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Adaptive identification of continuous-time MIMO state-space models

Chouaib Afri1, Laurent Bako2, Vincent Andrieu1 and Pascal Dufour1

Abstract— This paper studies the problem of identifying
linear continuous-time state-space models from input-output
measurements. An adaptive identifier is developed for the online
estimation of both the state and the model parameters in a
deterministic framework. Our approach is a non parametric
one in the sense that it provides an arbitrary realization of
the system. It relies on ideas from the subspace identification
literature and adaptive observer.

I. INTRODUCTION

State-space models provide a nice and compact repre-
sentation of linear multiple input multiple output (MIMO)
systems. This feature probably justifies, at least partially,
its tremendous and still increasing success over input-output
models e.g., for multi variable control design, fault detection
and isolation, performance and stability analysis. From an
identification perspective, such models enjoy the advantage
that their construction depends on only one structural para-
meter, namely the so-called McMillan degree of the system.
On the other hand, estimating a black-box state-space model
from input-output data is not a trivial problem due to the fact
that both state and parameters are unknown.

The emergence of subspace identification methods [12],
[8], [13] in the 90s has initiated a steady progress in the
treatment of this problem. Since then, a number of interesting
methods have been developed for efficiently recovering state-
space models along with the associated state from a par-
tial observation of the input-output behavior. Nevertheless,
such techniques are mainly applied for computing discrete-
time models from sampled-data collected in batch mode. A
key ingredient of subspace estimation techniques is a rank
factorization step, the Singular Value Decomposition (SVD)
algorithm. But, since it is computationally expensive, one
cannot afford to run it repeatedly in online applications.
Therefore, in available extensions of subspace methods to
online recursive estimation, the research effort has been
essentially devoted to surmounting the need for SVD [11].
Again, apart from a few exceptions [3], this was done
essentially for discrete-time models. The subspace approach
can be viewed as a non parametric one since it relies on the
estimation of an arbitrary basis for a subspace.

A complementary approach is the one of adaptive obser-
vers where a state basis is enforced by working on canonical
parameterization [9], [14], [1]. While many impressive re-
sults have been achieved on this head, it is worth mentioning
some drawbacks of canonical representations : (1) they are
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rarely minimal in the case of MIMO systems unless a great
deal of prior knowledge is assumed (e.g. availability of
Kronecker observability/controllability indexes [7]) (2) they
might be numerically badly conditioned.

The current paper proceeds from the following remark.
There is a need for continuous-time models which can be
viewed as more natural time-description of physical systems
than discrete-time models. One can then argue that since
sensing devices can only acquire sampled versions of the
system data, it is easier to construct a discrete-time model
first and then convert it into a continuous-time one. This
is indeed the most developed path of research in system
identification. Note however that accuracy of such conversion
is dependent of the sampling frequency which therefore must
be chosen, when possible, with great care. Moreover, in case
the model is to be computed online in an adaptive fashion, the
cost of the conversion might not be affordable. An alternative
solution is to identify directly a continuous-time model from
interpolation of sampled-data [5].
In this paper, we present an adaptive identifier for linear
continuous-time MIMO state-space models. The proposed
method is capable of estimating online both the state and
the system matrices. The paper has two main contributions :
(a) a cheap, adaptive and continuous-time identifier for
MIMO state-space models which does not involve any use
of the costly SVD algorithm ; (b) an exponential conver-
gence analysis under appropriate input sufficiency of richness
conditions and model minimality.

The outline of the paper is as follows. In Section I,
we underline the problem to deal with and set out the
assumptions. The proposed solution idea is presented in
Section III. In Section IV, we show that the estimates
converge exponentially fast to their respective desired values.
We conclude by an application of the algorithm on a linear
MIMO system in Section V.

II. LINEAR SYSTEM

Consider a linear system described by a state-space model
of the form

S :

{
ẋ = Ax+Bu

y = Cx+Du
(1)

where x ∈ Rn, u ∈ Rny , y ∈ Rny are respectively the
state, the input and the output ; A,B,C,D are matrices of
appropriate dimensions.
For future reference throughout the paper, we state the
following assumptions :

A1. The system (1) is stable i.e., A is Hurwitz.
A2. (A,B,C) is minimal i.e., (A,B) is controllable and

(A,C) is observable.



