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Extracting Flexibility of Heterogeneous Deferrable Loadsvia Polytopic
Projection Approximation

Lin Zhao, He Hao, and Wei Zhang

Abstract— Aggregation of a large number of responsive
loads presents great power flexibility for demand response.
An effective control and coordination scheme of flexible loads
requires an accurate and tractable model that captures their
aggregate flexibility. This paper proposes a novel approachto
extract the aggregate flexibility of deferrable loads with hetero-
geneous parameters using polytopic projection approximation.
First, an exact characterization of their aggregate flexibility is
derived analytically, which in general contains exponentially
many inequality constraints with respect to the number of
loads. In order to have a tractable solution, we develop a
numerical algorithm that gives a sufficient approximation of
the exact aggregate flexibility. Geometrically, the flexibility of
each individual load is a polytope, and their aggregation is
the Minkowski sum of these polytopes. Our method originates
from an alternative interpretation of the Minkowski sum as
projection. The aggregate flexibility can be viewed as the
projection of a high-dimensional polytope onto the subspace
representing the aggregate power. We formulate a robust
optimization problem to optimally approximate the polytopic
projection with respect to the homothet of a given polytope.
To enable efficient and parallel computation of the aggregate
flexibility for a large number of loads, a muti-stage aggregation
strategy is proposed. The scheduling policy for individualloads
is also derived. Finally, an energy arbitrage problem is solved
to demonstrate the effectiveness of the proposed method.

I. I NTRODUCTION

The future power system will be modernized with ad-
vanced metering infrastructure, bilateral information com-
munication network, and intelligent monitoring and control
system to enable a smarter operation [5]. The transformation
to the smart grid is expected to facilitate the deep integration
of renewable energy, improve the reliability and stabilityof
the power transmission and distribution system, and increase
the efficiency of power generation and energy consumption.

Demand response program is a core subsystem of the
smart grid, which can be employed as a resource option for
system operators and planners to balance the power supply
and demand. The demand side control of responsive loads
has attracted considerable attention in recent years [7], [19],
[18], [31]. An intelligent load control scheme should deliver
a reliable power resource to the grid, while maintaining a
satisfactory level of power usage to the end-user. One of the
greatest technical challenges of engaging responsive loads to
provide grid services is to develop control schemes that can
balance the aforementioned two objectives [8]. To achieve
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such an objective, a hierarchical load control structure via
aggregators is suggested to better integrate the demand-side
resources into the power system operation and control [27],
[8].

In the hierarchical scheme, the aggregator performs as
an interface between the loads and the system operator. It
aggregates the flexibility of responsive loads and offers itto
the system operator. In the meantime, it receives dispatch
signals from the system operator, and execute appropriate
control to the loads to track the dispatch signal. Therefore,
an aggregate flexibility model is fundamentally important
to the design of a reliable and effective demand response
program. It should be detailed enough to capture the indi-
vidual constraints while simple enough to facilitate control
and optimization tasks. Among various modeling options for
the adjustable loads such as thermostatically controlled loads
(TCLs), the average thermal battery model [15], [32], [24],
[18] aims to quantify the aggregate flexibility, which is theset
of the aggregate power profiles that are admissible to the load
group. It offers a simple and compact model to the system
operator for the provision of various ancillary services. Apart
from the adjustable loads, deferrable loads such as pools and
plug-in vehicles (PEVs) can also provide significant power
flexibility by shifting their power demands to different time
periods. However, different from the adjustable loads, it is
more difficult to characterize the flexibility of deferrable
loads due to the heterogeneity in their time constraints.

In this paper, we focus on modeling the aggregate flexibil-
ity for control and planning of a large number of deferrable
loads. There is an ongoing effort on the characterization
of the aggregate flexibility of deferrable loads [26], [20],
[14], [10]. An empirical model based on the statistics of the
simulation results was proposed in [20]. A necessary charac-
terization was obtained in [26] and further improved in [14].
For a group of deferrable loads with homogeneous power,
arrival time, and departure time, a majorization type exact
characterization was reported in [14]. With heterogeneous
departure times and energy requirements, a tractable suffi-
cient and necessary condition was obtained in [10], and was
further utilized to implement the associated energy service
market [9]. Despite these efforts, a sufficient characteriza-
tion of the aggregate flexibility for general heterogeneous
deferrable loads remains a challenge.

