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Extracting Flexibility of Heterogeneous Deferrable Loadsvia Polytopic
Projection Approximation

Lin Zhao, He Hao, and Wei Zhang

Abstract— Aggregation of a large number of responsive
loads presents great power flexibility for demand response.
An effective control and coordination scheme of flexible lods
requires an accurate and tractable model that captures thei
aggregate flexibility. This paper proposes a novel approacto
extract the aggregate flexibility of deferrable loads with retero-
geneous parameters using polytopic projection approximabn.
First, an exact characterization of their aggregate flexibity is
derived analytically, which in general contains exponenglly
many inequality constraints with respect to the number of
loads. In order to have a tractable solution, we develop a
numerical algorithm that gives a sufficient approximation o
the exact aggregate flexibility. Geometrically, the flexility of
each individual load is a polytope, and their aggregation is
the Minkowski sum of these polytopes. Our method originates
from an alternative interpretation of the Minkowski sum as
projection. The aggregate flexibility can be viewed as the
projection of a high-dimensional polytope onto the subspaz
representing the aggregate power. We formulate a robust
optimization problem to optimally approximate the polytopic
projection with respect to the homothet of a given polytope.
To enable efficient and parallel computation of the aggregat
flexibility for a large number of loads, a muti-stage aggregéon
strategy is proposed. The scheduling policy for individualoads
is also derived. Finally, an energy arbitrage problem is saled
to demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

such an objective, a hierarchical load control structuie vi
aggregators is suggested to better integrate the demdad-si
resources into the power system operation and control [27],
[8].

In the hierarchical scheme, the aggregator performs as
an interface between the loads and the system operator. It
aggregates the flexibility of responsive loads and offets it
the system operator. In the meantime, it receives dispatch
signals from the system operator, and execute appropriate
control to the loads to track the dispatch signal. Therefore
an aggregate flexibility model is fundamentally important
to the design of a reliable and effective demand response
program. It should be detailed enough to capture the indi-
vidual constraints while simple enough to facilitate cohtr
and optimization tasks. Among various modeling options for
the adjustable loads such as thermostatically controtiedd
(TCLs), the average thermal battery model [15], [32], [24],
[18] aims to quantify the aggregate flexibility, which is thet
of the aggregate power profiles that are admissible to th loa
group. It offers a simple and compact model to the system
operator for the provision of various ancillary servicepaft
from the adjustable loads, deferrable loads such as podls an
plug-in vehicles (PEVs) can also provide significant power
flexibility by shifting their power demands to different tm

The future power system will be modernized with ad.periods. However, different from the adjustable loadssit i

vanced metering infrastructure, bilateral informatiormeo

more difficult to characterize the flexibility of deferrable

munication network, and intelligent monitoring and cohtroloads due to the heterogeneity in their time constraints.
system to enable a smarter operation [5]. The transformatio In this paper, we focus on modeling the aggregate flexibil-
to the smart grid is expected to facilitate the deep intégmat ity for control and planning of a large number of deferrable

of renewable energy, improve the reliability and stabitify

loads. There is an ongoing effort on the characterization

the power transmission and distribution system, and irserea0f the aggregate flexibility of deferrable loads [26], [20],
the efficiency of power generation and energy consumptiobt4], [10]. An empirical model based on the statistics of the
Demand response program is a core subsystem of tgENulation results was proposed in [20]. A necessary charac

smart grid, which can be employed as a resource option féffization was obtained in [26] and further improved in [14]
system operators and planners to balance the power supp§f @ group of deferrable loads with homogeneous power,
and demand. The demand side control of responsive loaggival time, and departure time, a majorization type exact
has attracted considerable attention in recent years]9], [ characterization was reported in [14]. With heterogeneous
[18], [31]. An intelligent load control scheme should deliv departure times and energy requirements, a tractable suffi-
a reliable power resource to the grid, while maintaining &i€nt and necessary condition was obtained in [10], and was
satisfactory level of power usage to the end-user. One of tfigrther utilized to implement the associated energy servic
greatest technical challenges of engaging responsive kmad Mmarket [9]. Despite these efforts, a sufficient characteriz
provide grid services is to develop control schemes that cdi9n of the aggregate flexibility for general heterogeneous

balance the aforementioned two objectives [8]. To achievdeferrable loads remains a challenge.
To address this issue, we propose a novel geometric
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approach to extract the aggregate flexibility of heteroge-
neous deferrable loads. Geometrically, the aggregate- flexi
bility modeling amounts to computing the Minkowski sum

of multiple polytopes, of which each polytope represents
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the flexibility of individual load. However, calculating ¢h in [25].

