WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia

IEEE CEC

A Hybrid Approach to Solve the Agile Team
Allocation Problem

Pedro Santos Neto
DIE - UFPI - Brazil
pasn@ufpi.edu.br

Ricardo Britto
DIE - UFPI - Brazil
rbritto @ufpi.edu.br

Abstract—The success of the team allocation in a agile software
development project is essential. The agile team allocation is
a NP-hard problem, since it comprises the allocation of self-
organizing and cross-functional teams. Many researchers have
driven efforts to apply Computational Intelligence techniques to
solve this problem. This work presents a hybrid approach based
on NSGA-II multi-objective metaheuristic and Mamdani Fuzzy
Inference Systems to solve the agile team allocation problem,
together with an initial evaluation of its use in a real environment.

I. INTRODUCTION

A well known definition of Software Engineering (SE) is the
application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software
[1]. Summarizing, this could be explained as the application
of engineering to software, since this comprises the use of
mathematics, computer science and practices whose origins
are in Engineering.

There are several software development methodologies
based on Iterative and Incremental Lyfe Cycle Model, the most
used currently [2]. Most of them are called Agile Methodolo-
gies. In these methodologies there is an intensive collabora-
tion between self-organizing and cross-functional teams. The
Agile Methodologies promote adaptive planning, evolutionary
development and delivery, a time-boxed iterative approach, and
encourages rapid and flexible response to change [3].

It is important to emphasize the relevance of the team in the
Agile Methodologies. A successful agile software development
team is made up of competent developers. However, this
introduces a new concept that needs to be understood at
all: competency. Competency is the ability of a developer to
perform a job properly, but it is also defined as a combination
of Knowledge, Skills and Attitudes (KSA) used to improve
performance [4].

We can notice that the composition of a team is complex,
since we have to consider all the characteristics mentioned
before. This task must be done during the project planning,
usually in the beginning of the project. This task is very
relevant: if done in a wrong way, could drive the project to
the cancellation state [5].

Since the team allocation is a NP-hard problem [6], us-
ing Software Engineering standard techniques to solve that
problem could be very complex. Some studies present alter-
natives for solving that problem, mainly through the use of
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metaheuristics ([7], [8], [9]). In this context, a new research
area has emerged by the application of search techniques to
complex software engineering problems. This new research
area is called Search-Based Software Engineering (SBSE)
[10], which concerns on finding solutions to complex problems
formulated as a search problem in the software development
process.

This paper presents an approach based on NSGA-II multi-
objective metaheuristic [11] and Mamdani Fuzzy Inference
System [12] to solve the agile team allocation problem. This
approach allows an easy specification of rules to choose the
best developers to a given project.

The idea is innovative and has the following major contri-
butions:

« An approach to evaluate developers based on a question-

naire;

¢ An approach to estimate developers productivity based
on a fuzzy inference system and KSA evaluation;

o An approach to qualify the generated solutions (allocated
teams) based on a fuzzy inference system;

o A hybrid approach to solve the addressed problem which
incorporates in all of its stages the expertise of a project
manager;

« An empirical evaluation of the proposed approach, com-
paring its application against the intuition of some project
managers.

This paper is organized as follow: Section II presents some
related works; Section III provides a brief description of fuzzy
inference systems; Section IV contains a brief description
about multi-objective metaheuristics; Section V depicts the
proposed technique to evaluate developers; Section VI presents
our proposed approach to solve the addressed problem; Section
VII discusses the initial evaluation performed to validate the
proposed approach, and finally, Section VIII presents the
conclusion and future works.

II. RELATED WORKS

In [13] combining search-based optimization techniques
with a queuing simulation model for allocating human re-
sources to a software project and assigning tasks to teams.
The obtained solution of this approach aims to minimize the
completion time and reduce schedule fragmentation. Project
managers can run multiple simulations and consider trade-
offs between increasing the staffing level and anticipating



the project completion date and reducing the fragmentation
and accepting project delays. The presented results are ob-
tained from two large scale commercial software maintenance
projects.

