
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Monster Carlo: An MCTS-Based Framework For Machine Playtesting Unity Games

Permalink
https://escholarship.org/uc/item/7v41t9t0

Author
Keehl, Oleksandra Gennadievna

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v41t9t0
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

MONSTER CARLO: AN MCTS-BASED FRAMEWORK
FOR MACHINE PLAYTESTING UNITY GAMES

A thesis submitted in partial satisfaction of the
requirements for the degree of

Master of Science

in

COMPUTATIONAL MEDIA

by

Oleksandra G. Keehl

March 2018

The Thesis of Oleksandra G. Keehl
is approved:

Asst. Professor Adam Smith, Chair

Professor Jim Whitehead

Professor Michael Mateas

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Oleksandra G. Keehl

2018

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

1 Introduction 1

2 Related Work 5
2.1 Design Inquiry with Restricted Play . 5
2.2 MCTS . 7
2.3 Environments that support MCTS . 9
2.4 Unity . 10

3 System Design 12
3.1 Experiment setup and result visualization 12
3.2 Python support module . 13
3.3 C# support module . 14
3.4 Modifications to the game . 15

4 Experiments 17
4.1 It’s Alive! . 17

4.1.1 Playstyle experiments . 19
4.1.2 Design variants . 21

4.2 2D Roguelike . 23
4.2.1 Playstyle experiments . 24
4.2.2 Design variants . 26

5 Framework Validation 28
5.1 Flat vs. Factored Actions . 29
5.2 Parallel vs. Single Thread . 31
5.3 Terminal Branch Treatment . 33

iii

5.4 UCT Constant . 34
5.5 Experiment Speedup Techniques . 36

6 Conclusion 38

Bibliography 41

A Example experiment 43

B Integration Efforts for 2D Roguelike 45

iv

List of Figures

3.1 Overall architecture of the Monster Carlo framework. 13

4.1 (a) It’s Alive! screenshot. (b) Possible actions in this state include land-
ing the falling piece in one of the five columns in one of four orientation,
or collecting one of the three living monsters. 19

4.2 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts for 20 independent replicates run with greedy, unrestricted and
lazy players in It’s Alive!. (b) Mean and variance of the highest scores
seen across the 20 independent replicates for each playstyle over the first
15,000 rollouts. 20

4.3 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates run on regular, mon-ochrome-
ster and ten-acious designs in It’s Alive!. (b) Mean and variance of
the highest scores seen for each design variant across 20 independent
replicates over the first 15,000 rollouts. 22

4.4 Screenshot of 2D Roguelike, the open source official tutorial game for the
Unity game engine. 24

4.5 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts for 20 independent replicates run with an unrestricted and forward-
only player models in 2D Roguelike. (b) Mean and variance of the highest
scores seen for each design player model across 20 independent replicates
over the 30,000 rollouts. 25

4.6 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates for experiments run on default
and high stakes design variants of 2D Roguelike. (b) Mean and variance
of the highest scores seen across 20 independent replicates for each design
variant over the 30,000 rollouts. 26

v

5.1 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts acros 20 replicates for experiments run with factored and flat
action representations. (b) The mean and variance of the highest seen
scores seen across 20 independent replicates for the flat and factored
action representations over the first 10,000 rollouts. 29

5.2 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates for experiments run with a single
worker and 24 workers in parallel. (b) The mean and variance of the
highest seen scores over the first 10,000 rollouts for the 20 independent
replicates ran with 24 or a single worker. 32

5.3 (a) The mean and variance of the highest score seen for at the end
of 30,000 rollouts across 20 independent replicates for experiments run
with cutting off terminal branches, or allowing unrestricted repeat ex-
plorations. (b) The mean and variance of the highest seen scores over
the first 10,000 rollouts for the 20 independent replicates ran with each
terminal setting. 33

5.4 (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates for experiments run with UCT
constant set to 2, 200 and 1000. (b) The mean and variance of the highest
seen scores over the first 10,000 rollouts for 20 independent replicates with
each c value. 35

vi

List of Tables

5.1 Summary of the experiment speed-up techniques. 37

vii

Abstract

Monster Carlo: An MCTS-based Framework

for Machine Playtesting Unity Games

by

Oleksandra G. Keehl

In this thesis, I describe a Monte Carlo Tree Search (MCTS) powered tool

that I created to help assess the impact of various design choices for in-development

games built on the Unity1 platform. MCTS shows promise for playing many games,

but the games must be engineered to offer a compatible interface. To circumvent this

obstacle, I developed a support library for augmenting Unity games, as well as exper-

iment templates in Jupyter Notebook for running machine playtesting experiments. I

also propose ways for designers to use this tool to ask and answer designs questions. To

illustrate this, I successfully integrated the library with It’s Alive!,2 a game I am cur-

rently developing, as well as 2D Roguelike, an open source tutorial game available from

the Unity asset store.3 The integration took fewer than 100 lines of code (see Appendix

B). I demonstrate the tools capability to answer both game design and player modeling

questions, as well as provide the results of the system validation experiments.

1https://unity3d.com/
2https://www.kongregate.com/games/saya1984/its-alive
3https://www.assetstore.unity3d.com/en/!/content/29825

viii

Chapter 1

Introduction

Human playtesting is an important and irreplaceable aspect of game develop-

ment, however it can be logistically cumbersome and provides for a significant bottleneck

in the design cycle: design, build, test, learn, and redesign. One of the main arguments

for machine playtesting is that a simulator can play through games orders of magnitude

faster than a human player can, and thus, can cover more ground, collect more statis-

tical data, and, in some cases, even provide guarantees through exhaustive search. As

described later in this thesis, automated playtests can be run on design variations and

with different playstyles to expose the effects the changes may have on different aspects

of the game.

In this thesis, I describe Monster Carlo, a framework for machine playtesting

Unity1 games. Tools based on this framework can gather data on different design vari-

ants and playstyles in order to detect imbalance and general effects design changes may

1https://unity3d.com/

1

have on the player’s experience. I set out to apply Jaffe’s Restricted Play balance frame-

work [5] to It’s Alive! a single player game I am developing. Contrasting with Jaffe’s

work, which examined the win–lose outcome of competitive two-player card games, It’s

Alive! emphasizes maximizing the score in single-player interaction with a Tetris-like

game. Exhaustive search is not computationally tractable in the general case of It’s

Alive! due to the vast number of possible combinations. In response, I apply Monte

Carlo Tree Search (MCTS) to find input sequences that approximately maximize the

players score.

The strategy behind Monster Carlo is to bring AI techniques to game designers

and programmers in the platforms they are already using, rather than attempting to

entice them to develop game specific AI-based game design tools for themselves, follow-

ing the examples of Jaffe and Zook. In the implementation of Monster Carlo, I made

an effort to minimize the impact on the game code changes required for integration.

With the same intention, I chose to build the tool inside of Jupyter Notebook, which is

already being used for gameplay data analysis[6].