Minkowski sum of polytopes under facet representation is Notation: The facet representation of a polytofe C

generally NP-hard [29]. Interestingly, we are able to shoW™ is a bounded solution set of a system of finite linear

that for a group of loads with general heterogeneity, theexainequalities [16]:P := {z : Az < ¢}, where throughout

aggregate flexibility can be characterized analyticallyt B this paper< (or <, >, >) means elementwise inequality. A

the problem remains in the sense that there are generagliglytope? C R™ is called full dimensional, if it contains an

exponentially many inequalities with respect to the numbenterior point inR”*. Given a full dimensional polytop® in

of loads and the length of the time horizons, which cafR™, a scale factoi > 0, and a translate factqr € R™, the

be intractable when the load population size or the numbeet AB + 4 is called a homothet aB. We uselt) to denote

of steps in the considered time horizon is large. Thereforthe Minkowski sum of multiple sets, ang of two sets.

a tractable characterization of the aggregate flexibilgy iWe usel,, to represent then dimensional column vector

desired. of all ones,I,,, the m dimensional identity matrix, andc
For deferrable loads with heterogeneous arrival and depdhe indicator function of the sef. The bold0 denotes the

ture times, the constraint sets are polytopes that areicacta column vector of all0’s with appropriate dimension. For

in different subspaces. Alternative to the original deiimit two column vectors: andv, we write (u, v) for the column

of the Minkowski sum, we find it beneficial to regard itvector[u”,»T]T where no confusion shall arise.

as a projection operation. From the latter perspective, the

aggregate flexibility is considered as the projection of a ) )

higher dimensional polytope to the subspace represeriting t e consider the problem of charging a groupoPEVs.

aggregate power of the deferrable loads. Therefore, idstea 1h€ energy state of each PEV can be described by a discrete

approximating the Minkowski sum directly by its definition, ime difference equation on a finite time horiz@h7's],

we turn to approximating the assoc_iat_ed projection opcemalti T = Tp_q + Ouy, (1)

To this end, we formulate an optimization problem which

approximates the projection of a full dimensional polytop&vherez; is the state of charge (SoC) with initial condition

via finding the maximum homothet of a given polytope, i.e.zo = 0, andu; € [0, p] with p > 0 is the charging power

the dilation and translate of that polytope. The optimizati SuPplied to the vehicle durinfft — 1)6,¢6). Let? € T :=

problem can be solved very efficiently by solving an equivil; 2,...m} denote the time interval(t — 1)4,t5), where

alent linear program. Furthermore, we propose a “divid@ithout loss of generality, we will assume the time uhit

and conquer” strategy which enables efficient and parallé| hour in the sequel. Moreover, the PEV must be charged

computation of the aggregate flexibility of the load groupduring a time windowA := {a,...,d} C T wherea is

The scheduling policy for each individual load is derivedts arrival time,d is its departure time, and < d.. At the

simultaneously along the aggregation process. Finally, wieadlined, the PEV is supposed to be charged with an SoC

apply our model to the PEV energy arbitrage problem, wheré: € [E, E], where we assume thdi' > E'. The load is

given predicted day-ahead energy prices, the optimal powgdlled deferrable i=' < (d — a)p. A charging power profile

profile consumed by the load group is calculated to minimizé = [u1,--.,u,]" is called admissible if the load is only

the total energy cost. The simulation results demonsthate t charged withinA and its SoC at = m is within [E, E].

our approach is very effective at characterizing the féasib We differentiate the' PEV (vi € N := {1,2,--- | N})

aggregate power flexibility set, and facilitating findingeth by using a superscript on the variables introduced above.