In [7], the team allocation problem was handled as a two
phase choice model: a company chooses the desired employees
to compose a team, and the employees choose the desired
positions in the team. The authors used genetic algorithm to
optimize team allocation in such model.

In [14] the authors present a human resource evaluation
approach to team allocation. The approach uses a hierarchical
analysis process combined with fuzzy mathematics to evaluate
the employees in terms of skill and external factors (social and
health factors).

Shan, Jiang and Huang [8] proposed an approach that
considers the different human resources demands required
by different tasks and the characteristics of different human
resources roles. The approach realized the goal of assigning
different team members to different tasks at the least cost
under the conditions of satisfying the resource demand of
tasks and the constraint of effort of different stages, which
is based on accurate estimation by the information available
at the planning stage. A genetic algorithm is then designed to
solve this complex problem.

The work of [9] addresses the team allocation problem in a
multi-objective way. That approach takes into account aspects
such as employee preferences, the overall ability of the team,
and the total salary cost. To solve the problem it is used the
multi-objective metaheuristics NSGA-II and MOCell.

Ning [15] studies the allocation of enterprise human re-
sources based on artificial neural networks. Firstly, the concept
and characteristics of the enterprise human resources alloca-
tion are introduced. And then, a number of factors which affect
the allocation of human resources in enterprises and which also
influence personnel transference are analyzed. On this basis, a
neural network is designed in order to predict the probability
of the human resources transference.

In [16], the authors propose an optimization model for
the allocation of multi-skilled human resources to research
and development projects, considering individual workers as
entities having different knowledge, experience and ability.
The proposed model focuses on three aspects of human
resources: the different skill levels, the learning process and
the social relationships existing in working teams. The res-
olution approach for the multi-objective problem consists of
firstly, obtain a set of non-dominated solutions exploring the
optimal Pareto frontier and secondly, select the best solution
compromise with regards to the considered objectives. The
uncertainty associated to each solution is modelled by fuzzy
numbers.

Considering the related works mentioned before, our work
is the one that proposes a hybrid approach which uses fuzzy
inference systems to simplify the team allocation process. This
feature reduces the number of variables to be optimized by the
multi-objective metaheuristic and reduces the search space. We
also include the expertise of project manager into the fuzzy

inference systems of our approach in a simple manner. This
expertise is used to estimate the developers productivity and
also to choose the best solution generated by the NSGA-II
metaheuristic.

Our work also addresses the team allocation problem from
the agile development point of view, evaluating all the avail-
able resources as developers. This feature influences our pro-
posed human resource evaluation technique and the proposed
fuzzy inference systems. Once we considerate all the human
resources as developers, the whole procedure to alocate a team
is simplified.

III. Fuzzy INFERENCE SYSTEMS

Fuzzy inference systems are capable of dealing with highly
complex processes, which are represented by inaccurate, un-
certain and qualitative information. Normally, fuzzy inference
systems are based on linguistic rules of the type “if condition
then action”, in which the fuzzy set theory [17] and fuzzy
logic [18] provide the necessary mathematical basis to deal
with inaccurate information and with the linguistic rules.

In this work, Mamdani fuzzy inference systems [12] are
used to generate productivity of an human resource using
knowledge, skill and attitude and also to estimate the team
quality using team productivity and team cost. The production
rules in an inference model of Mamdani have linguistic
variables both in their antecedents as in their consequents.
By using fuzzy inference systems of Mamdani, it is possible
to represent the heuristic knowledge of software engineer in a
way totally linguistic.

IV. MULTI-OBJECTIVE METAHEURISTICS

Multi-objective optimization is the process of simultane-
ously optimizing two or more conflicting objectives that could
be subject to certain constraints. Multi-objective problems are
mathematically depicted as [19]: min|u1 (), po(x), ..., tin ()]
subject to g(z) < 0 h(x) =0 a:,»zg x < x, where p; is the
i —th objective function, g is the inequality constraint, 4 is the
equality constraint, x is the vector of optimization or decision
variables. In multi-objective optimization problems, instead of
being a unique solution, the solution is a possibly infinite set
of Pareto points.