In order to test the tool’s versatility, I integrated it with a game of a different

style and one I did not develop—2D Roguelike, the open source tutorial game available

through the Unity asset store.2 Screenshots of these games may be found in Figure 4.1a

and Figure 4.4.

Monster Carlo is intended to answer a variety of design questions: How do

monster animation (that is “coming to life”) conditions affect the achievable high scores

2https://www.assetstore.unity3d.com/en/#!/content/29825

2

in It’s Alive!? How does an It’s Alive! player who collects monsters as soon as possible

measure up to a player who waits to do it until the last moment? How does the game

dynamic change if we increase both the damage dealt by the zombies and health gained

from food pick-ups in 2D Roguelike? How feasible is a no-backtracking player strategy

in 2D Roguleike?

MCTS has many variations. I experimented with different treatment of ter-

minal branches, such as never replaying a terminal branch, thus increasing the number

of states explored; or treating a terminal branch no differently, as the classic MCTS

does. I also tried out different values for the tunable exploration constant in the UCT3

algorithm, finding the search performs better if the constant is closer to an average score

a human player can get. I also added an optimization technique of saving the entire

playtrace of each playthrough with a new best score [1]. All of these game-agnostic

variations are available through parameters of Monster Carlo.

There are also different treatments for the the way actions are represented in a

tree. I experimented with a flat list of all available actions at each state, which resulted

in a wide tree; and subdividing the actions by type, resulting in a deeper, narrower tree,

as the algorithm would first have to choose between action types and then between the

available actions of the type. Because the concept of an action is game specific, it is up

to the developers to define the action hierarchy.

In general, using MCTS for playtesting requires the games to be engineered

to be compatible with it. The Monster Carlo support library makes it easy to hook

3Upper Confidence Bound-1 applied to Trees

3

into the Unity engine update cycle and makes this engineering easy. I also created data

analysis templates for experiments that take the form of comparing optimized scores

between variants.

Monster Carlo is a framework for use in Unity. In contrast to Brandon

Drenikow’s work on Interactive Visualization of Gameplay Experiences [3], it focuses

on searching for new gameplay traces rather than visualizing ones resulting from past

human play.

This thesis makes the following contributions:

• Definition of a framework for machine playtesting Unity games where instances of

the game execute rollouts within the paradigm of MCTS.

• The complementing C# and Python support libraries for adapting a game to

support machine playtesting and running experiments.

• A report on initial experiments that validate the framework and answer design

questions about an in-development game.

4

Chapter 2

Related Work

In this chapter I review the work related to three topics relevant to Monster

Carlo: design inquiry with restricted play, MCTS, and frameworks designed to support

MCTS.

2.1 Design Inquiry with Restricted Play

The Restricted Play concept was introduced by Alexander Jaffe and his coau-

thors in 2012 [5] and was applied to a two-player, perfect-information game Monsters

Divided. In their evaluation tool, the authors were able to calculate the optimal strate-

gies for each type of restricted behavior. Due to the size of the game (five cards per

player), it was possible to apply exhaustive search to the entire game tree, foreseeing

every possible playthrough. In their Future Work section, the authors state that MCTS

can be a promising alternative for the games whose complexity makes exhaustive search

impractical. Further, because of MCTSs agnosticism to games features, it can be used

5

without modification on different restricted players and game design variants. In this

thesis, I use Jaffe’s restricted play idea, combining it with MCTS and applying it to a

new class of games: single player, discrete state games with a larger space of states.

In Ludocore (prior to Jaffe’s work), a logical game engine for modeling video

games [9], Smith et al. use similar concepts for analyzing games created within the

Ludocore framework. In particular, I borrow from Ludocore the idea of asking design

questions by imposing restrictions on the player behavior, and then asking what this

constrained player could achieve as variations in the design are considered. The main

difference with my work is that Monster Carlo is meant for integration with Unity

games, whereas for Ludocore, games had to be encoded in a specially-designed logic

programming language which Ludocore’s back-end analysis engine could understand.

By contrast, games analyzed by Monster Carlo can, for example, dynamically allocate

memory, hand-off simulation to a physics library, or perform other computations that

would be tedious to model in a purely symbolic framework.

Zook et al. follow up on Jaffe’s suggestion to use MCTS for analyzing large

games. They reported experiments with the board game Scrabble and the Magic The

Gathering inspired card game Cardonomicon[10]. They used restricted play to simulate

player skill levels to see what trends and strategies emerge when players of different skills

are pitted against each other, or against other players of the same skill rank. Although

Scrabble and Cardonomicon are naturally imperfect-information games (one cannot be

sure which tiles or cards the opponent has until they are played), Zook et al. work with

determinized, perfect-information variations of their games. Similarly, even though Its

6

Alive! is a nondeterministic game (as in Tetris, the player does not know which piece

will be randomly dropped next), I use the determinization strategy as well by simply

fixing the games random seed value.

2.2 MCTS

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm, which selec-

tively explores the tree of possible moves [1]. It assess the potential of each move by

averaging the scores of simulated random playouts from the current point in the game

until the end (a terminal state). Although MCTS denotes a broad family of algorithms,

the most common, UCT, has a single tunable parameter: the balance of advancing the

more promising branches of the tree with exploring the paths less traveled. MCTS is

a relatively simple algorithm and can be used with a multitude of decision problems

without the need for game-specific heuristics. It has been successfully applied to Go

[4], Tetris[2], Scrabble [10] and other games. Most recently, it was used in the creation

of AlphaGo Zero[8], the latest world champion in Go. In the rest of this thesis, I use

the general term MCTS to refer to the specific instance of UCT in the Monster Carlo

framework.

MCTS relies on building a tree of the possible moves in each state. In games

with a random element, such as Tetris or Scrabble, the search was performed using a

predetermined sequence of pieces. In the determinized version of the game, the auto-

mated players goal is simply to find the single best sequence of moves that maximizes

7

the final score. Without determinization, the much more difficult goal is to devise a

policy that maximizes the expected score averaged over all possible random elements in

the game.1. I also used this technique, as it is sufficient to answer the design questions

Monster Carlo is intended to answer. One of the main differences in my application

is that the games described above all had a win/lose condition (even Tetris, as it was

played competitively), while in the games described in this thesis focus on the highest

score attained.

Cai et al. [2] applied a combination of MCTS and a state hash database to

create an artificial Tetris player on par with Colin Fahey’s player2—the benchmark at

that time. This paper had many useful insights. For example, the introduction of tree

pruning dramatically increased the player’s performance against the benchmark, even

though it doubled the simulation time and thus halved the number of rollouts. They also

assigned large negative values to the branches that lead to terminal states in game to

discourage further exploration in that area. They experimented with both deterministic

and non-deterministic piece sequences, though it was mainly done for the purpose of

assessing the usefulness of the state hash table. While some lessons learned could be

applied to It’s Alive! artificial players, due to some fundamental differences between the

two games, I could not make efficient use of others. For example, they calculated the

number of game states as approximately 1060 based on each cell being either occupied

or empty. In It’s Alive!, each cell can have 77 different states—18 different pieces in four

orientations, or empty, which leads to approximately 1075 possible field states, which

1In AlphaGo Zero, where the goal was creating a competent player, the move sequence was not fixed
2http://www.colinfahey.com/tetris/

8

would likely significantly reduce the effectiveness of the state hashing. Further, because

in It’s Alive! the game ends after five monsters are collected, the terminal state is part

of the win condition, so blindly assigning negative values to the terminal tree branches

would not work in our case.