optimal power profile. The charging task of the PEV is determined by) .=
There are several closely-related literature on chariaeter {a’, d*,p’, E', E'}. Let P’ be the set of all the admissible

ing flexibility of flexible loads. In our previous work [32], a power profiles of theth load. It can be described as,

geometric apprpach was proposed to optimally extract thg ag . w e R™ ;i € [0,pi], vt € A,

gregate flexibility of heterogeneous TCLs based on the givenP" := { i , i T i i i } 2

22 ; . . ui =0,Vi € T\A" and1],u" € [E', E"]

individual physical models. The simulation demonstrated .

accurate characterization of the aggregate flexibilityolwhi It is straightforward to see that each' is a convex

was very close to the exact one. However, this approagtolytope. In addition, we sa®’ is of codimensionn — |A’|

cannot be applied to the deferrable loads directly. Simildf its affine hull is a|A?| dimensional subspace &".

to [32] which sought a special class of polytopes to faddita  In the smart grid, the aggregator is responsible for procur-

fast calculation of Minkowski sum, the authors in [25] pro-ing a generation profile from the whole market to service a

posed to characterize the power flexibility using Zonotopegroup of loads. We define the generation profile that meets

Different from [32], this method could deal with the timethe charging requirements of all PEVs as follows.

heterogeneity as appeared in the deferrable loads. Inaaldit Hgnition 1. A generation profileu is called adequate if
both approaches extracted the flexibilityiodlividualload. In o avists a decompositian— 3"~ . ui, such thatu’ is
=yl

comparison, the approach proposed in this paperhatah . . . : i ;
processing method: it directly approximates the aggrega‘%‘tgl admissible power profile for thé" load, i.e.,u’ € P".
flexibility of a group of loads, which could mitigate the We call the set of all the adequate generation profiles the
losses caused by the individual approximation as emphasizaggregate flexibilityof the load group. It can be defined as

Il. PROBLEM FORMULATION



the Minkowski sum of the admissible power sets of eaclici,ca, -, ¢} Of @ sequence are said to be orthogonal,
load, if [r;Nec| <1,Vi e N andVt € T. For a matrix, clearly

N N the rows and columns constitute such orthogonal partitions

_ i m. P i This is the only condition required by [17, Theorem 2.7].

P L-'j P {u SE Zu » weP } - ) Then by a direct calculation of the summation on the right

=t hand side of [17, (2.8)], we can obtainl (4). This completes

It is straightforward to show thaP is also a convex the proof. ]
polytope whose codimension is to be determined by the ) o
parameters) of the deferrable loads. Remark 1. In general, there ar@™¥+1 inequalities in [(4),

which will be intractable if N is several thousand. When
[1l. EXACT CHARACTERIZATION OF THE AGGREGATE the PEVs are fully homogeneous, i.e., they share the same
FLEXIBILITY set of parameter$), the above result reduces to the well-

The numerical complexity of the existing algorithms forknown majorization condition [14], [23], which consists of
calculating the Minkowski sum is rather expensive (See [36]Nly IV + m inequalities. In the linear algebra literature,
for some numerical results). In general, calculatigs P s_tud.|es on the matrix fga5|b|l|ty proplem are also focu.s:ed 0
when P, and P, are polytopes specified by their facets igfinding tractable conditions under limited hetgrogen&ﬂg .
NP-hard [29]. However, for the particular problem of PEVihe parameters. Adapted to the PEV charging scenario, if
charging, it is possible to characterize the exact aggeegdf'® arrival timea and the charging rate are homogeneous,
flexibility 7 analytically. Such characterization is built on£’ = £*, and under certain monotonicity condition enthe
the results from the matrix feasibility problem and fromnumber of inequalities in{4) can be significantly reducel [6
the network flow theory, both of which are intrinsically [10]: The author in [11] obtained a simple majorization type
connected with the PEV charging problem. result under a special monotonicity condition an Under

this condition, the charging rate can be relaxed to be
Theorem 1. Consider a group of PEVs or deferrable loadsheterogeneous both among different PEVs and at different
with heterogeneous parametéds = {a’,d', p", E', E'},i €  time instances. Note that Theordh 1 also applies to the
N. Then the seP of adequate generation profiles consistssase where the charging rate takes integer values (see [17,

