The log outage probability with cooperation level γ for α = 4 where
the solid lines are plotted using the analytical form (12) and circles are the
asymptotic approximations using (6) and (13).

B. Asymptotic Success Probability

The Asymptotic Gain: We obtain the asymptotic horizontal

gap G as (13) using the MISR of the PPP without cooperation

and the MISR in our scheme with cooperation level γ. The

former is [5]

MISRPPP =
2

α− 2
,

and the latter is calculated by applying the relative distance

process introduced in [6]. We determine MISRγ by calculating

it for the three regions and adding the results, i.e.,

MISRγ = MISRC1
+MISRC2

+MISRC3
,

where MISRCi
denotes the MISR calculated using (8) within

Ci. For C1, we have

MISRC1
=
∑

i>1

E

[(r1
ri

)α

1C1

]

(14)

(a)
= E

[(r1
r2

)α

1C1

]

∑

i>1

E

[(r2
ri

)α]

,



F̄γ(θ) =

3
∑

i=1

P(SIR > θ, Ci) (12)

=

∫ ∞

0

∫ ∞

x
ρ

(2π)2xy exp (−πy2) exp
(

− π
√
θx4 tan−1

√

θx4/y4
) 1

1 + θx4/y4
dxdy

+

∫ ∞

0

∫ x
ρ

x

∫ ∞

x
ρ

(2π)3xyz exp (−πz2) exp

(

− π

√

θ

x−4 + y−4
tan−1

√

θz−4

x−4 + y−4

)

1

1 + θz−4/(x−4 + y−4)
dxdydz

+

∫ ∞

0

∫ x
ρ

x

∫ x
ρ

y

(2π)3xyz exp (−πz2) exp

(

− π

√

θ

x−4 + y−4 + z−4
tan−1

√

θz−4

x−4 + y−4 + z−4

)

dxdydz.

G =
2

(α+ 2)E
(

( r1r2 )
α
1C1

)

+ (α+ 4)E
(

(r1/r3)α

1+(r1/r2)α
1C2

)

+ 6E
(

(r1/r3)α

1+(r1/r2)α+(r1/r3)α
1C3

) . (13)

where 1Ci
is an indicator function that is one if the typical

user falls into Ci and is zero otherwise. Step (a) follows from

the fact that only the first term in MISRC1
is constrained by

the cooperation region. It can be calculated using the joint

distribution of r1 and r2 as

E

[(r1
r2

)α

1C1

]

=

∫ ∞

0

∫ ∞

x
ρ

fr1,r2(x, y)
(r1
r2

)α

dydx.

The second term can be evaluated by considering the relative

distance process [6] as

∑

i>1

E

(r2
ri

)α

= 1 +
4

α− 2
.

Similarly, we obtain the MISR in C2 and C3 as

MISRC2
=
∑

i>2

E

[ r−α
i

r−α
1 + r−α

2

1C2

]

(15)

= E

[ (r1/r3)
α

1 + (r1/r2)α
1C2

]

∑

i>2

E

[(r3
ri

)α]

,

∑

i>2

E

(r3
ri

)α

= 1 +
6

α− 2
,

and

MISRC3
=
∑

i>3

E

[ r−α
i

r−α
1 + r−α

2 + r−α
3

1C3

]

(16)

= E

[ (r1/r3)
α

1 + (r1/r2)α + (r1/r3)α
1C3

]

∑

i>3

E

[(r3
ri

)α]

,

∑

i>3

E

(r3
ri

)α

=
6

α− 2
.

Now, using (7) we obtain the expression for G as in (13). As

shown in Fig. 3, the approximation of the outage probability
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Fig. 4. Basic fitting of the horizontal gap G (in dB) for α = 4 using tanh

function with a = 5.865 and b = 3.234. The function with a = 6 and b = 3

also shows good fit with further simplicity. Red dots are plotted using the
analytical expression (13).

(defined as the cdf of the SIR) based on the horizontal gap is

very accurate compared to the exact analytical result (12).

Approximating the analytical G in (13) using basic fitting

(in dB) we get

Gfit = a tanh(bγ), (in dB) (17)

where a = 5.865 and b = 3.234. Using (17) and (6) we obtain

the asymptotic form of the success probability as a function

of θ and γ.

A further simplification of the approximation is

G̃fit = 6 tanh(3γ), (in dB) (18)

which is surprisingly simple and still quite accurate as shown

in Fig. 4 .
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Fig. 5. Horizontal shift (in dB) using (13) for different α.
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Fig. 6. The simulation result of the ergodic normalized spectral efficiency for
α = 4.

G vs. α: The comparison of G for different α is shown in

Fig. 5. As the path loss exponent α increases, the horizontal

gain increases also. Note that the horizontal gain, regardless

of α, is increasing almost linearly at first, and amounts very

slowly after γ = 0.6. It suggests that higher cooperation

levels beyond the threshold essentially offer no further SIR

gain, which means the overall throughput decreases since N
increases with γ.