A point in objective space p* is called Pareto optimal if
there is not another objective vector ;o such that p; < p; for
all i € {1,2,...,n}, and p; < pj for at least one index of j,
je{L1,2,...,n}

There are many approaches to solve multi-objective
optimization problems. Non-dominated Sorting Genetic
Algorithm-IT (NSGA-II) [11], MOCell [20] and Strength
Pareto Evolutionary Algorithm 2 (SPEA-2) [21] have become
standard approaches. In subsection IV-A, we briefly explain
the NSGA-II metaheuristic.

A. NSGA-II

The NSGA-II metaheuristic begins generating a population
Py of size N, sorted according the dominance operator. A
second population, called )y, with the same size of P,



is generated applying crossover and mutation operators over
Py. The 2 populations are combinated in a third population
called Ry, with size 2N. The population Ry is sorted using
the dominance operator. Then, a population called P; is
populated with Pareto fronts. The Pareto fronts are generated
using the crowding distance operator over the population Rj.
The population P, is used like initial population to the next
generation of the algorithm execution. That process continues
until the stopping criterion is reached.

V. DEVELOPER EVALUATION APPROACH

The developer evaluation technique depicted in this section
was developed in partnership with a software factory of
Piaui, Brazil. The technique, named Competence Matrix, has
a set of questions used to generate a score summarizing the
performance of a developer.

The matrix is split in three areas: Knowledge, Skill, and
Attitude. Each area is related to some aspect of the developer’s
behavior in a company. Formal education gives us the knowl-
edge that we require to be a competent developer. Informal
education on the other hand is what you learn outside of books.
Together, all sources of education make up the knowledge of
a developer and are able to use on daily tasks. Skill is the next
factor that a developer may not have, but can acquire through
experience over time. A developer could be trained about how
to work in a team. The skill factor applies to everything that
we do in life, do it often enough and you will become better
at it as time goes on. The most difficult ability to acquire if
you do not already have it is attitude. Attitude is the mentality
that you bring to a task, the way we think, feel and do. It
is necessary to have pride, passion and belief in the work, in
order to show attitude. Summarizing, the Knowledge is related
to know; the Skill is related to know-how; and the Attitude is
related to want to do. This is directly related to Competency
[4]. The Knowledge (K) area contains the indication of the
degree of knowledge of a developer related to several themes.
A specific theme is technology. The company mapped all the
technology used for its operation. Each theme has four levels
of knowledge: null (0), low (1), regular (2) and good (3). Each
level has a description used to characterize the knowledge
associated to this level.

The knowledge area is very extensive and covers several
items related to i) Programming, ii) Modelling, iii) Testing,
iv) Database, v) Web frameworks, vi) Office tools, vii) Net-
working, viii) Support, ix) Web design, x) Business, xi) Man-
agement, xii) Software process, and xiii) Natural languages.
Nowadays there are 71 items in the Knowledge area.

The Skill (S) area provides information about how to use
the knowledge in order to do something. It is composed
by six questions in the following areas: i) Communication,
ii) Creativity, iii) Emotional Intelligence, iv) Leadership, v)
Organization, and vi) Teamwork.

The Attitude (A) area is related to the behavior registered
during the daily tasks of a software factory. It is composed by
five questions in the following areas: i) Discipline, ii) Initiative

/ Proactivity, iii) Interest and Dedication, iv) Punctuality, and
v) Relationship.

Similarly to the knowledge area, there are levels related to
each item in Skill and Attitude area. A level has a detailed
description used to facilitate the choice of an answer.

There is a process to run the competence matrix. All the
available developers must fill their own knowledge, skill and
attitude forms. For the skill and attitude forms, the project
manager and the team members must also fill the forms for
each developer. Thus, each developer has at least three scores
for each item: the self-evaluation (SE), one evaluation for each
team member (TM), and the manager evaluation (ME). There
are weights for each kind of evaluation category, in order to
generate the developer score.