A3. C is full row rank.
Problem : Given measurements of the input and output

signals, estimate both the state and the parameters in an
arbitrary state space basis.

III. ESTIMATION METHOD

A. Main idea

Let f > n be an integer and introduce the notations

yf =
[
y> ẏ> · · · y(f−1)

>
]>

uf =
[
u> u̇> · · · u(f−1)

>
]> (2)

and

Of , Of (A,C) =
[
C> (CA)> · · · (CAf−1)>

]>
Tf , Tf (A,B,C,D) =


D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D

 .
(3)

Proceeding from (1), we can derive the following equation

yf = Ofx+ Tfuf . (4)

In practice, the time derivatives of u and y are not measured
in general. The only signals that can be reasonably assumed
to be available are the input and output. However they are
in general noisy and differentiating noisy measurements is
well-known to come with some serious drawbacks. One way
to avoid numerical computation of derivatives is to work with
filtered data. The filter has the further advantage that when
it is appropriately chosen, it is capable of attenuating the
effects of noise.

Let F (s) = 1/d(s) be a stable filter with d(s) = sf +
αf−1s

f−1 + · · ·+ α0 a polynomial in the Laplace operator
s. The filter must be chosen to cut off potential noise. In
general, the frequency spectrum of the noise is located at
high frequencies. So, if we choose a linear filter with large
enough eigenvalues (in absolute value) we can reduce the
noise effect while preserving the dynamics of the to-be-
identified-system. Note that many other choices of the filter
F (s) are possible, see e.g. [5]. The method to be presented
is not attached to any specific choice of the filter and so
remains applicable for any valid choice 1 of F (s). For this
reason, we will not elaborate more on this implementation
aspect here.
Posing p = F (s)yf , q = F (s)uf , x̄ = F (s)x, we obtain

p = F (s)(ξf (∂)⊗ Iny )y,

q = F (s)(ξf (∂)⊗ Inu)u
(5)

where ξf (∂) =
[
1 ∂ · · · ∂f−1

]>
with ∂ = d

dt denoting
the time derivative operator.

1. For a different choice of the filter F (s), one just needs to adjust
the equations (6a)-(6b) which generate p and q ; the other steps of the
identification method remain unchanged.

We can express (4) and (5) in state-space form as

ṗ =
(
Λc ⊗ Iny

)
p+

(
l ⊗ Iny

)
y (6a)

q̇ = (Λc ⊗ Inu
) q + (l ⊗ Inu

)u (6b)
Of x̄ = p− Tfq (6c)

with

Λc =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · ·
. . .

...
0 0 · · · · · · 1
−α0 −α1 · · · · · · −αf−1

 , l =


0
0
...
0
1

 .
Note that for any k, the pair (Λc ⊗ Ik, l ⊗ Ik) is control-
lable. Using the filter, p and q can be generated from the
measurements using Eqs (6a)-(6b). But we are still facing
the difficulty that x̄ in Eq. (6c) is unknown. To overcome
this we will follow the method proposed in [2].

Since the system is observable, Of has full column rank
so that there exists a matrix H ∈ Rn×fny such that
rank(HOf ) = n. Hence T = HOf is a square (n × n)
non singular matrix. In fact if H is randomly generated, then
the required rank condition is satisfied with probability one.
But H can be chosen in many other ways. For example,
if the system to be identified is MISO, then observability
implies that the n first rows of Of are linearly independent
so that H = [In 0n×(f−n)] is a valid choice. In the MIMO
case, if a set of rows of Of indexed by {i1, . . . , in} is
known to be linearly independent beforehand, then H =
[ei1 · · · ein ]> with ei ∈ Rfny the i-th canonical basis
vector, fulfills the desired rank condition.
By a change of state coordinates, let us define a new state x̃
as

x̃ = T x̄.

Accordingly, the system realization becomes (Ã, B̃, C̃, D̃)
with Ã = TAT−1, B̃ = TB, C̃ = CT−1, D̃ = D.
Multiplying (6c) by H yields

x̃ = Hp−HTfq. (7)

On the other hand, observe from (6c) that

p = Of x̄+ Tfq = Õf x̃+ Tfq

where Õf = OfT−1. Inserting (7) into the foregoing
expression of p leads to

p = Mϕ (8)

with

M =
[
Õf

(
I − ÕfH

)
Tf
]
∈ Rfny×(n+fnu) (9)

ϕ =

[
Hp
q

]
∈ Rn+fnu . (10)

In (8) the vectors p and ϕ are known ; the parameter matrix
to be estimated is the structured matrix M . It can be usefully
remarked that (8) results from (6c) by a multiplication on the
left by the projection matrix I − ÕfH .