To address this issue, we propose a novel geometric
approach to extract the aggregate flexibility of heteroge-
neous deferrable loads. Geometrically, the aggregate flexi-
bility modeling amounts to computing the Minkowski sum
of multiple polytopes, of which each polytope represents
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the flexibility of individual load. However, calculating the
Minkowski sum of polytopes under facet representation is
generally NP-hard [29]. Interestingly, we are able to show
that for a group of loads with general heterogeneity, the exact
aggregate flexibility can be characterized analytically. But
the problem remains in the sense that there are generally
exponentially many inequalities with respect to the number
of loads and the length of the time horizons, which can
be intractable when the load population size or the number
of steps in the considered time horizon is large. Therefore,
a tractable characterization of the aggregate flexibility is
desired.

For deferrable loads with heterogeneous arrival and depar-
ture times, the constraint sets are polytopes that are contained
in different subspaces. Alternative to the original definition
of the Minkowski sum, we find it beneficial to regard it
as a projection operation. From the latter perspective, the
aggregate flexibility is considered as the projection of a
higher dimensional polytope to the subspace representing the
aggregate power of the deferrable loads. Therefore, instead of
approximating the Minkowski sum directly by its definition,
we turn to approximating the associated projection operation.
To this end, we formulate an optimization problem which
approximates the projection of a full dimensional polytope
via finding the maximum homothet of a given polytope, i.e.,
the dilation and translate of that polytope. The optimization
problem can be solved very efficiently by solving an equiv-
alent linear program. Furthermore, we propose a “divide
and conquer” strategy which enables efficient and parallel
computation of the aggregate flexibility of the load group.
The scheduling policy for each individual load is derived
simultaneously along the aggregation process. Finally, we
apply our model to the PEV energy arbitrage problem, where
given predicted day-ahead energy prices, the optimal power
profile consumed by the load group is calculated to minimize
the total energy cost. The simulation results demonstrate that
our approach is very effective at characterizing the feasible
aggregate power flexibility set, and facilitating finding the
optimal power profile.

There are several closely-related literature on characteriz-
ing flexibility of flexible loads. In our previous work [32], a
geometric approach was proposed to optimally extract the ag-
gregate flexibility of heterogeneous TCLs based on the given
individual physical models. The simulation demonstrated
accurate characterization of the aggregate flexibility which
was very close to the exact one. However, this approach
cannot be applied to the deferrable loads directly. Similar
to [32] which sought a special class of polytopes to facilitate
fast calculation of Minkowski sum, the authors in [25] pro-
posed to characterize the power flexibility using Zonotopes.
Different from [32], this method could deal with the time
heterogeneity as appeared in the deferrable loads. In addition,
both approaches extracted the flexibility ofindividual load. In
comparison, the approach proposed in this paper is abatch
processing method: it directly approximates the aggregate
flexibility of a group of loads, which could mitigate the
losses caused by the individual approximation as emphasized

in [25].
Notation: The facet representation of a polytopeP ⊂

R
m is a bounded solution set of a system of finite linear

inequalities [16]:P := {x : Ax ≤ c}, where throughout
this paper≤ (or <, ≥, >) means elementwise inequality. A
polytopeP ⊂ R

m is called full dimensional, if it contains an
interior point inRm. Given a full dimensional polytopeP in
R

m, a scale factorλ > 0, and a translate factorµ ∈ R
m, the

setλB + µ is called a homothet ofB. We use
⊎

to denote
the Minkowski sum of multiple sets, and⊕ of two sets.
We use1m to represent them dimensional column vector
of all ones,Im the m dimensional identity matrix, and1C

the indicator function of the setC. The bold0 denotes the
column vector of all0’s with appropriate dimension. For
two column vectorsu andv, we write (u, v) for the column
vector [uT , vT ]T where no confusion shall arise.

II. PROBLEM FORMULATION

We consider the problem of charging a group ofN PEVs.
The energy state of each PEV can be described by a discrete
time difference equation on a finite time horizon[0, T δ],

xt = xt−1 + δut, (1)

wherext is the state of charge (SoC) with initial condition
x0 = 0, andut ∈ [0, p] with p > 0 is the charging power
supplied to the vehicle during[(t − 1)δ, tδ). Let t ∈ T :=
{1, 2, . . .m} denote the time interval[(t − 1)δ, tδ), where
without loss of generality, we will assume the time unitδ =
1 hour in the sequel. Moreover, the PEV must be charged
during a time windowA := {a, . . . , d} ⊂ T where a is
its arrival time,d is its departure time, anda < d.. At the
deadlined, the PEV is supposed to be charged with an SoC
xd ∈ [E, Ē], where we assume that̄Ei > Ei. The load is
called deferrable ifĒ < (d− a)p. A charging power profile
u := [u1, . . . , um]T is called admissible if the load is only
charged withinA and its SoC att = m is within [E, Ē].