To calculate the score of Knowledge, Skill and Attitude of
each developer, we use the Equations 1, 2 and 3:

K =Ksg«Wsg+ Kry *Wryr + Kyep s Wyre (1)
S=S8sg*Wsg +Srm*Wrym +Svue*Wue (2
A=Asg*Wsg + Ary * Wry + A xWyne  (3)

To calculate the sub-values used in equations 1, 2 and 3,
we have used equation 4.

op o L@

- 4
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Where:

o K = Knowledge of the developer.

o S = Skill of the developer.

o A = Attitude of the developer.

o SE is related to the self-evaluation of the developer.

o TM is related to the team evaluation of the developer.

e ME is related to the manager evaluation of the developer.

o SB={Ksg|Krm|Kme|Sse|Stm|Sve|Ase|Arv|AvE}.

o« W = Weight of an evaluation in the score calculation.
e N = Number of questions of an area.

¢ O = Question of an area.

e [ = index of a question.

During the use of the proposed technique, we have noticed
that the Knowledge, Skill and Attitude scores are closed to
the productivity of an evaluated developer. So, this could
be generalized in order to help another project managers to
allocate teams. Therefore, we decided to analyze what is the
key point in the technique, allowing the specification of simple
rules related to the three areas of assessment. These rules are
used to build the rule base of the proposed fuzzy inference
system for estimating developer productivity.

VI. PROPOSED APPROACH
This section presents the proposed approach to allocate agile
teams (Figure 1). Our approach has 5 stages:

o Stage 1 - Developers evaluation;
o Stage 2 - Estimation of developers productivity;
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Fig. 1.

o Stage 3 - Generation of Teams using a multi-objective
metaheuristic;

o Stage 4 - Evaluation of the generated solutions;

o Stage 5 - Selection of the best generated solution.

A. Stage 1: Developers Evaluation

We described in section V the methodology used in this
work. At this stage, we applied questionnaires to the available
developers in order to measure the values of Knowledge, Skill
and Attitude of each developer.

B. Stage 2: Estimation of Developers Productivity

We evaluated the 3 values measured in stage 1 and we
realized that would be possible to estimate the productivity of
each developer from these values. Aiming to extract a single
value representing the developers evaluation, we projected
a Mamdani fuzzy inference system to infer the developer
productivity (Figure 2).

The crisp input variables of the fuzzy inference system are
Knowledge, Skill and Attitude. The values of each one of these
variables are measured in stage 1. The output variable of the
fuzzy inference system is Productivity. The 3 input variables
and the output variable can receive real values between 0 and
10.
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Fig. 2. Fuzzy Inference System for Estimation of Developers Productivity

To map the fuzzy sets, we used a uniform distribution of
the sets. This is the normal process to do this task. After
done the uniform distribution of the fuzzy sets, it is possible
to improve the mapping empirically or using computational
intelligence techniques such genetic algorithms [22]. We used
triangular membership functions to empirically map fuzzy sets
to the input variables. To each input variable 3 fuzzy sets were
mapped: Low (L), Medium (M) and High (H). We also used
triangular membership functions to empirically map fuzzy sets

Proposed Approach

to the output variable. We mapped 5 fuzzy sets to Productivity:
Very Low (VL), Low (L), Medium (M), High (H) and Very
High (VH).

To generate Productivity of a developer using the three
specified input variables, we must set the rule base in the
proposed fuzzy inference system. The implemented rule base,
which is the kernel of the productivity estimation strategy for
developers, has 27 rules. The rule base is presented in a matrix
way, as seen in Table I.

TABLE I
RULE BASE OF THE FUZZY INFERENCE SYSTEM FOR ESTIMATION OF
DEVELOPERS PRODUCTIVITY

Knowledge / Attitude
Skill | L/L| L/M] L/Hl M/L] M/M| M/H| H/L| H/M| H/H
L VL | L L L L L L M M
M L M| M| M| M M H | H VH
H L M |H | H |H H VH| VH | VH

In this work we implemented the centroid defuzzification
technique [23] for obtaining the numerical value of the pro-
ductivity.