C. Ergodic Normalized Spectral Efficiency

As shown in the simulation results in Fig. 6, the ergodic

normalized spectral efficiency increases slightly and then

decreases with the increase of γ (i.e., the expansion of the

cooperation region C2∪C3). Observe that the same normalized

spectral efficiency is guaranteed when γ = 0 and γ ≈ 0.28,

which gives the range of cooperation levels that improve the

typical link quality without lowering the overall throughput.

V. CONCLUSIONS

The tunable BS cooperation scheme put forth in this paper

offers cooperation that is adaptive to a user’s position. It is

shown that with the increase of the cooperation level, the SIR

gain saturates quickly after γ = 0.6, while the number of serv-

ing BSs keeps increasing. The normalized spectral efficiency

further validates that moderate cooperation is optimal under

limited BS resources. In essence, the proposed BS cooperation

scheme not only adaptively allocates resources in the network

to boost the signal strength and mitigates the interference but

also compensates unfairness, by allocating more resources to

users distant from the nearest BS.
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APPENDIX

A. General α

The success probability with γ can be written as

P(SIR > θ) =

3
∑

i=1

P(SIR > θ, Ci), (19)

where P(SIR > θ, Ci) is the ccdf of the SIR if the typical user

falls in cooperation region Ci. For example,

P(SIR > θ, C1) = P

(

g1r
−α
1 > θ

(

∑

i6=1

gir
−α
i

)

, C1
)

(20)

(a)
= P(g1 > θIrα1 , C1)
(b)
=

∫

C1

L(1)
I (θrα1 )fr1,r2(x, y)dxdy

where (a) follows from gi ∼ exp(1) and I =
∑

i6=1 gir
−α
i , and

(b) follows from the Laplace transform of the interference I ,

i.e., L(1)
I (s), evaluated at s = θrα1 . L(1)

I (s) can be written as

L(1)
I (s)

, E

(

e−s
∑

∞

i=2
gir

−α
i

)

= EΦ′

(

∏ 1

1 + sr−α
i

)

(a)
= exp

(

−
∫ ∞

r2

[

1− 1

1 + sx−α

]

2λπxdx

)

1

1 + sr−α
2

(b)
= exp

(

−2λπs
2

α

∫ ∞

r2s
−

1

α

t

1 + tα
dt

)

1

1 + sr−α
2

(c)
= exp

(

−2λπsδF (r2s
− δ

2 )
) 1

1 + sr
−2/δ
2

,

where δ = 2/α, Φ′ is the distance point process as defined

before, (a) is due to the probability generation functional of

the PPP [8], (b) follows from the substitution x = s
1

α t,
and (c) follows from the definition F (x) ,

∫∞

x
t

1+tα dt. The

integral can be expressed in terms of the Gauss hypergeometric

function

F (x) =
x2

(2/δ − 2)(1 + x2/δ)
2F1

(

1, 1; 2− δ;
1

1 + x2/δ

)

,

(21)



and can be easily evaluated numerically.

Similarly, the success probability of the typical user in the

cell-edge region can be written as

P(SIR > θ, C2)

= P

(

g1r
−α
1 + g2r

−α
2 > θ

(

∑

i6=1,2

gir
−α
i

)

, C2
)

and

L(2)
I (s)

= E
(

e−s
∑

∞

i=3
gir

−α
i

)

= EΦ′

(

∏ 1

1 + sr−α
i

)

= exp

(

−
∫ ∞

r3

[

1− 1

1 + sx−α

]

2λπxdx

)

1

1 + sr−α
3

= exp
(

−2λπsδF (r3s
− δ

2 )
) 1

1 + sr
−2/δ
3

.

The success probability of the typical user in the cell-corner

region can be written as

P(SIR > θ, C3)

= P

(

g1r
−α
1 + g2r

−α
2 + g3r

−α
3 > θ

(

∑

i6=1,2,3

gir
−α
i

)

, C3
)

and

L(3)
I (s) = E

(

e−s
∑

∞

i=4
gir

−α
i

)

= EΦ′

(

∏ 1

1 + sr−α
i

)

= exp

(

−
∫ ∞

r3

[

1− 1

1 + sx−α

]

2λπxdx

)

= exp
(

−2λπsδF
(

r3s
− δ

2

)

)

.

By summing up the three terms we obtain the success proba-

bility for general α with cooperation level γ.

B. Special Case: α = 4

For α = 4, we can simplify the above conditional Laplace

transforms of the interference to closed forms:

L(1)
I (s) = exp (−λπ

√
s arctan

√
sr−2

2 )
1

1 + sr−4
2

,

L(2)
I (s) = exp (−λπ

√
s arctan

√
sr−2

3 )
1

1 + sr−4
3

,

L(3)
I (s) = exp (−λπ

√
s arctan

√
sr−2

3 ).

By plugging the above equations into (19) we obtain the

success probability for α = 4 in (12).
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