B. Adaptive identifier

From the equation (8) derived above, we can proceed
with the estimation of the matrix M . We use the recursive
least squares method. At any time t, the estimated parameter
matrix is obtained by

M(t) = arg min
M

Vt(M)

where

Vt(M) =
1

2
e−αt tr

[
(M −M0)P−10 (M −M0)>

]
+

1

2

∫ t

0

e−α(t−τ)

r(τ)2
‖p(τ)−Mϕ(τ)‖22

where α > 0 is a design parameter ; r(τ)2 ≥ 1 is a nor-
malizing factor which is upper-bounded, P0 is a symmetric
positive-definite matrix, M0 = M(0) is the initial value of
M(t), tr refers to matrix trace operator. Setting the gradient
of Vt(M) to zero and differentiating the resulting solution
with respect to time yields the continuous-time recursive
least squares estimator :

Ṁ =
(p−Mϕ)ϕ>P

r(t)2
, M(0) = M0 (11)

Ṗ = αP − Pϕϕ>P

r(t)2
, P (0) = P0 � 0 (12)

Here the notation P0 � 0 means that P0 is positive-definite.
Simulating (11)-(12) provide an estimate of the matrix M at
any time. Now the question to be addressed is how to get
back to the system matrices and the state. This can be done
by exploiting the structure of M as follows.
Consider partitions of M in the forms

M =

M11 M12

M21 M22

M31 M32

 , M11 ∈ Rny×n,M31 ∈ Rny×n,

M =
[
M1 M2

]
, M1 ∈ Rfny×n.

Then we can compute the system matrices by the formulas

C̃ = M11, Ã =

[
M11

M21

]† [
M21

M31

]
. (13)

Estimation of B̃ and D. We are left with estimating B̃ and
D. To this end, note that the system output can be expressed
as

y(t) =
[
C̃eÃt Ψ(t) u(t)> ⊗ Iny

] x̃0
vec(B̃)
vec(D)

 (14)

where the matrix Ψ(t) is defined by

Ψ(t) =

∫ t

0

u(τ)> ⊗
[
C̃eÃ(t−τ)]dτ.

Indeed, it is easy to see that Ψ obeys the following differen-
tial equation

Ψ̇(t) = Ψ(t)
[
Inu ⊗ Ã

]
+ u(t)> ⊗ C̃. (15)

Hence by using the pair (Ã(t), C̃(t)) delivered by (13) the

matrix Ψ(t) can be generated at any time t.
Writing Eq. (14) in the linear regression form

y(t) = C̃eÃtx̃0 + Φ(t)θ, (16)

with

Φ(t) =
[
Ψ(t) u(t)> ⊗ Iny

]
(17)

θ =
[
vec(B̃)> vec(D)>

]>
, (18)

we can derive a recursive least squares algorithm for estima-
ting θ as follows,

θ̇ = QΦ>
(y − Φθ)

ρ(t)2
, θ(0) = θ0 (19)

Q̇ = βQ− QΦ>ΦQ

ρ(t)2
, Q(0) = Q0 � 0 (20)

where ρ(t)2 = 1 + tr
(
Φ(t)Q(t)Φ(t)>

)
.

Estimation of the state. The state is obtained as

x̃ = H(p− Tfq).

This is indeed a filtered version of the transformed state Tx
since x̃ = F (s)(Tx). Note that x̃ might be more desirable
in practice than the state Tx for the following reason. Since
the noise spectrum is generally located in a high frequency
range, if the filter F (s) is properly chosen, then x̃ is likely
to contain less noise than Tx. But in case one is interested
in the state Tx, note that it can be generated by constructing
an observer based on the identified realization (Ã, B̃, C̃, D̃).

IV. EXPONENTIAL CONVERGENCE

In this section, we prove exponential convergence of the
recursive identifier (11)-(12) and (19)-(20). To proceed, we
need to introduce some specific definitions of persistence of
excitation and sufficiency of richness.