of thoseu = [uy,us, - - - , u,,|T Which satisfy Remark (2.19)]).
Since the conditiorl{4) is very difficult to check in practice
min{ Y E =Y uy, Y w— Y E the goal of this paper is to find a sufficient approximation
ica tep tepe icae of it using much fewer inequalities that does not depend

on N. The direct approximation fronfij(4) could be difficult.
However, it is possible to start with the definitidn (3). An
interesting perspective is to view the Minkowski sum as a
for all subsetso € N and 8 C T, wherea® and 5° are the  projection operation. Clearly, fronil(3), we see tiais the

> = [BnAp, (4

i€a’

complement sets ef and 3 in A and T, respectively. projection of a higher dimensional polytofe onto thew
Proof. We first interpret the characterization®fas a matrix Subspace, i.e. -
feasibility problem. By definition, if a generation profile P = Proj,(P), (5)

is adequate, then there exists a decompositien"" | u'
such thatu! completes theth PEV's charging task. This is N
equivalent_ to _the existe_nc_e of | x m ma_trix M, theith Pi={ (u,a):u= Z“i’ uepiy, (6)
row of which is an admissible power profile of & PEV,

The matrix M will be referred to as the charging matrix. _ | N o I
Givenu € P, let M(u) denote the set of all such charging” "~ (u',u?,---,u"), and Proj is the projection onto

matrices. These matrices have special structures: thenoslu Fhe u Subspace. In fact, t_he .MkaWSk' sum of two sets
. i th . ) is often calculated via projection. Note that the number of
indexed byA® in the:"" row are the free positions which can

: . ) i . the facets of the polytop@® is of O(mN), as compared
be f.'l.led V\.”th a real number '@’p ) wh|!g the rest of the to O(2™N) of its projection. The relation[]5) inspires us
positions in this row are forbidden positions that can onl){O aporoximateP based on only the expression B The
be filled with 0's. Moreover,YM € M(u), it has thetth PP y P :

th ) ] S specific approximation method will be described in the next
column sumu; and thei""' row sum in the intervalE*, E*].

. ) " section.
Clearly, the non-emptiness of the set gives the condition fo

being an adequate generation profiles, i.e, IV. SUFFICIENT APPROXIMATION OF THEAGGREGATE

FLEXIBILITY
P={ueR™: M(u)#0}.

where

We will first present our method in a general setting of

Furthermore, the condition foM(u) # 0 can be de- computing the maximum homothet of a polytope included
rived by applying [17, Theorem 2.7] to the matrix casein a polytopic projection, and then apply it to the PEV
By the definition in [17], partitions{r;,ro, - ,rny} and charging scenario. Our approximation method is inspired



by [33], where the ellipsoidal approximation of a polytopic

projection is addressed resorting to the robust optinonati
technique [4]. 107
A. Approximation of the Polytopic Projection
Given full dimensional polytopes 8
Ny

B:={u CR™: Fu< H}, 6l

P :={(u,a) CR™™ . B { g } <c},
we want to find its maximum homothet Bfcontained in the 47
projection of P onto theu subspace. It can be formulated as ‘
the following optimization problem 0 2 4 6 8 10

X
maximize
A>0.p (7) Fig. 1. The approximation of the projection #f via Problem [[D).

subject to: B + u C Proj, (P).

To facilitate the later formulation of the optimization jro L= — _ o
lems as linear programs, we perform a change of variabl (I:rglcg)ar(ris), ::(;j.nomsaéglse _faéfér%i,s r__1_2'7_5’8u% _ar?d
s =1/Xandr = —u/A. Thus Problem[{7) is equivalent to ponding = 1/s = 8/9,

. .- 5 : translate factor isy = 22/9. From these data we can have
:‘lgdlng the minimum homothet of PrgjP) that containgB, that L(AB; 8) + [, 0]” c P. This corresponds to the fact

minimize s that the longest horizontal line segment that is contaimed i
5>0,r o (8) Pisaty=2s.
subject to: B C sProj,(P) + r.