We differentiate theith PEV (∀i ∈ N := {1, 2, · · · , N})
by using a superscripti on the variables introduced above.
The charging task of theith PEV is determined byΩi :=
{ai, di, pi, Ei, Ēi}. Let P i be the set of all the admissible
power profiles of theith load. It can be described as,

P i :=

{

ui ∈ R
m : ui

t ∈ [0, pi], ∀t ∈ A
i,

ui
t = 0, ∀i ∈ T\Ai and1T

mui ∈ [Ei, Ēi]

}

(2)

It is straightforward to see that eachP i is a convex
polytope. In addition, we sayP i is of codimensionm−

∣

∣A
i
∣

∣

if its affine hull is a
∣

∣A
i
∣

∣ dimensional subspace ofRm.
In the smart grid, the aggregator is responsible for procur-

ing a generation profile from the whole market to service a
group of loads. We define the generation profile that meets
the charging requirements of all PEVs as follows.

Definition 1. A generation profileu is called adequate if
there exists a decompositionu =

∑N

i=1 u
i, such thatui is

an admissible power profile for theith load, i.e.,ui ∈ P i.

We call the set of all the adequate generation profiles the
aggregate flexibilityof the load group. It can be defined as



the Minkowski sum of the admissible power sets of each
load,

P =

N
⊎

i=1

P i :=

{

u ∈ R
m : u =

N
∑

i=1

ui, ui ∈ P i

}

. (3)

It is straightforward to show thatP is also a convex
polytope whose codimension is to be determined by the
parametersΩ of the deferrable loads.

III. E XACT CHARACTERIZATION OF THE AGGREGATE

FLEXIBILITY

The numerical complexity of the existing algorithms for
calculating the Minkowski sum is rather expensive (See [30]
for some numerical results). In general, calculatingP1 ⊕P2

whenP1 andP2 are polytopes specified by their facets is
NP-hard [29]. However, for the particular problem of PEV
charging, it is possible to characterize the exact aggregate
flexibility P analytically. Such characterization is built on
the results from the matrix feasibility problem and from
the network flow theory, both of which are intrinsically
connected with the PEV charging problem.

Theorem 1. Consider a group of PEVs or deferrable loads
with heterogeneous parametersΩi = {ai, di, pi, Ei, Ēi}, i ∈
N . Then the setP of adequate generation profiles consists
of thoseu = [u1, u2, · · · , um]T which satisfy

min







∑

i∈α

Ēi −
∑

t∈β

ut,
∑

t∈βc

ut −
∑

i∈αc

Ei







≥ −
∑

i∈αc

∣

∣β ∩ A
i
∣

∣ pi, (4)

for all subsetsα ⊂ N andβ ⊂ T, whereαc andβc are the
complement sets ofα and β in N andT, respectively.

Proof. We first interpret the characterization ofP as a matrix
feasibility problem. By definition, if a generation profileu
is adequate, then there exists a decompositionu =

∑N

i=1 u
i

such thatui completes theith PEV’s charging task. This is
equivalent to the existence of aN × m matrix M , the ith

row of which is an admissible power profile of theith PEV.
The matrixM will be referred to as the charging matrix.
Given u ∈ P , let M(u) denote the set of all such charging
matrices. These matrices have special structures: the columns
indexed byAi in theith row are the free positions which can
be filled with a real number in[0, pi], while the rest of the
positions in this row are forbidden positions that can only
be filled with 0’s. Moreover,∀M ∈ M(u), it has thetth

column sumut and theith row sum in the interval[Ei, Ēi].
Clearly, the non-emptiness of the set gives the condition for
being an adequate generation profiles, i.e,

P = {u ∈ R
m : M(u) 6= ∅}.