2.3 Environments that support MCTS

The Video Game Definition Language(VGDL)[7] is a representational language

for modeling videogame mechanics and level designs. The General Videogame Artificial

Intelligence(GVG-AI)3 project provides an interpreter for VGDL games which exposes

an MCTS-compatible forward model. Although VGDL has been used to model games

inspired by many different kinds of pre-existing videogames, it cannot integrate with

the original implementations of any of these games. Like Ludocore, GVG-AI tools can

only understand games expressed in a specialized language. By contrast, Unity games

can make unrestricted use of the general purpose C programming language used for

Monster Carlo.

OpenAI Gym4 is a testbed for AI. It includes environments which provide state

information, pixel data and rewards in response to an agent’s action. It can integrate

with commercial ROM implementations of many Atari games and can have algorithms

learn to play directly from pixel of memory data, rather than the simplified game state

abstraction used in VGDL. A growing number of environments, including classic games,

3http://www.gvgai.net
4https://gym.openai.com/

9

are available for AI experimentation. A related effort, OpenAI Universe,5 aims to allow

integration with an even wider array of gameplay-like activities even including a mock

travel arrangement task based on interaction with complex websites. Although these

frameworks allow MCTS-style algorithms to play a very wide variety of games, they

force interaction with the game at the lowest level of interaction common to all of

them: reading pixels or memory bytes and injecting keyboard and mouse actions. By

contrast, Monster Carlo is intended to give designers control of the level of abstraction

used by MCTS including high-level game actions (e.g. directly playing a card rather

than clicking somewhere to select a card and then clicking elsewhere to end the turn).

All these systems deal with the representations of game states and actions

differently. VGDL uses a data structure for tracking the abstract state of the game and

a list of interactions between game objects as action representation. OpenAI Gym uses

screen shot pixel data and virtual machine states for state representation and low-level

keyboard and mouse events as actions. Monster Carlo does not represent game state

beyond the sequence of moves needed to reach it, and a way of asking the framework

to make a discrete micro-decisions which assemble into high-level actions (more on this

in Chapter 3).

2.4 Unity

Unity is a powerful 3D game engine available for free for private use, which

makes it popular with indie developers. Unity does not directly support integration with

5https://blog.openai.com/universe

10

MCTS. In order to change this, it is necessary for the game to somehow communicate

what actions are possible at any moment and provide a way for some AI system to select

and apply one of those actions. Additionally, there needs to be a way of communicating

the score to be optimized to the AI system. As the level of granularity used to model

player choices and the notion of score to be optimized are specific to the game being

designed, these cannot be provided directly at the level of the Unity platform. In

response, Monster Carlo aims to offer the designer a minimal-effort way of expressing

game-specific concerns on top of the Unity platform.

11

Chapter 3

System Design

The Monster Carlo framework consists of four major parts (Figure 3.1). The

integration modifications to the game and specifications for the design experiment (the

green parts on Figure 3.1) have to be written by the game designer, while everything

else is provided through the Monster Carlo tool.

While MCTS is used as the main AI method for the experiments performed in

this paper, the algorithm can be substituted without adjusting the game or the design

experiment notebooks.

3.1 Experiment setup and result visualization

The user-facing element of the Monster Carlo framework is a sample Jupyter

Notebook for running the experiments and visualizing the results. This includes the

game process factory. The user must provide a function that can be called to start a

copy of the game, and the game must be compiled with the C# support library (de-

12

Executable

GameC#
support

Python support

Design experiment

Action prefix

Launch several
instances

Request
micro-decision

Score

Experiment
parameters

Result tree
and log data

Play trace
and score

Selected
action

Experiment
parameters

MCTS

Persistent storage

Visualizations

Results

Results

Figure 3.1: Overall architecture of the Monster Carlo framework.

scribed later). This process factory function can be used to pass experiment-specific

configuration data to the game, for example, asking it to start in a certain mode opti-

mized for analysis; or arrange for the execution of the game to happen on a different

machine, such as on a remote cluster of machines rather than the users personal work-

station. Finally, the experiment itself consists of a for loop running a desired number

of experiments with specified parameters. The experiment results are returned as an

object, which can be saved in a pickle file at the end of each experiment and later

used for analysis and visualization. I used matplotlib1 to visualize the results. All the

experiment result graphics in this thesis were obtained through this method.

3.2 Python support module

This module contains the implementation of the MCTS algorithm in Python.

Upon the termination of the experiment, it returns an object which contains the search

1https://matplotlib.org/

13

tree and any additional data the developer chose to keep track of along the way. This

output object can be trivially modified to keep track of various metrics, like the time it

takes to perform a rollout, or some kind of game-specific data. In my experiments, I kept

track of the growth of the highest seen score over the rollouts, but I could, for example,

have as easily kept track of the number of monsters collected during a playthrough.

This information can be stored in designated lists outside of the proper tree structure.

The tool supports running multiple instances of the game to significantly speed

up the search (see Section 5.2 for the results). The tool takes in arguments for the num-

ber of rollouts to perform, and game specific settings, which are passed through to the

game instances in the form of environment variables. The optional arguments include

the UCT constant value, the number of parallel workers, terminal branch treatment,

saving of the best path option, and a callback function, which can be used to print out

traces along the way.

3.3 C# support module

The support module is a C# file that has to be added to the game project.

This module takes in the environment arguments at the start of the experiment and

communicates with the Python module through NetworkStream on the port specified

in the arguments. The desired game variant is also specified through the arguments.

The module receives the most promising path prefix from the Python module at the

beginning of each playthrough. Each time a decision must be made in game, the game

14

tells the module how many legal moves are available, and the module makes a selection

without needing to know what those moves are. If there are pre-determined moves in

the path prefix, the module feeds those back to the game one at a time. When the end

of the path is reached, the module makes choices randomly, with support for weighted

selection. A custom heuristic can be added in the game by additionally providing an

integer array to use as a reference for weighted choice. When the game is over, it

provides the final score (in contrast to simply the win/lose result) to the module, which

in turn sends the full playtrace, the final score, and any other information the designer

may deem important, back to the Python module.

3.4 Modifications to the game

At a bare minimum, the designer must implement micro-decisions and scoring.

For this, the game needs to be able to determine legal moves at each step, request the

support module for an integer index of a move to take, and apply that action. When

the game reaches a terminal state, it must provide the score to the support module.

If random elements are present, the random seed needs to be reset to the

same value for each playthrough for the duration of the experiment. I also recommend

creating a headless mode for the game, as it can significantly speed up the playthroughs

on some platforms.

