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Abstract

We propose a new stochastic global optimization method targeting protein docking problems. The 

method is based on finding a general convex polynomial underestimator to the binding energy 

function in a permissive subspace that possesses a funnel-like structure. We use Principal 

Component Analysis (PCA) to determine such permissive subspaces. The problem of finding the 

general convex polynomial underestimator is reduced into the problem of ensuring that a certain 

polynomial is a Sum-of-Squares (SOS), which can be done via semi-definite programming. The 

underestimator is then used to bias sampling of the energy function in order to recover a deep 

minimum. We show that the proposed method significantly improves the quality of docked 

conformations compared to existing methods.

I. Introduction

Proteins are macromolecules found in abundance within the cell that play a key role in a 

variety of cellular functions such as metabolic control, signal transduction, immune 

response, and gene regulation. To that end, proteins interact with each other and other 

molecules. At each interaction at least two molecules are involved: a receptor and a ligand. 

The receptor is typically a protein within the cell or on the cell membrane. The ligand can be 

another protein or a smaller molecule (e.g., a drug) that binds to a specific site on the 

receptor.

The prediction of the 3-dimensional (3-D) structure of a receptor-ligand complex is known 

as the protein docking problem and is an important problem in computational structural 

biology. It is a critical problem as it is the basis of protein structure design, homology 
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modeling, and helps elucidate protein association. Experimental techniques, such as X-ray 

crystallography or Nuclear Magnetic Resonance (NMR), do provide 3-D structure 

information, but they are usually expensive, time-consuming and may not be universally 

applicable to short-lived molecular complexes. Therefore, computational methods are very 

much needed and have attracted considerable attention over the last two decades.

We know from the principles of thermodynamics that proteins bind to each other in a way 

that minimizes the Gibbs free energy of the bound complex. In this regard, the protein 

docking problem can be seen as a control problem in which one protein – the ligand – is 

“driven” to approach and dock with the fixed receptor. Considering both molecules as rigid, 

the control variables that describe the motion of the ligand take values in the space of rigid-

body motion represented by the Special Euclidean group SE(3). An element of SE(3) is of 

the form , where  describes the coordinates of a point on the ligand with 

respect to an inertial frame reference on the receptor, and Ω is a rotation matrix (in SO(3) – 

the special orthogonal group) that specifies the orientation of the ligand with respect to same 

inertial frame on the receptor. To represent these rotations, one can take the tangent space of 

SO(3) at the identity matrix I, denoted by so(3), and represent a point on the tangent space 

by  – the so called exponential coordinates (see [1], [2] for a more extensive 

discussion of this representation).

The binding free energy function docking methods seek to minimize can be expressed as a 

function of  and denoted by . This energy function is composed of 

several force-field energy terms (e.g., Lennard-Jones potential, a solvation term, a hydrogen-

bonding term, a Coulomb potential, etc.) that act in different space scales. This leads to 

having multiple deep funnels and numerous local minima of less depth over its domain, 

thereby, making global optimization quite challenging.

Our work in this paper develops a new stochastic global optimization method which we call 

Subspace Semi-Definite programming-based Underestimation (SSDU). It targets what is 

known as the refinement problem which amounts to globally minimizing f but over a certain 

limited part of the conformational space. Our approach follows our earlier work [3], [4] and 

solves a semi-definite programming problem to find general convex underestimators 

approximating the envelope spanned by local minima of the energy function. We use this 

underestimator to guide us where to continue to randomly search and generate new local 

minima which are then used to refine the underestimator. The main novelty we introduce in 

this paper is that optimization over the 6-D space of  is effectively reduced to a 3-

D subspace by using space dimensionality reduction techniques. The underestimator and 

random sampling of the energy function are constrained in this subspace, hence, the name 

SSDU. This idea is motivated by our recent work that studied the behavior of two different 

force-fields and established the same dimensionality-reduced structure [5]. We develop a 

general form of SSDU that allows for arbitrary convex polynomial underestimators. Our 

numerical results show that SSDU outperforms existing docking refinement methods.
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Notation: Vectors will be denoted using lower case bold letters and matrices by upper case 

bold letters. For economy of space we write v = (v1,...,vn) for . Prime denotes 

transpose. For a matrix P,  indicates positive semidefiniteness.