Furthermore, the condition forM(u) 6= ∅ can be de-
rived by applying [17, Theorem 2.7] to the matrix case.
By the definition in [17], partitions{r1, r2, · · · , rN} and

{c1, c2, · · · , cm} of a sequence are said to be orthogonal,
if |ri ∩ ct| ≤ 1, ∀i ∈ N and∀t ∈ T. For a matrix, clearly
the rows and columns constitute such orthogonal partitions.
This is the only condition required by [17, Theorem 2.7].
Then by a direct calculation of the summation on the right
hand side of [17, (2.8)], we can obtain (4). This completes
the proof. �

Remark 1. In general, there are2mN+1 inequalities in (4),
which will be intractable ifN is several thousand. When
the PEVs are fully homogeneous, i.e., they share the same
set of parametersΩ, the above result reduces to the well-
known majorization condition [14], [23], which consists of
only N + m inequalities. In the linear algebra literature,
studies on the matrix feasibility problem are also focused on
finding tractable conditions under limited heterogeneities in
the parameters. Adapted to the PEV charging scenario, if
the arrival timea and the charging ratep are homogeneous,
Ei = Ēi, and under certain monotonicity condition onu, the
number of inequalities in (4) can be significantly reduced [6],
[10]. The author in [11] obtained a simple majorization type
result under a special monotonicity condition onu. Under
this condition, the charging ratep can be relaxed to be
heterogeneous both among different PEVs and at different
time instances. Note that Theorem 1 also applies to the
case where the charging rate takes integer values (see [17,
Remark (2.19)]).

Since the condition (4) is very difficult to check in practice,
the goal of this paper is to find a sufficient approximation
of it using much fewer inequalities that does not depend
on N . The direct approximation from (4) could be difficult.
However, it is possible to start with the definition (3). An
interesting perspective is to view the Minkowski sum as a
projection operation. Clearly, from (3), we see thatP is the
projection of a higher dimensional polytopẽP onto theu
subspace, i.e.

P = Proju(P̃), (5)

where

P̃ :=

{

(u, ū) : u =

N
∑

i=1

ui, ui ∈ P i

}

, (6)

ū := (u1, u2, · · · , uN ), and Proju is the projection onto
the u subspace. In fact, the Minkowski sum of two sets
is often calculated via projection. Note that the number of
the facets of the polytopẽP is of O(mN), as compared
to O(2mN ) of its projection. The relation (5) inspires us
to approximateP based on only the expression of̃P. The
specific approximation method will be described in the next
section.

IV. SUFFICIENT APPROXIMATION OF THEAGGREGATE

FLEXIBILITY

We will first present our method in a general setting of
computing the maximum homothet of a polytope included
in a polytopic projection, and then apply it to the PEV
charging scenario. Our approximation method is inspired



by [33], where the ellipsoidal approximation of a polytopic
projection is addressed resorting to the robust optimization
technique [4].

A. Approximation of the Polytopic Projection

Given full dimensional polytopes

B :={u ⊂ R
m : Fu ≤ H},

P̃ :={(u, ū) ⊂ R
m+m̄ : B

[

u
ū

]

≤ c},

we want to find its maximum homothet ofB contained in the
projection ofP̃ onto theu subspace. It can be formulated as
the following optimization problem

maximize
λ>0,µ

λ

subject to: λB + µ ⊂ Proju(P̃).
(7)

To facilitate the later formulation of the optimization prob-
lems as linear programs, we perform a change of variables
s = 1/λ andr = −µ/λ. Thus Problem (7) is equivalent to
finding the minimum homothet of Proju(P̃) that containsB,
i.e.

minimize
s>0,r

s

subject to: B ⊂ sProju(P̃) + r.
(8)

Furthermore, since orthogonal projection is a linear oper-
ation, we have

Proju(sP̃ + r̃) = sProju(P̃) + r,

where r̃ = L(r;0) :=

[

r
0

]

is the lift of the vectorr in

R
m+m̄ by setting the additional dimensions to0. Hence,

L(B; ū0) ⊂ sP̃+ r̃ for someū0 ∈ R
m̄ implies the constraint

in (8). Therefore, it is sufficient to pose a more restrictive
constraint to obtain a suboptimal solution, and we have

minimize
s>0,r,ū0

s

subject to: L(B; ū0) ⊂ sP̃ + r̃,
(9)

where the constraint can be expressed as

B ⊂

{

B

[

u
ū0

]

≤ sc+Br̃

}

.

By applying the Farkas’s Lemma (see the Appendix A),
the above optimization problem can be transformed into the
following linear programming problem,

minimize
s>0,G≥0,r,ū0

s

subject to: GF =

[

B11

B21

]

,

GH ≤ B

[

r
−ū0

]

+ sc.