Definition 1 (persistence of excitation): A locally inte-
grable signal ϕ : R+ → Rd is said to be persistently exciting
(PE) if there exist constant numbers α1, α2, T > 0 and
t0 ≥ 0 such that

α1I �
∫ t+T

t

ϕ(τ)ϕ(τ)>dτ � α2I ∀t ≥ t0.

Here the notation S � R is used to mean that R − S is
positive semi-definite.

Inspired by [10], we also define sufficiency of richness of
an input signal as follows.

Definition 2 (Sufficiency of richness): A smooth signal
u : R+ → Rnu is said to be sufficiently rich (SR) of order
k if
• u(i)(0) = 0 for i = 0, . . . , k − 1 and
• for any γ > 0, the signal ūk ∈ Rknu defined by

ūk =
1

(s+ γ)k
[
u> u̇> · · · (u(k−1))>

]>
is PE.

It can be shown that if u is SR of order k, then u is also SR
of order ` for any ` ≤ k.



Now we relate sufficiency of excitation of the input and
persistence of excitation of the state under controllability
assumption.

Lemma 1: Let x ∈ Rn be a signal generated by

ẋ = Ax+Bu, x(0) = 0 (21)

where it is assumed that A is Hurwitz and (A,B) is
controllable. Then the signal x is PE if u is sufficiently rich
of order m where m = deg(mA(λ)), with mA(λ) denoting
the minimal polynomial of A.

Proof: Let m = deg(mA(λ)) and mA(λ) = λm +
cm−1λ

m−1 + · · ·+c1λ+c0. Differentiating m times the first
equation in (1) yields x(m) = Amx + Cm(A,B)um, where
um is defined from u using the notational convention (2) and
Cm(A,B) = [Am−1B · · · AB B]. By definition of the
minimal polynomial mA(A) = 0 so that Am = −c0I −
c1A − · · · − cm−1A

m−1 = −(c> ⊗ Im)Om(A, I), where
c = [c0 · · · cm−1]>. It follows that

x(m) = −(c> ⊗ Im)Om(A, I)x+ Cm(A,B)um

On the other hand, we have

xm = Om(A, I)x+ Tm(A,B, I, 0)um

with xm = [x> ẋ> · · · x(m−1)
>

]> and Tm(A,B, I, 0)
defined similarly as in (3). We get after some calculations,

x(m) + cm−1x
(m−1) + · · ·+ c1ẋ+ c0x = Cm(K ⊗ Inu)um

(22)
where

K =


1
c1 1
c2 c1 1
...

...
. . .

. . .

cm−1 cm−2 · · · c1 1

 .
Let γ > 0 be an arbitrary number and ūm(t) = 1/(s +
γ)mum(t). By applying the Laplace transform to (22), it
follows that 2

x(t) =
(s+ γ)m

mA(s)
Cm(K ⊗ Inu)ūm(t)

Since (A,B) is controllable, Cm is full row rank. As a
consequence, Cm(K ⊗ Inu) is also full row rank because
K ⊗ Inu is a square non singular matrix. We can therefore
apply a similar reasoning as in [10, Theorem 4.1,Theorem
4.2] to conclude.

A. Convergence of the (A,C)-estimates

To prove convergence of matrices Ã and C̃ we must
prove the convergence of matrix M . So, let us start with
the following proposition.

Proposition 1: Assume that the matrices A and Λc from
(1) and (6) are Hurwitz. If the pair (A,B) of system (1) is
controllable and the input u is SR of order f +m, then the
signal ϕ defined in (10) is PE.

2. There is a slight abuse of notation here : time and Laplace variable
s are simultaneously used.

Now we state the exponential convergence result of M
towards the true value Mo.

Theorem 1 (Exponential convergence): Let Assumptions
A1 and A2 hold. If the input u in system (1) is sufficiently
rich of order f +m, then M defined in (11)-(12) converges
exponentially fast to Mo.

Proof: The proof is similar to the proof of Corollary
4.3.2 in [6].