The game needs to be able to tell whether it was launched as part of the exper-

iment to replace the user’s input with decision requests to the C# module. Launching

15

the game in the experiment mode can also include skipping menu screens and disabling

smooth movements. To optimize the experiment running, I recommend adding an abil-

ity to reset the game after the terminal state is reached, so that the application doesn’t

have to be re-launched for each playthrough.

If the designer wishes to conduct Jaffe-style restricted play experiments, they

will have to implement the player models (which may remove or limit some available

actions or micro-decisions before the C# module is queried for a choice). They can also

implement a way to switch between the game design variations. The space of design

variants considered can be as flexible as the user wants, as long as they can specify those

variants in Python and communicate them to the game’s executable. The designer may

also choose to implement flat or factored action choices (more on this in section 5.1).

16

Chapter 4

Experiments

This chapter describes example experiments I conducted using the Monster

Carlo framework. They show how to use the restricted play methodology to ask design

questions for two games: my in-development game Its Alive!, and 2D Roguelike, a

tutorial game provided by Unity that was not implemented with Monster Carlo in

mind.

4.1 It’s Alive!

It’s Alive! (see Figure 4.1) is a Tetris-style game where the player controls the

position and orientation of pieces falling from the top of the board. The game is lost

if the pieces pile up to the very top of the board. Rather than trying to make simple

horizontal lines of pieces as in Tetris, the players of this game must form arrangements

of pieces that represent grotesquely wiggling monsters. A monster comes to life when it

minimally contains a head piece and a heart piece. At this point, the player may choose

17

to collect it to free up space, or continue building it up. Bonus points are awarded

based on the size and color coordination of each monster. If there are several moving

monsters on screen, the player can choose which one to collect by shifting the highlight

from one monster to another. The player aims for the highest score by animating and

collecting five monsters.

The player actions for human players consist of rotating the falling block,

moving it left or right, or quick-landing it. The player can also cycle the highlighter

through living monsters or delete the currently highlighted monster. Thus, at any

point, she has four to six possible actions—rotate, move left, move right, quick-land,

cycle highlighter, collect monster. Some of those actions, however, could be repeated

indefinitely without affecting the game state, but meaninglessly expanding the scope

of the search for Monster Carlo to perform. To avoid this, for the purpose of the

experiments, the actions were defined as those that result in state change. The OpenAI

Gym would have forced a mode of interaction at the level of keyboard inputs, whereas

Monster Carlo allows the flexibility to focus the analysis on the level of details the

designer cares about. Instead of ability to move the block left or right any number

of times, the artificial player has to choose a column and position for landing through

micro-decisions. Similarly, cycling the highlighter is not considered an action, instead,

deleting any of the living monsters in the current state is considered a legal action,

regardless of the highlighter position (Figure 4.1b). With this new definition of action

in mind, the player has 20 or more possible actions at every state. That is five possible

columns times four landing orientations, plus one action per living monster. On a

18

5x7 playfield, this makes exhaustive search computationally intractable due to the vast

number of possible combinations.

(a) (b)

Figure 4.1: (a) It’s Alive! screenshot. (b) Possible actions in this state include landing
the falling piece in one of the five columns in one of four orientation, or collecting one
of the three living monsters.

4.1.1 Playstyle experiments

Like Tetris, It’s Alive! has many quick game over states resulting from piling

pieces predominantly in the same column and reaching the ceiling while most of the

playfield is still empty. To prevent Monster Carlo from wasting time on these dead-

end scenarios, I prevented all player models from placing a piece that would end the

game if a non-game-ending move was possible, such as placing a piece somewhere else

or collecting a monster. I did this by excluding the game-ending moves from the list of

available actions within the game. No changes to the Monster Carlo framework were

19

0

1000

2000

3000

4000

5000

6000
Sc

or
es

greedy
unrestricted
lazy

(a)

0 2000 4000 6000 8000 10000 12000 14000
Rollouts

0

1000

2000

3000

4000

5000

6000

Sc
or
es

greedy
unrestricted
lazy

(b)

Figure 4.2: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts for 20 independent replicates run with greedy, unrestricted and lazy players in
It’s Alive!. (b) Mean and variance of the highest scores seen across the 20 independent
replicates for each playstyle over the first 15,000 rollouts.

required to express this more focused analysis.

I used factored actions for most of It’s Alive! experiments. Each turn, the

player makes a sequence of micro-decisions. First: Should I land the current piece or

collect a monster? Next (if I chose to land a piece): Which column should I land it in?

Finally (if I chose column 3): Which orientation should I land the piece in column 3?

(more on this in the 5.1 Flat vs. Factored Actions section in the Framework Validation

chapter).

I experimented with three player styles. The greedy player would collect the

monsters as soon as they came alive. The lazy player would only collect a monster if

the game would otherwise end. The unrestricted player was free to collect at any point.

20

As is evident from Figure 4.2, the lazy player did the best, while the greedy

player performed the worst. The p-values designating statistical significance of the

difference between the scores of each pair of the results ranges from 3.4e-08 to 4.5e-07

according to the Mann-Whitney U test.

Several conclusions can be drawn from these results. For one, deciding when

to collect a monster is a meaningful choice for the player. Second, while technically

nothing prevented the unrestricted player from achieving the same results as the lazy

player, being presented with an opportunity to collect the monster at every step it is alive

misleads the search into local maxima and slows down the progress. This is a reminder

that all results from MCTS are approximations computed within a fixed computational

budget, so they cannot be trusted with the same level of certainty as in the exhaustive

search results in Jaffe’s original Restricted Play work. Nevertheless, large score gaps can

provide a signal that a designer should look deeper into the specific playtraces found by

MCTS that illustrate specific styles of play in action. For this reason, it is important

that Monster Carlo returns the resulting tree, not just the aggregate statistics. The

user may decide to replay the highest scoring play trace in a mode with more detailed

analytics turned on in order to gain deeper insight into the impact of playstyle difference

that the tool discovered.

4.1.2 Design variants

I considered three design variants. The regular design follows the rules outlined

above. The mon-ochrome-ster design considers two pieces within a monster connected

21

0

1000

2000

3000

4000

5000
Sc

or
es

regular
mon-ocrome-ster
ten-acious

(a)

0 2000 4000 6000 8000 10000 12000 14000
Rollouts

0

1000

2000

3000

4000

5000

Sc
or
es

regular
mon-ochrome-ster
ten-acious

(b)

Figure 4.3: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates run on regular, mon-ochrome-ster and ten-
acious designs in It’s Alive!. (b) Mean and variance of the highest scores seen for each
design variant across 20 independent replicates over the first 15,000 rollouts.

only if they are of the same color. In the third variant, ten-acious, the monster only

comes to life if it consists of at least ten pieces.

Several conclusions can be drawn from the results of experiments (Figure 4.3).

It is apparent that the mon-ochrome-ster mode is much harder than the other two, and

affords for a lower maximum score. Counter-intuitively, we see that ten-acious design

variant, which places a restriction on the player and, therefore, makes for a harder

game, led to higher scores than those Monster Carlo achieved in the regular design.