(10)

Before proceed, we illustrate the formulation (9) using a
simple example borrowed from [33].

Example 1. Let P̃ be given byP̃ = {(x, y)| − 0.5x− y ≤
−9, 0.6x + y ≤ 10,−x − y ≤ 10}, and B = {x| −
0.5 ≤ x ≤ 1}. The polytopeP̃ is plotted in Fig. 1. We
solve the problem (10) to find a sufficient approximation

0 2 4 6 8 10
x

4

6

8

10

y

Fig. 1. The approximation of the projection of̃P via Problem (9).

of Projx(P̃), and obtains = 1.125, r = −2.75, ū0 = 9.
The corresponding scale factor isλ = 1/s = 8/9, and
translate factor isµ = 22/9. From these data we can have
that L(λB; 8) + [µ, 0]T ⊂ P̃ . This corresponds to the fact
that the longest horizontal line segment that is contained in
P̃ is at y = 8.

Clearly, the formulation of Problem (9) is very conser-
vative. It actually requires the homothet of the polytopeB

be entirely contained iñP . It amounts to each time fixing
ū = ū0, and then measuring the cross section ofP̃ . However,
for approximating the projection of̃P, we only need

∀u ∈ λB+ µ, ∃ū(u), such that(u, ū(u)) ∈ P̃, (11)

where ū is a function of u, while in Problem (9)u is
determined bȳu. The relation (11) can be interpreted in the
context of the adjustable robust optimization problem [3],
where u is the so called non-adjustable variable, andū
is the adjustable variable. The function̄u(u) is called the
decision rule. Solving (9) over all possible choices ofū(u)
is intractable. An efficient way to overcome this is to restrict
the choice ofū(u) to be the affine decision rules,

ū = Wu+ V, (12)

whereW ∈ R
m̃×m, andV ∈ R

m̃. Using (12) in Problem
(9) and by some manipulation, we can obtain

minimize
s>0,r,W,V

s

subject to: B ⊂

{

B

[

I
W

]

u ≤ B

[

r
−V

]

+ sc

}

.

(13)
Using the Farkas’s Lemma, Problem (13) can be solved

by the following linear programming

(APP)

minimize
s>0,G≥0,r,W,V

s

subject to: GF = B

[

I
W

]

,

GH ≤ B

[

r
−V

]

+ sc.



We test the above formulation by computing the approxi-
mation of the polytopic projection in Example 1.

Example 2 (Continued). We solve the Problem (APP) and
obtain r = −0.5, s = 0.15. This corresponds to the interval
1/0.15 (B+ 0.5) = [0, 10], which is exactly Projx(P̃).

In general, the Problem (APP) gives a suboptimal solution
for the approximation of Projx(P̃) with respective toB. A
possible way to reduce the conservativeness is to employ the
quadratic decision rule or other nonlinear decision rules as
reported in [3].

B. Aggregation of the PEVs’ Flexibility

In this subsection, the polytopic projection approximation
developed in the above section will be employed to aggregate
the PEVs’ flexibility. We will discuss several issues including
the choice of the nominal modelB, the preprocessing of the
charging constraints, and the strategy for parallel computa-
tion. Finally, the explicit formulae for the flexibility model
and the corresponding scheduling policy are derived.

1) Choice of the Nominal Model:Intuitively, one can
choose the nominal polytopeB to be of the similar form
of (2), and the parameters can be taken as the mean values
of the PEV group. More generally, we can define the virtual
battery model as follows.

Definition 2. The setB(φ) is called am-horizon discrete
time virtual battery with parametersφ := {p, p̄, E, Ē}, if

B(φ) := {u ∈ R
m : p ≤ u ≤ p̄ and 1

T
mu ∈ [E, Ē]}.

B(φ) is called a sufficient battery ifB(φ) ⊂ P .

Conceptually, the virtual battery model mimics the charg-
ing/discharging dynamics of a battery. We can regardu as the
power draw of the battery,p andp̄ as its discharging/charging
power limits, andĒ and E as the energy capacity limits.
Geometrically, it is a polytope inRm with 2m + 2 facets,
which is computationally very efficient when posed as the
constraint in various optimization problems.