C. Stage 3: Generation of Teams Using a Multi-objective
Metaheuristic

By using inferred productivity (Stage 2) and the salary
of each available developer, the next stage of our approach
generates a set of possible teams. The final team is chosen
from this set of solutions. The desirable team is the one that
has the lowest cost and the highest productivity. Once we have

preductvity 2 distinct and, eventually, conflicting objectives, is convenient

to use a multi-objective metaheuristic. By using this kind of
algorithm facilitates the modeling of the objective functions.
We used in this work the NSGA-II [11]. We chosen this
metaheuristic because it is one of the most popular and easy
to implement multi-objective metaheuristic. In Figure 3, we
present the multi-objective optimization module implemented
in this work. The execution of this module generates a set of
solutions. Each solution represents a different team.
As we discussed before in this section, we aim to allocate
a team that has the lowest cost and the highest productivity.
Thus, we consider the following aspects in the optimization
process:
o Productivity - Each available developer has a value of
productivity estimated in stage 2 of our approach;
« Salary - Each available developer has a cost that is equal
to the salary and taxes spent with him.
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Fig. 3. Implemented NSGA-II Otimization Module

The NSGA-II algorithm needs a population of chromosomes
to optimize these 2 exposed aspects. Each chromosome repre-
sents a team. The chromosomes of the population manipulated
by the NSGA-II were represented using binary vectors. Each
element of the chromosome represents an available developer.
The length of the vector must be equal to the number of
available developers. If one element of the vector is equal to
0, it is mean that the developer represented by this element is
not allocated to the team represented by the respective chro-
mosome. If one element of the vector is equal to 1, it is mean
that the developer, represented by this element, is allocated to
the team represented by the respective chromosome.

The 2 objective functions used by the multi-objective mod-
ule of our approach are following depicted:

N
Minimize : (Z W, * D)+ PF«|T — E| 3)

i=1

N
Mazimize : (Y P;i* D) — PFx|T — E| (6)

i=1

[ 0,if E>T
PF_{aor/a’,ifE<T @
Where:

o [ = Developer index.

o N = Total number of available developers.

o W = salary of the developer.

e P = Productivity of the developer.

e D = 0 if the developer is not allocated to the team or 1
if he is allocated.

e E = Size of the desired team.

e T = Size of a team proposed by the algorithm.

e PF = Penalization factor.

e « = value of the PF associated with the cost of the team.

o 3 = value of the PF associated with the productivity of
the team.

The « e 5 constants were specified to punish the solutions
that have the number of developers bigger than the size of
the desired team (E). Solutions that have the number of devel-
opers smaller than the size of the desired team are naturally
punished, because these solutions are always dominated by
those that has the desired size.

D. Stage 4: Evaluation of the Generated Solutions

Once the multi-objective module has generated the set of
teams (Stage 3), the next stage of our approach evaluates the
quality of each allocated team. This evaluation is necessary
because all the teams of the final set generated in stage 3 has
the same importance from the point of view of NSGA-IL. In
other words, the solutions of the final set are not dominated
by any other solutions. Thus, to select the best team from the
solution set generated by the optimization module, we must
consider which of the 2 optimized aspects are most important
to the project manager of the software project.

In our approach, we implemented a Mamdani fuzzy infer-
ence system to incorporate the project manager intuition in the
team selection process (Figure 4). This fuzzy system qualifies
each team allocated by the optimization module, guided by
the intuition of the project manager. After the qualification
process, each generated solution will have a quality level. The
project manager must choose the team with the biggest level
of quality.

The crisp input variables of the fuzzy inference system are
Team Cost and Team Productivity. The values of each one of
these variables are measured in stage 3. The output variable
of the fuzzy inference system is Team Quality.

The input variable Team Cost can receive real values
between 0 and N *x 10000, where N is equal to size of the
desired team (number of developers). The input variable Team
Productivity can receive real values between 0 and N x 10,
where N is also equal to size of the desired team (number
of developers). The output variable Team Quality can receive
real values between 0 and 10.
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Fig. 4. Fuzzy Inference System for Qualify the Allocated Teams

We used triangular membership functions to empirically
map fuzzy sets to the input variables. To each input variable
3 fuzzy sets were mapped: Low (L), Medium (M) and High
(H).