Both experiments were ran with the same random seed, and so nothing prevented the

regular design player from building monsters of ten blocks or more. The progression of

the highest score seen across the rollouts in Figure 4.3b, shows that the regular design

22

scores are higher initially, but are quickly overtaken by those seen in ten-acious. I believe

this is due to the fact that the restrictions in ten-acious prevented the search from

lingering in the local maxima created by collecting monsters of smaller sizes. As before,

Monster Carlo does not replace the user’s judgment of game design alternatives, but it

can gather specific evidence that helps the user make that judgment for themselves.

4.2 2D Roguelike

Note that because I am the developer of both Monster Carlo and It’s Alive!,

it is possible that I have over-specialized the framework for analysis of games very

much like It’s Alive!. In this section, I consider the integration effort and results from

experiments with a game that I did not make myself, and which I did not consider

during the primary development of the Monster Carlo framework.

2D Roguelike (Figure 4.4) is an open source official tutorial game for the Unity

game engine.1 It is grid and turn based—zombies get to take a step for every two steps

the player takes. The player starts at the lower left corner of the field and the goal is

to reach the exit in the upper right corner, signifying he has survived another day. The

game is over when the player runs out of food points and the final score is the number

of days the player has survived. One food point is lost for every move and several are

lost in case of zombie attacks. The food points can be replenished by picking up food

items. The levels are laid out randomly. The number of zombies is a function of the

number of days survived, gradually increasing. At any point, the player may choose to

1https://www.assetstore.unity3d.com/en/!/content/29825

23

Figure 4.4: Screenshot of 2D
Roguelike, the open source offi-
cial tutorial game for the Unity
game engine.

go up, down, left or right. Each of these actions results in a state change, as the food

points go down even if the player attempts to walk through a wall and doesn’t actually

move.

4.2.1 Playstyle experiments

For 2D Roguelike experiments, the actions were factored into a choice of moving

toward or away from the exit, and then deciding whether the move is lateral or vertical.

For the first player, as a simple heuristic, I used Monster Carlo’s capability for weighted

choice to make the player more likely to move toward the exit in the rollout phase of

MCTS. The second player was restricted to only move toward the goal. After 30,000

rollouts, the forward-only player achieved higher scores with the statistical significance

of p-value = 3.3e-08 according to the Mann-Whitney U test.

24

0

50

100

150

Sc
or

es
unrestricted
forward only

(a)

0 5000 10000 15000 20000 25000 30000
Rollouts

0

25

50

75

100

125

150

175

Sc
or

es

unrestricted
forward only

(b)

Figure 4.5: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts for 20 independent replicates run with an unrestricted and forward-only player
models in 2D Roguelike. (b) Mean and variance of the highest scores seen for each
design player model across 20 independent replicates over the 30,000 rollouts.

Due to the game mechanics, while the forward-only player has a short-term

advantage of a powerful heuristic, it would eventually come to a hard limit, as it is

impossible to pass some levels without backtracking to avoid the zombies. In this game,

while the player can break through inner walls, it is impossible to kill the zombies. If

the player runs into one and cannot back away, it will eventually kill him.

As we can see from Figure 4.5b, while the scores for the forward-only player

have mostly flattened out, the unrestricted player scores are steadily increasing. Given

enough time, I believe the unrestricted player would outperform the forward-only player.

However, this would take too long to be practically feasible for playtesting. Another

25

option would be to increase the bias with which the unrestricted player would select

the forward motion vs. backtracking. This would help get more realistic scores faster

without imposing the forward-only restriction.

4.2.2 Design variants

0

30

60

90

120

Sc
or

es

original
high stakes

(a)

0 5000 10000 15000 20000 25000 30000
Rollouts

0

20

40

60

80

100
Sc

or
es

original
high stakes

(b)

Figure 4.6: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates for experiments run on default and high stakes
design variants of 2D Roguelike. (b) Mean and variance of the highest scores seen across
20 independent replicates for each design variant over the 30,000 rollouts.

I compared the game’s default configuration with one where both the damage

dealt by the zombies and food gained from pick-ups were increased by 50 percent. The

results (Figure 4.6) from this high stakes design variant were statistically significantly

higher (p-value = 4.8e-07 according to the Mann-Whitney U test). From this, one could

26

conclude that the high stakes variant of the game is easier to play.

27

Chapter 5

Framework Validation

The original design of It’s Alive! has a 5x7 playfield, which makes for a large

search space with the average branching factor of 20 and depth of 36 in the worst case

scenario (not collecting a single monster). This leads to longer rollouts and slower

depth-wise exploration rate. For the framework validation experiments I reasoned that

having a field of a smaller size would allow me to run experiments faster while still

demonstrating relative differences between performance of Monster Carlo with different

parameters. I built a smaller version of It’s Alive! with a 3x5 play field and only three

monsters required for the win. A typical human player score for this game is 1200-1400

points.

Unless stated otherwise, the experiments were run with an unrestricted player,

24 parallel workers, factored actions, cut-off terminal branch setting, and the exploration

parameter in the UCT algorithm set to 1000.

28

5.1 Flat vs. Factored Actions

0

200

400

600

800

1000

1200

Sc
or
es

factored
flat

(a)

0 2000 4000 6000 8000 10000
Rollouts

200

400

600

800

1000

1200

Sc
or
es

factored
flat

(b)

Figure 5.1: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts acros 20 replicates for experiments run with factored and flat action representa-
tions. (b) The mean and variance of the highest seen scores seen across 20 independent
replicates for the flat and factored action representations over the first 10,000 rollouts.

In the context of these experiments, an action is defined as a combination of

inputs that results in a game state change. For example, in It’s Alive! the player may

move the falling piece left and right or rotate it any number of times, but the field state

only changes once a piece has landed. With this in mind, landing a piece in a position

x with orientation y is a single action. Likewise, if more than one monster is alive,

the player may cycle the highlight between them indefinitely, but the field state only

changes once one of them is collected. In this case, a separate collect action exists for

29

each of the monsters. Since the width of the playfield in this smaller It’s Alive! is three,

and each piece has four orientations, there are always 3x4 = 12 landing actions, and

sometimes one or two collection actions. This resulted in a wide and shallow search tree.

In addition, since during rollouts actions were selected with equal probability, a monster

collection action was five to ten times less likely to be chosen. I chose to factor actions

into collection and landing type. I further subdivided the land actions by column. The

algorithm would first have to choose if it wanted to land a piece or collect a monster (if

one or more were alive). If landing, the algorithm would next have to choose a column,

and then an orientation. If collecting, it would choose one from a list of living monsters.

This made for a narrower and deeper search tree and made monster collection more

likely to occur.

I ran two sets of 20 experiments with 30,000 rollouts each, one with flat actions

and one with factored actions. I hypothesised that factoring the actions would lead to

higher scores. However, the difference between scores achieved in the two experiments

was not statistically significant (p-value = 0.8 according to the Mann-Whitney U test).