2) Preprocessing the Charging Constraints:Note that the
original high-dimensional polytopẽP defined in (6) contains
equality constraints, which is not full dimensional. Therefore,
first we have to remove the equalities by substituting the
variables. For simplicity, assume that̄Ei > Ei. More
explicitly, let ui

t be theith PEV’s charging profile at timet,
∀i ∈ N , and∀t ∈ T, ut be the generation profile at time
t. The overall charging constraints of the PEV group can be
written as follows


















ut =
∑N

i=1 1Ai(t)ui
t, ∀t ∈ T,

0 ≤ ui
t ≤ pi, ∀i ∈ N , and∀t ∈ A

i,

ui
t = 0, ∀i ∈ N , and∀t ∈ T\Ai,

Ei ≤
∑di

t=ai ui
t ≤ Ēi, ∀i ∈ N ,

(14)

which is a polytope inR(N+1)m, and the coordinate is
designated to be(u, u1, u2, · · · , uN). We first need to elim-
inate the equality constraints containing(u1, u2, · · · , uN),
i.e., the first line of (14). To standardize the elimination

process, defineNt := {i ∈ N|t ∈ A
i}, which is the index

set of the PEVs that can be charged at timet. Without
loss of generality, assume thatNt 6= ∅, ∀t ∈ T, and
we substituteujt

t = ut −
∑

i∈Nt\jt
ui
t, ∀t ∈ T in (14),

where jt := mini∈Nt
i is the first PEV in the setNt. Let

Si := {t ∈ A
i : jt = i} be the set of time instants at

which the substitution ofui
t is made. Further, we remove

the coordinateui
t = 0 and obtain,























0 ≤ ut −
∑

i∈Nt\{jt}
ui
t ≤ pjt , ∀t ∈ T,

0 ≤ ui
t ≤ pi, ∀t ∈ T, i ∈ Nt\{jt},

Ei ≤
∑

t∈Ai\Si
ui
t

+
∑

t∈Si

{

ut −
∑

i∈Nt\jt
ui
t

}

≤ Ēi, ∀i ∈ N ,

(15)
where the new coordinate becomes(u, ũ), with

ũ := (ũ1, ũ2, · · · , ũN) (16)

and ũi = [ui
t]t∈Ai\Si

, i ∈ N . Clearly, ũ has a dimension
m̃ :=

∑N
i=1(d

i − ai + 1) − m, and there are a number of
n := 2(N +

∑N

i=1(d
i − ai + 1)) linear inequalities in (15).

We denote it by the matrix form,

B

[

u
ũ

]

≤ c, (17)

where note thatB ∈ R
n×(m+m̃) is a sparse matrix and has

the structure,

B =

[

B11 B12

02m̃×m B22

]

.

3) Scalability: For a fixed time horizonm, both the
number of the decision variables and the number of inequal-
ity constraints of Problem (APP) increase linearly with̃m.
When the number of PEVs to be aggregated is too large,
solving Problem (APP) would be intractable. To address
the increasing numerical complexity, we propose to divide
the PEVs into small groups, and solve Problem (APP) for
each group with respect to the same nominal modelB.
Denoting the solutions of Problem (APP) for thekth group
by (sk, rk,Wk, Vk, Gk), the aggregate flexibility of thekth

group is given by1/sk(B − rk). Then the flexibility of the
overall PEV group can be calculated directly based on the
following lemma.

Lemma 1. Let B be a polytope, andλ1, λ2 be non-negative
scalars. Thenλ1B⊕ λ2B = (λ1 + λ2)B.

The above result can be easily verified. A more general
proof for the convex body can be found in [28, Remark
1.1.1]).

By this “divide and conquer” strategy, the original highly
complex optimization problem can be solved very efficiently
in a parallel fashion. However, this increases the conserva-
tiveness of the approximation, which is a result of the trade-
off between the tractability and the optimality.

In case that different nominal modelsBk are used for
each group, we can perform the aggregation again over the
obtained groups. Repeating this after several stages, we can
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Fig. 2. The maximum and the minimum charging rates of the designed
virtual battery model.

arrive one virtual battery model for the overall PEV group.
Even though we have to spread the computation over time in
different stages, in practice this process terminates soonsince
the number of stages is of orderlogNx whenx PEVs/groups
are processed at each run of Problem (APP).