We also used triangular membership functions to empiri-
cally map fuzzy sets to the output variable. We mapped 5
fuzzy sets to Team Productivity: Very Low (VL), Low (L),
Medium (M), High (H) and Very High (VH).

To generate Team Quality using the two specified input
variables, we must set the rule base in the proposed fuzzy
inference system. The implemented rule base, which incorpo-
rates what the project manager thinks about what is a good
team, has 9 rules. The rule base is presented in a matrix way, as



seen in Table II. It is important to highlight that we constructed
this rule base using the knowledge of 3 project managers of
the partner software factory.

TABLE I
RULE BASE OF THE FUZZY INFERENCE SYSTEM FOR QUALIFY THE
ALLOCATED TEAMS

Team Cost
Team Productivity | L M | H
L L L | VL
M H M| L
H VH | H | M

As in stage 2 of our approach, we implemented the centroid
defuzzification technique. It is important to claim that the
implemented fuzzy inference system allows user to change
the defuzzification method in a simplified way.

E. Stage 5: Selection of the Best Generated Solution

The last and most simple stage of our approach is selecting
the best team. After the qualification process fulfilled in stage
4, the project manager must select the team with the highest
value of Team Quality.

VII. EMPIRICAL EVALUATION

In order to evaluate the proposed approach, we have applied
it in a software development company of Brazil. We have
used three project managers of the company to select, in
autonomous way, teams with different sizes, among different
possibilities, in order to compare the results from the auto-
mated approach against the project managers intuition, since
they can estimate the productivity of each member of the
company.

The partner company develops software related to
healthship. There are three products and three project man-
agers that control the mentioned products and all the actions
related to each one. They have to control several projects
related to the improvement of the products. During the evalua-
tion, there were 19 developers (including the project managers)
in the company but the teams follow the agile prescriptions:
they are self-organized and cross-functional teams. The project
managers know all the collaborators, since there is a regular
rotation among the projects, in order to avoid the creation of
knowledge islands.

The company gave us up to four hours of each project
manager to perform the study activities. We have executed
a simplified version of the competence matrix. In this version,
we selected only 11 questions related to Knowledge, six
questions related to Skill, and five questions related to Attitude.

We asked for each project manager to answer the ques-
tionnaire with these questions about your specific team, not
about the overall members. This comprises the Stage 1 of the
proposed approach. The results from this stage are depicted in
columns named Dev, Knowledge, Skill and Attitude of Table
III. The table shows also others columns. Column Prod is the
productivity calculated by the fuzzy system (Stage 2).

We have asked for the project managers to generate a list of
the members, ordered by the productivity (descending). The

project managers used only their intuition for the accomplish-
ment of this task. The sequence of each project manager can
be observed in Table III. Columns PM1, PM2 and PM3 show
the position of a developer in the perception of each project
manager, respectively. Column Fuzzy shows the position of
the developer according to the input fuzzy system.

In order to facilitate the observation about the concordance
among the project managers, we have created the columns
G1, G2, G3, and Gf. These columns group the developers
into groups according to their positions in the columns PM1,
PM2, PM3 and Fuzzy. Developers with position between 1-4
are in the group A. Developers with position between 5-7 are
in the group B. Developers with position between 8-10 are in
the group C. Developers with position between 11-13 are in
the group D. Developers with position between 14-16 are in
the group E. The column ConcD shows the project managers
concordance among themselves. This value was calculated
using the following rules:

o if the developer appears in the same group for each
project manager (e.g. A, A, A), the concordance is 100%;

« if the developer appears in the same group for 2 project
managers (e.g. A, B, A), the concordance is 66%;

« if the developer appears in diferents groups for each
project manager (e.g. A, C, B), the concordance is 0%;

The average of the concordance among project managers
was 73%. In order to calculate the concordance between
input fuzzy inference system and project managers, we have
calculated the concordance, showed in the column ConcDF,
using the following rules:

o if the developer appears in the same group for each
evaluation (e.g. A, A, A, A), the concordance is 100%;

« if the developer appears in the same group for three
evaluations (e.g. A, A, B, A), the concordance is 75%;

« if the developer appears in only two groups twice (e.g.
A, B, A, B), the concordance is 66%;

o if the developer appears in the same group for two
evaluations (e.g. A, A, B, C), the concordance is 50%;

« if the developer does not appears in the same group
anytime (e.g. A, D, B, C), the concordance is 0%;

The average of the concordance among project managers
and productivity fuzzy was also 73%. This represents an
important result, since the inclusion of the fuzzy system kept
the concordance in the same level. Hence, we have noticed that
the input fuzzy inference system has mimicked the behavior
of the domain experts.