B. Convergence of the (B,D)-estimates
To study the convergence of (19)-(20), we may need

some more notations. For the sake of clarity, denote with
(Ão, B̃o, C̃o, D̃o) the ”true” realization of the system (with
respect to the same basis as the estimated one). Indeed such
a realization is obtainable from any other ”true” minimal
realization (A,B,C,D) by the formulas

Ão = (HOf (A,C))A(HOf (A,C))−1, B̃o = (HOf (A,C))B,

C̃o = C(HOf (A,C))−1, D̃o = D.
(23)

It must be noted that in spite of the appearance, for a
given matrix H , the expressions (Ão, B̃o, C̃o, D̃o) in (23)
are independent of any specific realization. Pose Φo(t) =
Φ(t, Ão, C̃o), that is, Φo(t) is the matrix arising from (15)-
(17) if the true matrices were used for the generation of
Ψ. Similarly, let Φ(t) = Φ(t, Ã(t), C̃(t)). By letting θo =[
vec(B̃o)> vec(Do)>

]>
, define the estimation error as

e(t) = θ(t)− θo, where θ(t) is defined by (19)-(20). Then

ė = −QΦ>Φ

ρ2
e+ v (24)

with

v =
QΦ>

ρ2

[
C̃oeÃ

otx̃0 + (Φo − Φ) θo
]
. (25)

If we can prove that
(i) the homogeneous part of (24) is exponentially stable

and
(ii) v(t) vanishes as t→∞

then, we can conclude on the convergence of the estimation
error e towards zero. This argument is supported by the
following lemma (see, e.g., [4, chap 4]).

Lemma 2: Consider a time-varying system

ż(t) = A(t)z(t) + v(t)

with exponentially stable homogeneous part ż(t) = A(t)z(t).
Assume that v(·) is bounded and limt→∞ v(t) = 0. Then
limt→∞ z(t) = 0.
By a similar reasoning as in the proof of Theorem 1, proving
assertion (i) above boils down essentially to showing that Φ
is PE, which we do in Lemmas 3 and 4 below.

Lemma 3: Let Assumptions A1–A3 hold for system (1)
and let u be sufficiently rich of order m. Then Φo =
Φ(t, Ão, C̃o) defined as in (15)-(17) is PE.

Proof: Let F ∈ Rn×nu , G ∈ Rny×nu be nonzero
matrices and let

θ =
[
vec(F )> vec(G)>

]>
.

We first show that for a given θ with ‖θ‖2 = 1, w(t) ,
Φo(t)θ is PE with lower bound α1(θ) > 0. The so-defined



w is indeed the output of the following system{
ż = Ãoz + Fu, z(0) = 0

w = C̃oz +Gu
(26)

Without loss of generality, we can assume that the realization
(z, Ão, F, C̃o, G) is minimal 3 with state dimension d ≤ n.
Note that if w is PE when d = n, then it will also be PE
when d < n. It is therefore enough to study the case d = n.
Arguing as in the proof of Lemma 1, it can be shown that

w(t) =
(s+ γ)m

mA(s)
Ω(s)ūm(t)

where

Ω(s) = C̃oCm(Ão, F )(K ⊗ Inu) +mA(s)(e>1 ⊗G)

with e1 = [1 0 · · · 0]>. The rest of the proof consists
in applying [10, Theorem 4.2]. For this purpose, we must
verify that Ω(s) is full row rank, that is, no γ can be found
such that γ>Ω(s) = 0 for all s. This follows easily from
the controllability property of (Ão, F ) and the full row rank
assumption on C̃o.
We have hence shown that for any nonzero θ with ‖θ‖2 = 1,
w(t) = Φo(t)θ is PE, that is, there are T, t1 and α1(θ) > 0
and α2 > 0 such that

α1(θ)I �
∫ t+T

t

w(τ)w(τ)>dτ � α2I ∀t ≥ t1.

As a consequence, by taking the trace, we get θ>R(t)θ ≥
α1(θ)nθ > 0 for all t ≥ t1, where nθ is the dimension of θ
and

R(t) =

∫ t+T

t

Φo(τ)>Φo(τ)dτ.

On the other hand,

inf
t≥t1

θ>R(t)θ = inf
t≥t1

λmin[R(t)]‖θ‖22 ≥ α1(θ)nθ.

It follows that inft≥t1 λmin[R(t)] >
nθ infθ 6=0,‖θ‖2=1 α1(θ) > 0 so that Φo is PE.

Under the conditions of Theorem 1 we know that
(Ã(t), C̃(t)) converges exponentially fast to (Ão, C̃o) as
t→∞. We then call rate of convergence the largest number
c such that

sup
k∈N

∥∥∥C̃(t)Ã(t)k − C̃o(Ão)k
∥∥∥
2
≤ λe−ct (27)

for a certain constant λ > 0. Here, the notation ‖·‖2 refers
to matrix 2-norm (largest singular value).