Furthermore, since orthogonal projection is a linear oper-

ation, we have Clearly, the formulation of Probleni](9) is very conser-
R s vative. It actually requires the homothet of the polytdpe
Proj, (sP +7) = sProj,(P) +r, be entirely contained irP. It amounts to each time fixing
- rol . . ) @ = 1o, and then measuring the cross sectioPofHowever,
wherer = L(r;0) := { o | 8 the lift of the vectorr in ¢4 355r6ximating the projection aP, we only need
R™*™ py setting the additional dimensions @ Hence, Vu € AB + i, Ju(u), such that(u,a(u)) € P,  (11)

L(B;ag) C sP +7 for somei, € R™ implies the constraint _ _ o _
in (8). Therefore, it is sufficient to pose a more restrictivavhere @ is a function of u, while in Problem [(B)u is

constraint to obtain a suboptimal solution, and we have determined byi. The relation[(Ill) can be interpreted in the
minimize context of the adjustable robust optimization problem [3],
S

5>0,r,do (9) where u is the so called non-adjustable variable, amd
subject to: L(B; ) C sP + 7, is the adjustable variable. The functiafu) is called the
decision rule. Solving[{9) over all possible choicesudf:)
is intractable. An efficient way to overcome this is to restri
Bc {B [ g ] < scqt BF}. the choice ofi(u) to be the affine decision rules,

0

_ u=Wu+YV, (12)
By applying the Farkas's Lemma (see the Apperidix A), here ' € R™*™. andV e R™. Using [12) in Problem

the above optimization problem can be transformed into th%) db ioulati btai
following linear programming problem, and by some manipufation, we can obtain

where the constraint can be expressed as

minimize s

minimize s s>0,m,W,V
$>0,G>0,r,10 . I T
subject to: GF — { gll } 7 (10) subject to: B C {B { W } u<B [ v } +sc}.
21 (13)
GH < B { " } + sc. Using the Farkas’s Lemma, Problem](13) can be solved
—Uo by the following linear programming

Before proceed, we illustrate the formulatidn (9) using a

simple example borrowed from [33]. minimize s
~ ~ $>0,G>0,r, W,V
Example 1. Let P be given byP = {(z,y)| — 0.5z —y < . ) B I
9,06z +y < 10,—z —y < 10}, andB = {z] -  (APP)  Sublecttor GF =B g |,
0.5 < z < 1}. The polytopeP is plotted in Fig.[1. We cH<pl "
solve the problem[{10) to find a sufficient approximation - -V + e



We test the above formulation by computing the approxiprocess, defingV, := {i € M|t € A%}, which is the index
mation of the polytopic projection in Examdlé 1. set of the PEVs that can be charged at timewithout
loss of generality, assume that; # 0, ¥t € T, and

Example 2 (Continued) We solve the Problem (APP) andWe substituteu? — u, — Ziezvt\j, Wi, Yt € T in (@),

obtainr = —0.5, s = 0.15. Th_is c_orresponds to_ the interval where j, == minsey, i is the first PEV in the sefV. Let

1/0.15 (B +0.5) = [0, 10], which is exactly Prgj(P). S; == {t € A" : j, = i} be the set of time instants at
In general, the Problem (APP) gives a suboptimal solutiowhich the substitution ofii is made. Further, we remove

for the approximation of Pr9(75) with respective toB. A the coordinate:; = 0 and obtain,

possible way to reduce the conservativeness is to employ th , .

quadratic decision rule or other nonlinear decision rules a 0< e = Zz‘eNt\{jt} up S P vteT,

reported in [3]. 0 <wu <p', vt € T,i € Ne\{jt},

B. Aggregation of the PEVs’ Flexibility B3 henis: U ‘ N
In this subsection, the polytopic projection approximatio + 2 es (Ut ZieNt\jt u%} SEL VieN,
developed in the above section will be employed to aggregate ) o
the PEVs’ flexibility. We will discuss several issues indhgl  Where the new coordinate becomes ), with
the choice of the nominal mod#l, the preprocessing of the a:=(a', a2, - @) (16)
charging constraints, and the strategy for parallel comput _ _
tion. Finally, the explicit formulae for the flexibility mad anda' = [uf];cai\s,, @ € N. Clearly, @ has a dimension
and the corresponding scheduling policy are derived. m = vazl(di —a' + 1) — m, and there are a number of
1) Choice of the Nominal Modelintuitively, one can n :=2(N + Zfil(di —a® + 1)) linear inequalities in[(15).
choose the nominal polytop8 to be of the similar form We denote it by the matrix form,
of (@), and the parameters can be taken as the mean values
d