II. Background on docking methods

The most successful docking methods rely on a multistage procedure that begins with a 

rigid-body global search on a grid sampling a huge number of docked receptor-ligand 

conformations. The energy function is approximated by a correlation function and energy 

evaluation for all these samples is done leveraging the Fast Fourier Transform (FFT). In our 

work, the initial sampling is conducted using the automated server ClusPro 2.0 1 which is 

based on a docking program called PIPER [6]. PIPER provides a set of conformational 

clusters – each can be viewed as an ensemble of receptor-ligand conformations that needs to 

be further refined by a process we call Protein Docking Refinement. The main objective of 

refinement is to locate the global energy minimum within the cluster, sampling and 

optimizing off-grid but within the conformation space defined by the cluster. Rather than 

providing a single conformation as an output of the refinement procedure, what is typically 

done is to fix the size of the cluster but allow members to exit as new conformations with 

lower energy values get generated and added to the cluster in the process of refinement. In 

this setting, the common metric used to assess the performance of a refinement algorithm is 

the percentage of “accurate” predictions (say below 5Å RMSD to the native) within the 

cluster produced at the end of the refinement. Thus, while refinement does not use the native 

structure (known using experimental methods such as X-ray crystallography), scoring of 

refinement algorithms is done by assessing how “close” the cluster is to that structure.

III. Related work and key contributions

The docking refinement problem has received significant attention since computational 

methods emerged in the field of structural biology. However, it is still a very challenging 

problem due to the complexity of the energy landscape of protein-protein interactions. Many 

docking methods use grid-based search algorithms [7], [8], [9] and assume proteins are 

rigid. Several other works apply the idea of a progressively improving approximation of the 

energy function by using a Monte Carlo Minimization (MCM)-based approach [10]. In this 

fashion, the algorithm iteratively performs rigid-body and flexible motions of the ligand 

towards the receptor for each input conformation. Similar approaches which consider the 

flexibility of protein interfaces and employ a powerful local minimization step in each 

iteration of an MCM-based search have been explored in our earlier work [11], [12].

Another recent approach to the docking problem uses the funnel-like shape of the energy 

function in order to locate the lowest free energy basin and perform a search in that area. 

The method proposed in [13] considers the dominant driving force-fields of the protein 

binding process, which allows for an efficient selection of a downhill path on the evolving 

receptor-ligand-free energy landscape. Later the idea of using convex canonical quadratic 

underestimators to approximate the envelope spanned by the local minima of the energy 

1http://cluspro.bu.edu/login.php.
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function was introduced in the Convex Global Underestimator (CGU) method [14]. The 

Semi-Global Simplex (SGS) method [15] uses an exhaustive multistart Simplex search of the 

protein surface. The main limitation of CGU in higher dimensions has been demonstrated in 

[3] to be the restricted class of underestimators it uses. In [3] and [4], the Semi-Definite 

programming-based Underestimation (SDU) method was proposed which addresses all the 

aforementioned issues. SDU also uses a quadratic convex function to underestimate the 

envelope spanned by the local minima, but it considers the class of general convex quadratic 

functions for underestimation and uses a biased exploration strategy guided by the 

underestimator.

The key contributions of our work in this paper are:

(i) Dimensionality reduction: we have shown that optimization over the 6-D space 

(as in [14] and [15]) or 5-D space (as in [3] and [4]) can be effectively reduced 

to a 3-D space by applying Principal Component Analysis (PCA) to the 

refinement input structures.

(ii) Introducing a more general class of convex functions (convex polynomials) for 

underestimation.

IV. Methodology

SSDU consists of three key components: (1) dimensionality reduction via PCA, (2) 

underestimation using general convex polynomials, and (3) re-sampling around the global 

minimum indicated by the convex underestimator. In this section we will discuss these steps 

in detail.

A. Dimensionality reduction

As described earlier, a conformation is a 6-D vector ψ = (ρ, ω) where  is the 

translation vector from the ligand center of mass to the receptor center of mass and ω = 

(w1,w2,w3) are the exponential coordinates that define the exponential map from so(3) to 

SO(3) (see details in [4], [5]). For the translation vector ρ = (r1,r2,r3) we use spherical 

coordinates and express it as (r,a,b) where r = ∥ρ∥ is the length of the vector and a,b specify 

the exponential coordinates of the azimuth angle (between the projection of ρ on the r1r2 

plane and the r1 axis) and zenith angle (between ρ and the r3 axis) of the translation vector. 