There is an at least partial explanation for this. As described in 4.1 It’s Alive!,

a heuristic was added to prevent the player from making a move leading to a game

over state if another move is available. This was done to eliminate many quick death

states resulting from blocks being piled up on one column with the majority of the field

remaining empty. Because points in It’s Alive! are awarded both for landing a block and

collecting monsters, another trap for MCTS manifested. Monster Carlo would figure out

that filling up the screen led to a high score and then would fiddle with rearranging the

30

last few blocks it placed. With flat actions, the tool rarely elected to collect monsters.

Adding factoring, which led to a 50% chance of a monster being collected if at least one

was alive, resulted in significantly better scores.

With the addition of the heuristic, the player always collected any living mon-

sters at the end of the game, which largely negated the advantage of factored actions

in this case. This same phenomenon was observed in the playstyle experiments for It’s

Alive! (Figure 4.2), where the lazy player, who was restricted from collecting monsters

until the last moment, outperformed the other versions, demonstrating that being able

to collect monsters earlier in the game didn’t help MCTS achieve higher scores faster.

5.2 Parallel vs. Single Thread

The classic MCTS updates the tree after each rollout and uses the updated

tree to make the decision about the next move. With instances of the game running

in parallel, the tree is updated each time a playthrough is completed, and the next

move is selected even though the results from the other parallel workers are not yet

known. I wanted to see whether there was a large drop in the tool’s effectiveness at

the cost of the speed that parallelization provided. I ran two sets of 20 experiments

with 30,000 rollouts. The first set used 24 parallel workers, one for each CPU on the

server machine I used, and the second set used a single worker. The results of the

high scores achieved are in Figure 5.2. The experiment with 24 workers achieved higher

scores with statistical significance of p-value = 0.02 according to the Mann-Whitney

31

0

200

400

600

800

1000

1200

Sc
or

es

24 workers
1 worker

(a)

0 2000 4000 6000 8000 10000
Rollouts

200

400

600

800

1000

1200

Sc
or

es

24 workers
1 worker

(b)

Figure 5.2: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates for experiments run with a single worker and
24 workers in parallel. (b) The mean and variance of the highest seen scores over the
first 10,000 rollouts for the 20 independent replicates ran with 24 or a single worker.

U test. However, the real significance is in the duration of the two experiments. The

experiment with a single worker lasted eight hours and 20 minutes, and the experiment

with 24 workers took approximately 24 minutes to finish, which is approximately 20

times faster. It is worth noting that initially, the parallel experiment took more rollouts

to get to the same scores as the single-thread experiment (Figure 5.2b). This leads me

to extrapolate that parallel workers have a destabilizing effect on MCTS. While this

initially leads to lower scores, it also makes it less likely for the search to get stuck in a

local maximum.

32

5.3 Terminal Branch Treatment

0

200

400

600

800

1000

1200

Sc
or

es

cut off
normal

(a)

0 5000 10000 15000 20000 25000 30000
Rollouts

200

400

600

800

1000

1200

Sc
or

es

cut off
normal

(b)

Figure 5.3: (a) The mean and variance of the highest score seen for at the end of 30,000
rollouts across 20 independent replicates for experiments run with cutting off terminal
branches, or allowing unrestricted repeat explorations. (b) The mean and variance of
the highest seen scores over the first 10,000 rollouts for the 20 independent replicates
ran with each terminal setting.

I noticed that MCTS tended to get stuck in local maxima, sometimes exploring

the same branch over and over again, though much better paths were available. I tried

two ways around it. One was to increase the UCT constant, traditionally set to 2. The

other way was to prevent the tree from revisiting branches marked as terminal.

I ran two sets of 20 experiments, with 30,000 rollouts each, one set with no

special treatment of terminal nodes and branches, and the other that would mark fully

explored sections of the tree as terminal and ignore them during the optimal path

33

selection.

The results for these experiments (Figure 5.3) showed no statistically signif-

icant difference between the highest scores achieved (p-value = 0.06 according to the

Mann-Whitney U test) and number of nodes explored (p-value = 0.1). I hypothesize

that this is largely due to the fact that the depth of my test game was too great, and

so the terminal branch treatment didn’t come into play to a significant degree.

However, not revisiting terminal branches allows for exhaustive search on

smaller fields. Earlier in this project, I ran tests on It’s Alive! on a 2x3 grid instead of

the regular 5x7. I calculated the maximum score to be 250 points and was surprised to

find that one of the branches achieved 290 points. This led to the discovery of a bug

that only manifested if the monster pieces were positioned in one specific way. After

fixing the bug, I was able to verify the fix by running the same test and verifying that

no branches scored higher than 250 points.

5.4 UCT Constant

The UCT exploration constant (c) regulates how much MCTS focuses on ex-

ploring the most rewarding paths vs. exploring new areas. Because MCTS is usually

applied to games with a win/lose outcome and the reward values ranging from 0 to

1, I hypothesized that when applied to a game where the reward value is the range of

possible high scores, the UCT constant should be closer to a score you would expect

from a moderately proficient player. I obtained this score by manually playing the game

34

0

200

400

600

800

1000

1200
Sc

or
es

c = 2
c = 200
c = 1000

(a)

0 2000 4000 6000 8000 10000
Rollouts

200

400

600

800

1000

1200

Sc
or

es
c = 2
c = 200
c = 1000

(b)

Figure 5.4: (a) The mean and variance of the highest score seen at the end of 30,000
rollouts across 20 independent replicates for experiments run with UCT constant set to
2, 200 and 1000. (b) The mean and variance of the highest seen scores over the first
10,000 rollouts for 20 independent replicates with each c value.

with the same random seed.

I ran three sets of 20 experiments with respective UCT constant values set to 2,

200 and 1000. The results in Figure 5.4 demonstrate that Monster Carlo did best with

c = 1000, which was closer to the expected value of around 1400 points. The results

were statistically significant with p-value = 0.0002 according to the Mann-Whitney U

test for comparison of c = 2 and c = 1000, and p-value = 0.01 for c = 200 and c

= 1000. Drawing a parallel with the parallelization experiment, we can see that the

higher c experiment increased its score slower over the number of rollouts (Figure 5.4b).

However, while the experiment with a lower c got stuck in a local maximum fairly early

35

on, the scores corresponding to the higher c continued growing, due to the search’s

higher emphasis on exploration.

5.5 Experiment Speedup Techniques

If the MCTS rollouts were happening at the game’s normal speed, each of

the aforementioned experiments would take days to complete. I employed a number

of speedup techniques in order to be able to run the experiments in a timely man-

ner. The results are summarized in Table 5.1. This translated into an approximately

1600x speedup over the game’s base rollout speed (10x for increasing framerate, replac-

ing smooth movement with instant jumps and disabling artificial delays; times 20 for

running with 24 workers; times 8 for running on a server-class machine).

The efforts put into experiment speedup should be balanced with the consid-

eration of how many experiments will be performed and how much trust will be put

into their results.