4) Design of the Sufficient Virtual Battery:Combining
the above development, the following explicit formulae
for designing the sufficient virtual battery can be derived.
The scheduling policy for each individual PEVs can also
be obtained. Without loss of generality, these results are
stated for the case where only one stage aggregation is
executed. The formulae for multi-stage aggregation can be
obtained analogously. For convenience, let us denote the
solutions of the Problem (APP) by the output of the func-
tion (sk, rk,Wk, Vk, Gk) = APP(P̃k,B), where P̃k is the
high-dimensional polytope associated with thekth group
of PEVs, andB is a given nominal model parameterized
by (p̄, p, Ē, E). The proof of the following theorem can be
found in the Appendix B.

Theorem 2. Suppose(sk, rk,Wk, Vk, Gk) = APP(P̃k,B),
∀k. ThenBs = λB+ µ is a sufficient battery parameterized
by

ūs =λp̄+ µ,

us =λp+ µ,

Ēs =λĒ + 1
T
mµ,

Es =λE + 1
T
mµ,

whereλ =
∑

k λk, µ =
∑

k µk and λk = 1
sk

, µk = −rk
sk

.
Furthermore,∀u ∈ Bs, the scheduling policy is given by

ũk = Wk

λk

λ
(u − µ) + λkVk, (19)

whereũk = (ũ1
k, ũ

2
k, · · · , ũ

Nk

k ) denotes the charging profiles
of the number ofNk PEVs in thekth group.
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Fig. 3. Aggregate charging profile versus the price.

V. SIMULATION

In this section, we consider coordination of a group
of 1000 PEVs for energy arbitrage. The considered time
horizon is 24 hours, and the price is taken as the Day-Ahead
Energy Market locational marginal pricing (LMP) [1]. The
parameters of PEVs are randomly generated by their types
and the corresponding probability distributions (see [13]for
more details). Since most of the PEVs arrive during the
afternoon to midnight and leave during the next 12 hours,
we choose to simulate from 12:00 noon to the same time on
the next day. In addition, we assume a±5% total charging
energy flexibility around the nominal energy requirement.
The (APP) problem is solved using the GLPK linear pro-
gramming solver [2] interfaced with YALMIP [21]. At the
first stage, we randomly divide the 1000 PEVs into 100
groups, where each group contains 10 PEVs. The aggregate
flexibility approximation is thus solved for 10 PEVs in one
group. This number is chosen according to the numerical
efficiency of the solver. The parameters of the nominal
battery modelB for each group are chosen as the average
values of the group. For those groups having the same
minimum arrival time and maximum departure time, we
take the average values between them and approximate their
flexibilities using the same nominal model. For example,
by setting the elements in the charging matrixM by their
maximum values, the upper charging limitsp̄ for the nominal
battery model are calculated as the column averages ofM .
Since these groups share the same nominal model, their
approximated aggregated flexibilities can be calculated very
easily based on Lemma 1. In our simulation, after the first
stage, the 100 groups are merged into 22 collections which
are represented by polytopes of different codimensions. Then
we repeat the process in the first stage to approximate
the flexibility of these 22 collections, where each time we
aggregate 11 collections. Finally a sufficient battery model
Bs is obtained for the characterization of the aggregate
flexibility of the entire loads group.

The dynamic charging limits of the obtained battery model



are illustrated in Fig. 2. The total charging energy bounds
are obtained asE = 18.35 MWh and Ē = 19.09 MWh,
which lies in the true aggregate energy consumption interval
lE := [17.65, 19.51] MWh. From Fig. 2, we can see that
around the midnight (the24th hour), the charging flexibility
of the PEVs are the largest in terms of the difference of the
charging rate bounds. Denoting the energy price byπ, and
the planned energy byz, the energy arbitrage problem can
be formulated as a linear programming problem as follows,

minimize
z

πT z

subject to: z ∈ Bs.

Clearly, the above optimization problem can be solved
much more efficiently than directly optimizing the power
profiles subject to the constraints of 1000 PEVs. We plot the
obtained power profiles against the price changes in Fig. 3.
It can be observed that most of the energy demand are
consumed during1 : 00AM (25th hour) to 4AM (28th hour)
in the morning, when the prices are at its lowest. The same
curve of the planned power is also plotted in Fig. 2 (the dot-
ted line), where note we assume that the time discretization
unit is 1 hour. We see that the planned charging rate lies in
the charging bounds ofBs, and almost always matches the
maximum/minimum bound. Using this charging profile, the
total energy being charged to the PEVs is18.34 MWh which
lies in the intervallE. Hence, it is adequate and the charging
requirement of individual PEV can be guaranteed by using
the scheduling policy (19).