(15)

of the PEV group. More generally, we can define the virtual g } <e, a7
battery model as follows.
where note thaBB € R"*(m+™) js a sparse matrix and has

Definition 2. The setB(¢) is called am-horizon discrete
the structure,

time virtual battery with parameters := {p,p, £, E}, if

_ B B
B(¢) :={ueR™:p<u<pand1luc [E, E]}. B—{Ozfxl Bii]-
B(¢) is called a sufficient battery B(¢) C P. 3) Scalability: For a fixed time horizonm, both the

Conceptually, the virtual battery model mimics the Chargnumber of the decision variables and the number of inequal-
ing/discharging dynamics of a battery. We can regaad the 1ty constraints of Problem (APP) increase linearly with
power draw of the battery, andp as its discharging/charging YWhen the number of PEVs to be aggregated is too large,
power limits, andZ and E as the energy capacity limits. solvi_ng Prqblem (APE) would be_ intractable. To add_rgss
Geometrically, it is a polytope ifR™ with 2m + 2 facets, the increasing numerical complexity, we propose to divide
which is computationally very efficient when posed as théh® PEVs into small groups, and solve Problem (APP) for
constraint in various optimization problems. each group with respect to the same nominal mdéiel

2) Preprocessing the Charging Constraintspte that the Denoting the solutions of Problem (APP) for th¥) group
original high-dimensional polytop® defined in[[6) contains by (sk, 7%, Wk, Vi, Gx), the aggregate flexibility of the!
equality constraints, which is not full dimensional. THere, ~ group is given byl /sy (B — rx). Then the flexibility of the
first we have to remove the equalities by substituting theverall PEV group can be calculated directly based on the
variables. For simplicity, assume thd@’ > E'. More following lemma.
explicitly, let u¢ be theit" PEV's charging profile at timé, | esmma 1. LetB be a polytope, and.;, \» be non-negati

. . , . - : 1, A2 gative
Vi € N, andVt € T us be thg generation profile at time g.5)5rs. Ther\iB @ A\sB = (A, + \2)B
t. The overall charging constraints of the PEV group can be

written as follows The above result can be easily verified. A more general
N i proof for the convex body can be found in [28, Remark
U = Zi:l Ty (t)ut, YVt € T, 111])
0 <uwuj <p, Vi e N, andVt € A, (14) By this “divide and conquer” strategy, the original highly
ul =0, Vi e N, andVvt € T\A‘, complex optimization problem can be solved very efficiently
E < Zf;ai ui < B, Vie N, in a parallel fashion. However, this increases the conserva

tiveness of the approximation, which is a result of the trade
which is a polytope inR(W+Y™ and the coordinate is off between the tractability and the optimality.
designated to béu,u',u?, .-, uN). We first need to elim- In case that different nominal modeB* are used for
inate the equality constraints containitg!,«2,--- ,u’), each group, we can perform the aggregation again over the
i.e., the first line of [(IW). To standardize the eliminatiorobtained groups. Repeating this after several stages, we ca
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virtual battery model.

arrive one virtual battery model for the overall PEV group. V. SIMULATION

Even though we have to spread the computation over time in|, this section, we consider coordination of a group
different stages, in practice this process terminates SB@e  of 1000 PEVs for energy arbitrage. The considered time
the number of stages is of ordeig,” whenz PEVS/Groups horizon is 24 hours, and the price is taken as the Day-Ahead
are processed at each run of Problem (APP). o Energy Market locational marginal pricing (LMP) [1]. The