In particular, if θ and ϕ are these angles, (a,b) = (−sin θ · ϕ,cosθ ϕ). With this 

parametrization, and by re-using the ψ notation, we can write

(1)

We also re-use f to denote the energy function we wish to minimize, viewed now as a 

function of these 6 variables.

A first step towards dimensionality reduction is to observe that in low-energy clusters like 

the ones we wish to refine, the center-to-center distance r between a ligand and the receptor 

does not exhibit significant variation (see also [4]). Thus, removing r from ψ and redefining 

f , we are left with optimizing f (x) over
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(2)

It turns out that for protein complexes there exist further directions along which significant 

variation in coordinates can be ruled out [5]. Essentially, the biophysical explanation is that 

as the ligand gets in contact with the receptor and parts of the ligand enter in crevices on the 

receptor, there are fewer directions along which the ligand can move or rotate. We propose 

to use PCA to identify these restrictive directions and eliminate them from the free energy 

minimization problem. To that end, let us sample f and generate K local minima:

Let  be the mean of the K local minima in the 5-D subspace. Let 

be the matrix whose columns are x(i) − x̄, i = 1,...,K. We compute the eigen decomposition

(3)

where Σ diagonal matrix containing the eigenvectors of XX′ and the column of 

are the corresponding eigenvectors. The transformation z(i) = W′ (x(i) − x̄) transforms the ith 

sample point into the principal coordinates.

We then observe [5] that in most protein-protein complexes the first 3 eigenvalues are 

substantially larger than the remaining two, implying that the principal coordinates z1,z2,z3 

show much more variation than z4,z5. Therefore, we will construct the semidefinite 

underestimator in this 3-D subspace (the permissive subspace). Specifically, we let

(4)

be the new coordinates of the ith sample point in the permissive landscape.

B. Convex polynomial underestimator

Let U(ϕ) be a degree 2d polynomial in n variables . It has  coefficients. 

Let H(ϕ) = ∇2U(ϕ) be the Hessian matrix evaluated at ϕ. It is well-known that U(·) is 

convex if and only if H(ϕ) is positive semidefinite for all ϕ. As each entry of H(ϕ) is a 

polynomial, ensuring the semidefiniteness of H(ϕ) is difficult. In fact, even testing whether a 

degree four polynomial is convex or not is strongly NP-hard [16]. Therefore, we appeal to 

the notion of SOS-convexity, which is a computationally tractable sufficient condition for 

convexity [17]. A similar approach for least squares fitting of a convex polynomial to a set 

of points was used in [18]. In particular, with  being a vector of variables, p(ϕ,ξ) = ξ

′H(ϕ)ξ is a scalar polynomial of degree 2d in 2n variables (ϕ,ξ). Consider the vector of all 

monomials constructed by multiplying ξj's with ϕ-monomials of degree up to d − 1
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(5)

The length of v is .

The following theorem converts the problem of finding a convex polynomial to that of 

finding a positive semidefinite matrix.

Theorem IV.1 If there exists a matrix  such that v′Pv = p(ϕ,ξ) = ξ′H(ϕ)ξ, then the 

polynomial U(·) is convex.

Proof: Let P = VΛV′ be the spectral decomposition of P. Consider the vector of monomials 

. Clearly p(ϕ,ξ) = w′w is now a polynomial in a sum-of-square form and thus 

nonnegative for all ϕ,ξ. It follows that p(ϕ,ξ) = ξ′H(ϕ)ξ ≥ 0 for all ϕ,ξ, which implies that 

the Hessian matrix  for all ϕ. We conclude that U(·) is convex.

The condition in the above theorem is equivalent to

A tight convex polynomial underestimating the sample points (ϕ(i), f (i) = f (ϕ(i))), i = 1,...,K) 

can thus be found by solving the following semidefinite program:

(6)

where H(ϕ) is the Hessian of the polynomial U(·).

In the case of SSDU, U(·) is a polynomial in n = 3 variables and degree 2d = 4 with 

 coefficients:
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The vector of monomials has a length of  elements:

The constraint ξ′H(ϕ)ξ is SOS in (ϕ,ξ) is equivalent to , where v′Pv = p(ϕ,ξ) = ξ

′H(ϕ)ξ. By matching the coefficients, we can relate the elements of P with the coefficients of 

U(ϕ). In this case there are 60 such equality constraints. We can now specialize the SDP in 

(6) as follows:

(7)
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We use the standard semidefinite solver CSDP [19] to solve the above SDP program. Note 

that unlike the quadratic underestimator, the minimum of the general convex polynomial 

cannot be computed in closed form; instead, it can be found using Newton's method.