As mentioned before, we have also asked the project man-
agers to allocate teams with three, five and seven developers.
We have done this to allow a comparison between the project
managers and our approach.

We have instructed the project managers to allocate teams
trying to balance the team cost and team productivity. These
allocations were done using their intuition about the developers
and the information about the salary of each member, available
for consultation. Table IV shows the allocations performed in
the study. Column Coach represents the responsible for the



TABLE III
EVALUATION OF THE PRODUCTIVITY BY THE PROJECT MANAGERS.

Dev | Knowledge | Skill | Attitude | Prod Salary PM1 | G1 | PM2 | G2 | PM3 | G3 | ConcD | Fuzzy Gf ConcDF
1 8.95 6.88 7.83 9.09 | 6750.00 2 A 1 A 2 A 100% 5 B 75%
2 8.36 7.21 8.13 9.34 | 5000.00 1 A 2 A 1 A 100% 1 A 100%
3 7.00 6.50 8.13 7.50 | 3750.00 8 C 11 D 7 B 0% 9 C 50%
4 7.18 5.00 5.68 5.27 | 5000.00 10 C 7 B 10 C 66% 12 D 50%
5 5.83 5.96 5.50 7.15 | 5000.00 9 C 6 B 8 C 66% 7 B 66%
6 5.76 6.43 5.50 6.91 5000.00 7 B 9 C 9 C 66% 14 E 50%
7 5.76 7.21 7.50 6.25 | 3750.00 6 B 5 B 5 B 100% 8 C 75%
8 5.76 5.23 6.67 5.20 | 5000.00 13 D 14 E 14 E 66% 10 C 50%
9 5.76 5.83 7.14 5.29 | 3750.00 11 D 13 D 12 D 100% 6 B 75%
10 6.79 7.50 8.44 9.31 5750.00 5 B 4 A 4 A 66% 2 A 75%
11 6.54 6.43 6.14 6.59 | 5000.00 12 D 10 C 11 D 66% 11 D 75%
12 7.94 8.50 8.44 9.28 | 5000.00 4 A 3 A 3 A 100% 4 A 100%
13 5.63 5.68 6.73 5.00 | 3750.00 16 E 15 E 16 E 100% 16 E 100%
14 6.39 542 7.83 7.24 3750.00 14 E 12 D 13 D 66% 13 D 75%
15 6.15 5.83 7.12 5.17 3000.00 15 E 16 E 15 E 100% 15 E 100%
16 7.94 8.03 9.17 9.28 5000.00 3 A 8 C 6 B 0% 3 A 50%

Average 73% PMs + Fuzzy 73%

TABLE IV . .

TEAMS ALLOCATION BY THE PMS AND THE PROPOSED APPROACH. We can notice that the teams allocated using our approach,
Coach Size | Developers Prod | Salary | Quality although different from the teams allocated by the project
PM 1 3 2,1,16 27,71 | 16750 7.5 managers, have a high degree of similarity. Besides, the teams
PM 2 3 2,7,3 23,09 | 12500 | 6,96 have the same quality. This occurs probably because of the
PM 3 3 2,12,7 24,87 13750 7,5 :

Approacht 3 310.16 5795 T 15750 73 amou.nt of memb.ers in com@on am.ong' the teams. '
Approach+- | 3 23.12 26,12 | 13750 75 It is also possible to notice that is difficult for the project
Approach- | 3 23,14 24,08 | 12500 75 managers to choose the best team when the number of
PM 1 > 2,1,16,7,3 41,36 | 24250 7,5 possibilities is higher. This can be seen in the teams with
PM 2 5 2,7,3,12,10 41,68 | 23250 7,5 . . .