36

Modification Speed Work Required Pros Cons

Set

Unity’s max

framerate,

eplace

smooth

movement

with

instant

jumps and

disable

delays.

10X One line to change
the application’s
frame rate. Replace
calls to a smooth
movement function
with a call to instant
move. Set artificial
delays to zeroes.

Little ex-
tra work

Only effective
for games with
smooth move-
ments and ar-
tificial delays

Run with

n parallel

workers

about
nX

Changing one pa-
rameter in experi-
ment settings

Much
faster
results,
little extra
work.

Small drop in
search effec-
tiveness. See
Parallel vs.
Single

Run on a

server-class

machine

8X Creating separate
Linux builds, copy-
ing binaries to the
server and results
back

Much
faster

Can only run
game in head-
less mode.

Run in

batchmode /

nographics

Mac:
0.5X
PC: 4X

Adding a parame-
ter in the experiment
settings

No extra
work

Inconsistent
results across
platforms

Table 5.1: Summary of the experiment speed-up techniques.

37

Chapter 6

Conclusion

In this thesis I presented Monster Carlo, an MCTS-based tool that can be

integrated with the Unity game engine and be used to perform machine playtesting of

in-development games.

I conducted a number of framework validation experiments, which showed

merit in adjusting the UCT constant, using parallel processing when performing rollouts,

and applying special treatment to terminal nodes and branches.

I implemented the concept of factored actions and demonstrated how in some

cases they resulted in improvement in search efficiency.

I integrated Monster Carlo with two games: my own in-development game Its

Alive! and an official tutorial game for the Unity game engine, 2D Roguelike. The

integration with 2D Roguelike necessitated fewer than 100 lines of code.

I presented results of several experiments I ran on both games, exploring re-

stricted player models and design variations.

38

Here are some of the things I learned in addition to those described previously.

Obtaining reasonable results from MCTS on a complex game takes time, but

so does making meaningful changes. Some modifications, like restricted player models or

limited variety of pieces, can be added to a game fairly quickly. However, larger changes,

for example introducing a new type of block to the game or adding heuristics to a player

model, usually take much longer. With this in mind, even if a set of experiments takes

over an hour to run, it can be considered an acceptable turn-around time, as the results

will likely be in before the next model is ready for testing. Additionally, the independent

runs of MCTS are extremely parallelization-friendly.

Having a reference score helps with setting an appropriate UCT constant value

to guide MCTS toward better results. A reference score can be provided by the game

designer, or someone familiar with the game, who can play one or two games to provide

a baseline score. This score can be helpful for setting the UCT constant, as well as

interpreting the MCTS results: if its best scores are much lower than what a casual

player can get, it indicates that MCTS needs tuning.

A severely limited player model can still provide information. In early stages

of this project, before I discovered most of the MCTS optimizations, I attempted to

run experiments on an even larger It’s Alive! playfield of 6x8. I experimented with an

unrestricted player model, and one that couldn’t rotate the pieces. I also experimented

with lowering the number of different monster colors. The size of the field resulted in a

very wide tree that never had a chance to explore very deeply and resulted in chaotic

and generally very low scores for the unrestricted player. However, the non-rotating

39

player, whose actions were limited by a factor of four on every step, was capable of

reaching more or less stable scores in the same number of rollouts. For example, the

scores made it evident that the no-rotation player got significantly higher scores when

fewer monster colors were present (from an average of 1600 to an average of 2100). This

is an obvious example, because having fewer colors means it is more likely to get two

blocks of the same color next to each other. However, it showed that even a severely

limited player model was capable of providing information about design variants.

A lot of work remains to be done along the lines of Monster Carlo, as the scores

it achieves in a reasonable time still fall short of human results. In the current setup,

the search algorithm has no representation of game state beyond the action sequence,

so it cannot transfer experience gained down one sequence of moves to another if they

differ by even a single move. Reinforcement learning algorithms such as those used in

AlphaZero can distill knowledge gained during MCTS rollouts into value-estimation and

policy networks that can be applied to states that have rarely or even never-yet been

explored before. I believe that borrowing some ideas from frameworks like OpenAI

Gym (such as representing game state with universal data structures like screenshot

pixel arrays or memory byte arrays) could help a generic search algorithm learn a much

better default action policy than even the human user could program. However, even

with its current shortcomings, Monster Carlo is capable of providing usable data about

the game. With the convenient experimental setup in Jupyter Notebook, my hope is

that it can be easily adopted, at least by the makers of the single player discrete state

puzzlers, which are a fairly popular genre in mobile games.

40

Bibliography

[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfsha-

gen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo

tree search methods. IEEE Transactions on Computational Intelligence and AI in

Games, 4(1):1–43, March 2012.

[2] Zhongjie Cai, Dapeng Zhang, and Bernhard Nebel. Playing tetris using bandit-

based monte-carlo planning. In In Proceedings of AISB 2011 Symposium: AI and

Games (AISB 2011), 2011.

[3] Brandon Drenikow and Pejman Mirza-Babaei. Vixen: Interactive visualization of

gameplay experiences. In Proceedings of the 12th International Conference on the

Foundations of Digital Games, FDG ’17, pages 3:1–3:10, New York, NY, USA,

2017. ACM.

[4] Sylvain Gelly and David Silver. Achieving master level play in 9x9 computer go.

In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume

3, AAAI’08, pages 1537–1540. AAAI Press, 2008.

[5] Alexander Jaffe, Alex Miller, Erik Andersen, Yun-En Liu, Anna Karlin, and Zoran

41

Popović. Evaluating competitive game balance with restricted play. In Proc. of the

Eighth AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment,

AIIDE’12, pages 26–31, 2012.

[6] Steve Martinelli. Starcraft ll replay analysis with jupyter notebooks. [Online].

Available at https://github.com/IBM/starcraft2-replay-analysis.

[7] Tom Schaul. A video game description language for model-based or interactive

learning. In 2013 IEEE Conference on Computational Inteligence in Games (CIG),

pages 1–8, Aug 2013.

[8] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driess-

che, Thore Graepel, and Demis Hassabis. Mastering the game of go without human

knowledge. Nature, 550:354 EP –, Oct 2017. Article.

[9] A. M. Smith, M. J. Nelson, and M. Mateas. Ludocore: A logical game engine for

modeling videogames. In Proceedings of the 2010 IEEE Conference on Computa-

tional Intelligence and Games, pages 91–98, Aug 2010.

[10] Alexander Zook, Brent Harrison, and Mark O Riedl. Monte-carlo tree search for

simulation-based strategy analysis. In Proceedings of the 10th Conference on the

Foundations of Digital Games, 2015.