Lemma 4: Let Assumptions A1 and A2 hold for system
(1) and let u be sufficiently rich of order at least f +m. If
the rate of convergence defined in (27) satisfies c > 1, then
Φ = Φ(t, Ã(t), C̃(t)) is PE, i.e., there exist T, β1, β2 > 0
such that

β1I �
∫ t+T

t

Φ(τ)>Φ(τ)dτ � β2I.

for any t larger than a certain T1.

3. Indeed since F 6= 0 one can always reduce the considered realization
to a minimal one.

We turn now to checking assertion (ii), that is, we question
whether v defined in (25) may vanish as t→∞.

Lemma 5: Under the assumptions of Lemma 4, it holds
that limt→∞ v(t) = 0.

V. SIMULATION

As mentioned in Section II our goal here is to give a linear
model from the knowledge of outputs and inputs. In other
words, the determination of the model (1) matrices A, B, C
and D in an arbitrary basis. To illustrate the performance of
the proposed identification algorithm, we estimate the MIMO
linear system described by the following matrices :

A =


−1.4 0.3 −0.6 −0.3

0.3 −0.9 −0.9 0.1
−0.6 −0.9 −2.6 −1.0
−0.3 0.1 −1.0 −1.8

 ,

B =


0 0
−0.4 1.3
0.6 0.2
0 0.6

 ,
C =

[
0.9 0 0 1.3
−1.1 −0.8 0.9 0.4

]
, D =

[
0.8 −1.5

0 0

]
.

A white noise was selected as an input signal u(t) which is
sufficiently rich in frequency and the algorithm initial values
are given as : M(0) = 0, θ(0) = 0, P (0) = I , ψ(0) = 0
and Q(0) = I .

We recall that the algorithm is composed of two parts.
The first part is given by Eqs (6a)-(6b) and (11)-(12). The
second part is given by Eqs (15), (19) and (20) ; this latter
estimates (B̃,D)-matrices once the first part of the algorithm
has converged. The matrix H used to calculate the vector ϕ
is generated in a random way.

The state basis of the identified realization is not ne-
cessarily the same as that of the real system. It follows
that the estimated matrices are not numerically identical but
have common characteristics such as eigenvalues that are left
unchanged under a similar transformation. Fig. 1 shows the
convergence of the matrix Ã eigenvalues to those of the true
matrix A. It can be seen that estimated and true eigenvalues
coincide perfectly in the noise-free scenario. Fig. 2 is the
bode diagram of the transfer function between the first output
and the first input ; it shows that the estimated frequency
spectrum converges perfectly to the real one and the same can
be seen for the phase diagram. The expression Õf B̃ = OfB
is also invariant through a similar transformation and is used
to compute the error norm shown in Fig.3 and 4. The relative
error norm

εr =

∥∥Õf B̃ −OfB∥∥F
‖OfB‖F

vanishes in Fig.3 which means that the first f Markov
parameters of the system are well estimated and in Fig.4
it differ a little in the presence of a moderate amount of
noise.



Fig. 1. Ã eigenvalues convergence without output noise (α =
4.10−1, β = 8.10−2).

Fig. 2. Bode diagram of output 1 input 1 transfer function

Fig. 3. Error norm without noise (α = 4.10−1, β = 8.10−2).

Fig. 4. Error norm εr with output noise of 50 dB (α = 10−2, β =
8.10−3).

VI. CONCLUSION

In this paper, we have developed a new identification
algorithm for adaptively identifying linear continuous-time
MIMO systems in state-space representation. The main chal-
lenges with such a problem are (i) estimate time derivatives
of input-output signals (ii) provide a cheap update process for
the system matrices while the state is unknown (iii) analyze
convergence of the whole algorithm. The contribution of
the paper lies essentially in the last two points. Simulation
results tend to show that the algorithm performs very well
in a deterministic context. However further work might be
needed to strengthen its robustness to noise. In particular, the
H-matrix based projection step can probably be improved by
choosing the matrix H to be the transpose of an off-line prior
estimate of the extended observability matrix Of . Also, there
is still a room for improvement concerning the filtering of
the input-output signals.
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