4) Design of the Sufficient Virtual BatteryCombining  parameters of PEVs are randomly generated by their types
the above development, the following explicit formulaeang the corresponding probability distributions (see [b8]
for designing the sufficient virtual battery can be derivedygre details). Since most of the PEVs arrive during the
The scheduling policy for each individual PEVSs can alsfternoon to midnight and leave during the next 12 hours,
be obtained. Without loss of generality, these results aige choose to simulate from 12:00 noon to the same time on
stated for the case where only one stage aggregation (g next day. In addition, we assumeta% total charging
executed. The formulae for multi-stage aggregation can kergy flexibility around the nominal energy requirement.
obtained analogously. For convenience, let us denote th§e (APP) problem is solved using the GLPK linear pro-
solutions of the Problem (APP) by the output of the funCyramming solver [2] interfaced with YALMIP [21]. At the
tion (sk, 7k, Wi, Vi, Gk) = APR(P*,B), where P* is the  first stage, we randomly divide the 1000 PEVs into 100
high-dimensional polytope associated with th€' group groups, where each group contains 10 PEVs. The aggregate
of PEVs, andB is a given nominal model parameterizedflexibility approximation is thus solved for 10 PEVs in one
by (p,p, £, E). The proof of the following theorem can be group. This number is chosen according to the numerical
found in the AppendikxB. efficiency of the solver. The parameters of the nominal
Theorem 2. Suppose(sy, i, Wi, Vi, Gi) = APP(/]Sk7B), battery modelB for each group are chosen as the average

Vk. ThenB, = AB + 1 is a sufficient battery parameterized Values of the group. For those groups having the same
minimum arrival time and maximum departure time, we

b

Y take the average values between them and approximate their
Us =AD + W, flexibilities using the same nominal model. For example,
ug =Ap + p1, by s_etting the elements in the ch_argi_ng_ mathik by th_eir
5 _\F T maximum values, the upper charging limjt$or the nominal
E; =AE+1, 1,

T battery model are calculated as the column average¥ of

By =AE+ 1,1, Since these groups share the same nominal model, their

—Ts approximated aggregated flexibilities can be calculatag ve
easily based on Lemnid 1. In our simulation, after the first
\ stage, the 100 groups are merged into 22 collections which
U = Wka(u — ) + M Vi, are represented by polytopes of different codimensionenTh
we repeat the process in the first stage to approximate

ﬁ]kv’“) denotes the charging profiles the flexibility of these 22 collections, where each time we
aggregate 11 collections. Finally a sufficient battery nhode
Bs is obtained for the characterization of the aggregate
flexibility of the entire loads group.

The dynamic charging limits of the obtained battery model

whereX = 37, Mg, = >, i and A\, = i Ve =
Furthermore,Vu € B, the scheduling policy is given By

(19)

whereiy, = (4}, a2, -,
of the number ofV, PEVs in thekth group.



are illustrated in Figld2. The total charging energy bounds APPENDIX
are obtained agff = 18.35 MWh and E = 19.09 MWh, A Farkas’ lemma

which lies in the true aggregate energy consumption interva
lg = [17.65,19.51] MWh. From Fig.[2, we can see that
around the midnight (thé4th hour), the charging flexibility
of the PEVs are the largest in terms of the difference of th
charging rate bounds. Denoting the energy pricerbynd
the planned energy by, the energy arbitrage problem canLemma 2. (Farkas' lemma) Suppose that the system of
be formulated as a linear programming problem as followdnequalites Az < b, A € R™*" has a solution and that
every solution satisfie¥’z < d, F € R**". Then there
existsG € R¥*™ @G > 0, such thatGA = F and Gb < d.