PM 3 3 2127163 41,65 | 22500 75 seven developers. The search space is big. This generates a
Approach+ | 5 1,2,10,12,16 46,30 | 27500 7.5 great number of possible solutions. Because of this is hard to
Approach+- | 5 2,3,10,14,16 42,67 | 23250 7,5 find the best solution without a computational help. We can
Approach- 5 2,3,7,14,16 39,61 21250 7,5 . : :

BM 1 5 STT673.1002 T 6005 T 35000 73 potlce that the suggestion of our approach, in the average case,
PM 2 7 273.12.10.165 | 38.11 | 33250 75 is cheapest than the cheapest team proposed by the project
PM 3 7 2,12,7,163,5,10 | 58,11 | 33250 75 managers, with almost the same productivity. However, it is
Approach+ | 7 | 123,5,10,12,16 | 6095 | 36250 | 7.5 important to reinforce that there is no statistical difference
Approach+- | 7 2,3,7,10,12,14,16 | 58,20 | 32000 7,5 th ti d ductiviti

Approach- | 7 23.5.7,12,14,16 | 56,04 | 31250 73 among the mentioned productivities.

allocation. There are three project managers (PM1, PM2, PM3)
and three allocations proposed in our empirical evaluation.
Columns Approach+, Approach+- and Approach- show the
highest, the medium and the lowest team cost, among all the
possible selections with the highest quality score.

In our approach, NSGA-II module finds a set of possible
solutions (Pareto front), instead of only one solution like
project managers (Stage 3). We have run the NSGA-II module
30 times for each team size (3, 5, 7) to minimize the random
behavior of the implemented metaheuristic. The final Pareto
fronts for each team size are shown in Figure 5. We can notice
that the two variables increase in the same ratio. The better is
the team productivity, the higher is the team cost.

In order to qualify the solutions (Stage 4), using team cost
and productivity, we have used another fuzzy inference system.
The more balanced the cost and productivity of a team, the
better is the team quality in our approach. Table IV also
shows the teams selected by the system, together with the
team productivity, cost, and quality score.

The statistical factor is a limitation in the current stage of
our work. We know that an ideal evaluation of our approach
requires a project development, comparing teams allocated
with and without our support. But we also know that this
is very expensive in the real world. However, we are plan-
ning an experimental study following the prescriptions of the
Experimental Software Engineering area [24].

VIII. CONCLUSION AND FUTURE WORKS

We presented in this work an approach to solve the agile
team allocation problem. The major contributions of our work
are:

An approach to evaluate developers based on a question-
naire;

An approach to estimate developers productivity based
on a fuzzy inference system and KSA evaluation;

An approach to qualify the generated solutions based on
a fuzzy inference system;

A hybrid approach to solve the addressed problem which
incorporates in all of its stages the expertise of a project
manager;
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Fig. 5.

o An empirical evaluation of the proposed approach, com-

paring its application against the intuition of some project
managers.

Despite the difficulty to evaluate teams allocated both by the
project managers and our approach, we performed an empirical
evaluation. The main results are:

o The input fuzzy inference system, which estimates the

productivity of the developers, have mimicked the be-
havior of the domain experts;

The variables team cost and team productivity, used as
inputs of the NSGA-II module, increase in the same ratio.
The better is the team productivity, the higher is the team
cost.

The teams allocated using our approach, although differ-
ent from the teams allocated by the project managers,
have a high degree of similarity. Besides, the teams have
the same quality.

As future works, we intend to improve the empirical evalu-
ation, as discussed before. In order to adjust the membership
functions and the rule base of our fuzzy inference systems,
we intend to analyze in a statistical way the choices of the
project managers to allocate the teams. Additionally, we intend
to evaluate others metaheuristic techniques like PSO (Particle
Swarm Optimization) or GA (Genetic Algorithm) to allocate
agile teams and also to adjust the fuzzy knowledge base.
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