We choose the immediate charging policy as the baseline
and use it to compare with the obtained optimal charging
profile in Fig. 2. To ensure a fair comparison, we impose an
additional constraint that the total energies consumed by both
profiles are the same. The total energy cost for the baseline
charging profile is430.8$, while the cost for the optimal
charging profile is343.0$, which reduces the baseline cost
by about20%.

VI. CONCLUSIONS ANDFUTURE WORK

This paper proposed a novel polytopic projection ap-
proximation method for extracting the aggregate flexibility
of a group of heterogeneous deferrable loads. The aggre-
gate flexibility of the entire load group could be extracted
parallelly and in multiple stages by solving a number of
linear programming problems. The scheduling policy for
individual load was simultaneously derived from the aggre-
gation process. Finally, a PEV energy arbitrage problem was
solved to demonstrate the effectiveness of our approach at
characterizing the feasible aggregate power flexibility set,
and facilitating finding the optimal power profile.

Our future work includes studying the performances of
using other decision rules such as the quadratic decision
rule and the nonlinear decision rule, and as compared to
the method using Zonotopes. In addition, it is interesting to
consider a probabilistic description of the aggregate flexi-
bility as in practice the uncertainty of the loads parameters
must be considered to reduce the risk of over-estimating or
under-estimating the aggregated flexibility.

APPENDIX

A. Farkas’ lemma

For the sake of completeness, we restate the following
version of Farkas’s lemma as used in [12], which will be
used to derive our algorithm for approximating the polytopic
projection. Its proof can be found in [22].

Lemma 2. (Farkas’ lemma) Suppose that the system of
inequalitiesAx ≤ b, A ∈ R

m×n has a solution and that
every solution satisfiesFx ≤ d, F ∈ R

k×n. Then there
existsG ∈ R

k×m , G ≥ 0, such thatGA = F andGb ≤ d.

B. Proof of Theorem 2

(1) Sufficient battery: since(sk, rk) is the solution of the
APP problem, we haveλkB + µk ⊂ P̃k, whereλk = 1/sk
andµk = −rk/sk. Let

Bs :=
⊎

k

(λkB+ µk),

and it can be shown that,

Bs =
⊎

k

λkB+ µ

= λB+ µ,

where λ =
∑

k λk, µ =
∑

k µk, and the last equality is
derived by using Lemma 1. Since

⊎

k

(λkB+ µk) ⊂
⊎

k

P̃k = P̃,

we seeBs is sufficient. Now supposeu ∈ Bs, then (u −
µ)/λ ∈ B. DenotingB by its facet representation, we have
B = {Fu ≤ H}, where

F =[Im, Im,1m,1m]T ,

H =(ū,−u, Ē,−E),

and then parameters ofBs can be obtained from

Fu ≤ λH + Fµ.

(2) Scheduling policy: given a generation profileu in Bs,
we can decompose it into the individual admissible power
profile ũ through two steps. First, we decompose it into the
generation profiles for each groups:∀u ∈ Bs, by part (1) we
know

1

λ
(u − µ) ∈ B,

and further more
λk

λ
(u− µ) + µk ∈ P̃k.

Denoting the generation profile for thekth group by

zk :=
λk

λ
(u− µ) + µk,

and hence,zk ∈ λkB+ µk which is the aggregate flexibility
extracted from thekth group. It can be further decomposed
into each PEVs in thekth group. Now we need to use the
linear decision rule in (12). Note that the decision rule (12)
is applied in (13) which actually maps fromB to skP̃k +



(rk,0), while the decomposition mapping we need is actually
from λkB + µk to P̃k. The mappings between these four
polytopes form a commutative diagram (see below). Observe
that the linear ratio of the decomposition mapping does not
change, and only the translate vector needs to be calculated.
Therefore, assume that the decomposition takes the form

ũk = Wkzk + U,

whereU is the translate vector to be determined.

B skP̃
k + (rk,0)

λkB+ µk P̃k

Wk · () + Vk

Wk · () + U

From the above commutative diagram, we must have
∀zk ∈ λkB+ µk,

sk (Wkzk + U) + 0 = Wk (skzk + rk) + Vk.

Solve the above equality and we will have

U = λkVk −Wkµk,

and the overall scheduling policy (19) follows from the
composition ofzk and ũk. �
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