Lo B. Proof of Theorerh]2
Clearly, the above optimization problem can be solved Sufficient b . is th luti fth
much more efficiently than directly optimizing the power (1) Sufficient battery: sincésy, ) is the solution of the

profiles subject to the constraints of 1000 PEVs. We plot tHe" " problem, we haveB + i C P*, whereA, = 1/s)
obtained power profiles against the price changes in[Fig. 3N9/+ = —Tk/sk. Let

It can be observed that most of the energy demand are B, := L.,j()\k]ngLMk)’

consumed during : 00AM (25th houn to 4AM (28th houn s

in the morning, when the prices are at its lowest. The samg 4 it can be shown that,

curve of the planned power is also plotted in [Fig. 2 (the dot-

For the sake of completeness, we restate the following
version of Farkas’s lemma as used in [12], which will be
used to derive our algorithm for approximating the polytopi
8rojection. Its proof can be found in [22].

minimize 77z
z
subject to: z € B;.

ted line), where note we assume that the time discretization B, = tI-J)\kIB +
unit is 1 hour. We see that the planned charging rate lies in k
the charging bounds dB,, and almost always matches the =B+ 4,

maximum/minimum bound. Using this charging profile, the . _ T
total energy being charged to the PEV4 34 MWh which \(,jv:r?\:gd)\b; u%i:ﬁg)"f_’ellfn ;@%ké’;]'cgnd the last equality is
lies in the intervalg. Hence, it is adequate and the charging '
requirement of individual PEV can be guaranteed by using H—J(/\klas +px) C H—Jﬁk =P,
the scheduling policy(19). k k

We choose the immediate charging policy as the baseligg, seeB, is sufficient. Now suppose € B,, then (u —

and use it to compare with the obtained optimal charging)/)\ € B. DenotingB by its facet representation, we have
profile in Fig.[2. To ensure a fair comparison, we impose ag _ {Fu < H}, where

additional constraint that the total energies consumecbily b

profiles are the same. The total energy cost for the baseline F =[In, I, 1, 1] ",
charging profile is430.8$, while the cost for the optimal H =(u,~u, E,~-E),

charging profile is343.08, which reduces the baseline cost ,

by agofw%% and then parameters @&, can be obtained from

VI. CONCLUSIONS AND FUTURE WORK Fu < AH + Fp.

This paper proposed a novel polytopic projection ap- (2) Scheduling policy: given a generation profilen B,,
proximation method for extracting the aggregate flexipilit we can decompose it into the individual admissible power
of a group of heterogeneous deferrable loads. The aggmerofile @ through two steps. First, we decompose it into the
gate flexibility of the entire load group could be extracteyeneration profiles for each groups: € B,, by part (1) we
parallelly and in multiple stages by solving a number oknow
linear programming problems. The scheduling policy for
individual load was simultaneously derived from the aggre-
gation process. Finally, a PEV energy arbitrage problem w&'d further more
solved to demonstrate the effectiveness of our approach at )\—k(u — ) + g € P
characterizing the feasible aggregate power flexibility;, se A '
and facilitating finding the optimal power profile.

Our future work includes studying the performances of
using other decision rules such as the quadratic decision
rule and the nonlinear decision rule, and as compared to
the method using Zonotopes. In addition, it is interestimg tand hencez;, € A\,B + ;. which is the aggregate flexibility
consider a probabilistic description of the aggregate flexextracted from the:th group. It can be further decomposed
bility as in practice the uncertainty of the loads paranseteinto each PEVs in theth group. Now we need to use the
must be considered to reduce the risk of over-estimating tinear decision rule in[{12). Note that the decision rile)(12
under-estimating the aggregated flexibility. is applied in [IB) which actually maps frof to s, P* +

(U_M)EBa

> =

Denoting the generation profile for thdh group by

A
T



(rk, 0), while the decomposition mapping we need is actuallys]
from A\;,B + ui to P*. The mappings between these four
polytopes form a commutative diagram (see below). ObserY%]
that the linear ratio of the decomposition mapping does not
change, and only the translate vector needs to be calculated
Therefore, assume that the decomposition takes the form ;7

ur = Wiz + U,

. . 18
whereU is the translate vector to be determined. [18]

Wi () + Vg

B Skﬁk + (Tk, 0)
[19]

Pk

AeB 4+ ke We-(0+U

[20]
From the above commutative diagram, we must have

Vzr € \ieB + pg, [21]

Sk (szk + U) +0 =Wy (Ska + Tk) + V.

Solve the above equality and we will have [22]

23
U = \eVie — Wi, (23]

and the overall scheduling policy {19) follows from thel?¥

composition ofz;, anday. [ |
[25]
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