42

Appendix A

Example experiment

This example experiment (taken from a Jupyter notebook) launches 8 parallel

copies of the It’s Alive! game (a macOS executable) to run 20 independent replicates of

an experiment. In each experiment, 30000 samples are drawn. In a progress callback,

a single character is printed to show activity. In the end, the results of all of the

experiments are serialized into a pickle for later analysis.

import python_module

import subprocess

import random

import os

import json

import pickle

import time

def make_factory(settings):

def create_game_process(addr, port, nonce):

env = os.environ.copy()

env[’MC_ADDR’] = addr

env[’MC_PORT’] = str(port)

env[’MC_NONCE’] = nonce

env[’MC_EXP_SETTINGS’] = settings

name = "./Alive.app/Contents/MacOS/Alive"

43

return subprocess.Popen([name],env=env)

return create_game_process

def on_progress(tree):

print(".",end=’’)

results = {}

for experiment in range(20):

result = python_module.run(

make_factory("unrestricted"),

num_samples=30000, #number of rollouts

num_workers=8, #number of parallel workers

callback=on_progress, #this will print a dot

UCT_constant = 1000,

terminal_treatment = "CUT_OFF")

results[experiment] = result

#the final tree from the MCTS is saved in a pickle file

file_name = "alive_" + str(experiment) + ".pickle"

with open(file_name, "wb") as f:

pickle.dump(result,f)

44

Appendix B

Integration Efforts for 2D Roguelike

Monster Carlo’s C# library, MC support.cs, was added under Assets/Scripts,

and added as a component to the GameManager prefab. For simplicity, I added a

namualPlay switch to the GameManager prefab to differentiate between the builds

meant for machine testing or human play. Checks for manualPlay were added where

appropriate.

In the Awake function of the GameManager.cs I added a call to mcSup-

port.Connect() and retrieved the designVariant. For this integration, I added options

for flat or factored actions. I also set the Applications runInBackground to true, the

targetFrameRate to -1 and the QualitySettings.vSyncCount to 0.

I came up with a custom reward function for the game, as the number of days

survived wasn’t granular enough to guide the search. The reward consists of the sum

of the amount of food the player has at the end of each day plus the distance traveled

toward the exit on the day of death. I added helper properties and functions to keep

45

track of this score.

I added a method for resetting the game. This is called when the GameOver

condition is triggered. The final reward score is sent to the MC support and the game

is reset, so it can be played again.

The user input is handled inside Player.cs, but MC support will be calling

the shots on this one. At any point, the player can go in one of the four direc-

tions. If I want to simply choose one at random, i.e. flat actions approach, I can

call MC support.choose(4) to make a choice for me. However, I can break this up to

make MCTS more effective. This is the factored actions approach. First the algorithms

makes a choice on whether to move toward or away from the Exit. Intuitively, one can

guess that moving toward the Exit more often than not is a good strategy. With this

in mind, I call MC support.choose(2, new Int[2] {1,2}). This will result in MC support

making a weighted choice using SoftMax and favoring 1 over 0. Next, the algorithm

selects whether to go vertical or horizontal by calling MC support.choose(2).

In order to play many games in as short a time as possible, I disabled the games

various deliberate time delays or set them to zero. This can be done in the scripts or on

the prefabs. In the MovingObject script, a modification is made to instantly move the

object to the new position instead of performing a smooth move coroutine. The exact

changes I made to the game to integrate it with Monster Carlo are provided below. The

changes amount to fewer than 100 lines of code, including support for flat and factored

actions.

Add the MC support script to the project’s Assets/Scripts folder.

46

Changes to GameManager.cs

Add the following properties:

public bool manualPlay = true;

public MC_support mcSupport;

public const int FLAT_ACTIONS = 0;

public const int FACTORED_ACTIONS = 1;

public int designVariant = -1;

private bool needFoodReset = false;

public int rewardScore = 0;

private int realRewardScore = 0;

Adding the following in the Awake() method:

if (!manualPlay) {

if (mcSupport.IsDriverPresent) {

mcSupport.Connect();

designVariant = GetPlayerModel(mcSupport.DesignVariant);

}

Application.runInBackground = true;

Application.targetFrameRate = -1;

QualitySettings.vSyncCount = 0;

}

New helper methods:

public void AddReward(int points) {

realRewardScore += points;

}

private int GetPlayerModel(string variant) {

switch (variant) {

case "factored_actions":

return FACTORED_ACTIONS;

default:

return FLAT_ACTIONS;

}

}

private int GetScore() {

return instance.realRewardScore;

47

}

private void ResetGame() {

boardScript.ready = false;

level = 0;

instance.realRewardScore = 0;

needFoodReset = true;

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex,

LoadSceneMode.Single);

}

At the end of the InitGame() method, add:

if (needFoodReset) {

playerFoodPoints = 100;

needFoodReset = false;

instance.rewardScore = instance.realRewardScore;

}

Add the following at the beginning of the GameOver() method:

if (!manualPlay) {

mcSupport.SupplyOutcome(GetScore());

ResetGame();

}

else <the rest of the original GameOver() code>

Changes to Player.cs

Add the following properties:

private int fieldXcoord = 1;

private int fieldYcoord = 1;

Below is the factored actions implementation. In the Update() method, under the line

#if UNITTY STANDALONE... Add the following:

if (!GameManager.instance.manualPlay) {

try {

if (GameManager.instance.designVariant

48

== GameManager.FLAT_ACTIONS) {

switch(GameManager.instance.mcSupport.Select(4)) {

case 0: //left

horizontal = -1;

break;

case 1: //right

horizontal = 1;

break;

case 2: //down

vertical = -1;

break;

default: //up

vertical = 1;

break;

}

}

else if (GameManager.instance.designVariant

== GameManager.FACTORED_ACTIONS) {

switch(GameManager.instance.mcSupport.Select(2,

new int[2] {1,2})) {

case 0: //moving left or down

horizontal *= -1;

vertical *= -1;

break;

default: //moving right or up

break;

}

switch(GameManager.instance.mcSupport.Select(2)) {

case 0: //moving horizontally

horizontal = 1;

break;

default: //moving vertically

vertical = 1;

break;

}

}

}

catch (MC_support.ExperimentFinishedException e) {

Application.Quit();

}

}

else {<everything before #elif>}

49

At the end of the Restart() method, add

fieldXcoord = 1;

fieldYcoord = 1;

In CheckIfGameOver (), add the following above

GameManager.instance.GameOver():

GameManager.instance.AddReward(GetDistance());

Add this helper method, which returns distance traveled toward the exit—a good thing.

private int GetDistance() {

int distance = fieldXcoord + fieldYcoord;

return distance;

}

Changes to MovingObject.cs

Inside the Move() method, replace the if(hit.transform == null){...} contents

with the following:

if(hit.transform == null) {

if (GameManager.instance.manualPlay)

StartCoroutine(SmoothMovement(end));

else

rb2D.MovePosition(end);

return true;

}

In Prefabs:

Set the Enemy1 and Enemy2 MoveTime (in the Enemy script component) to

0.

Add the MC support script as a component to the GameManager prefab. Drag

and drop the MC support script into the MC Support slot in the GameManager script

50

component. Set Manual Play to false. Set Level Start Delay, Turn Delay and Reward

Score to 0.

In the Player prefab, Player script component, set Move Time and Restart

Level Delay to 0.

Optional: mute the audio sources in the SoundManager prefab.

51