C. Sampling

Suppose the global minimum of the underestimator obtained in the previous section is ϕP. 

Even if the constructed convex underestimator reflects the general funnel structure of f (·) 

near the native conformation, locating the global minimum is still very difficult because van 

der Waals interactions create many local minima around the native conformation. Our 

strategy is to sample more conformations and explore the vicinity of ϕP. More specifically, 

let σ1 ≥...≥σ5 be the diagonal elements of SSS in (3); they are proportional to the variance 

along each principal direction. We generate a set of K̄ random samples 

, such that each dimension  has independent uniform distribution in 

the range of , j = 1,...,5, for some constant β. Transforming from the principal 

coordinates to the original coordinates we obtain the new sample points

where zP is obtained by appending the prediction for ,  to ϕP. Since the sample variance 

in the z4,z5 subspace is small, we can obtain a good approximation by taking the sample 

mean, i.e.,  and . Finally, to get back to the 6-D 

conformational space, we append the mean center-to-center distance r in (1) to x ̃(l) and 

generate the new sample conformation

(8)

Making the sampling range of s(l) proportional to the variance ensures good coverage of the 

conformational space and preserves the sample distribution.

D. The SSDU algorithm

We summarize the SSDU in Algorithm 1.

V. Numerical results for test functions

In this section we demonstrate that a higher degree convex polynomial is able to better 

capture more complex free energy-like functions. The test function we use is similar to that 

in [15] except the f1 component is now a degree four polynomial:
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The domain of the test function is 3-D just like the SSDU algorithm. We set the parameters 

to be a = (1,0.1,0.1), b = (2π,3π,4π), c = (1,2.5,2.5), γ = 10π. The parameter A determines 

the amplitude of the high-frequency “noise.” Notice the global minimum is at the origin. We 

sample 100 points uniformly in the cube [−7,2]×[−7,2] × [−7, 2], find a local minimum for 

each of these sample points, and use them as input to the underestimators. Figure 1 shows an 

example of such a test function along with degree two and degree four underestimators 

when A = 30. For different A values, we compare the performance of the degree four and 

degree two underestimators in Table I. We can see that the degree four underestimator can 

better capture the funnel structure of the test function in the presence of noise, hence, 

predicting minimum values that are closer to the true global minimum.

VI. Protein docking refinement results

In this section we show that our proposed algorithm significantly improves the prediction 

quality of protein docking refinement. Our test set consists of 10 protein complexes that 

belong to the category of Others as listed in the first column of Table II. Protein complexes 

in this category exhibit complex energy surfaces and multiple deep funnels around the native 

structure and they are known to be difficult cases in protein docking refinement. Our protein 

docking procedure is applied to the (known) unbound receptor and ligand structures. The 

input to refinement is a low energy cluster of conformations obtained from PIPER as 

described in Section I. The number of input conformations to the refinement algorithms is 

shown in the second column of Table II, which is 1,000 for all complexes. Recall that we 

consider a conformation “accurate” if it is within 5 Å to the native conformation. The 

number of “accurate” conformations in the input is shown in the third column of Table II.

The refinement algorithms we compare in this paper are two existing methods: an MCM-

based algorithm (MCM) [12] and SDU [3] against two proposed methods: SSDU with 

quadratic underestimator (SSDU2) and SSDU with degree four underestimator (SSDU4). As 

part of our implementation, we have added a local minimization subroutine to all algorithms 

in order to resolve the steric clashes at the protein interfaces and thus obtain more reliable 

energy evaluation. Specifically, for each sample conformation we first run a rigid-body 

energy minimization algorithm [1] which locally minimizes the position and orientation of 

the ligand with respect to the receptor. Then we run a side-chain positioning (SCP) 

algorithm [12] that solves a combinatorial optimization problem in order to re-position the 

amino acid residues at the interface of the receptor-ligand interaction. The SCP algorithm 

models the flexibility of the protein structures upon binding. Such local minimization steps 

have been shown to improve protein docking refinement.

For the energy function terms referenced thus far, we have used a state-of-the-art high-

accuracy docking energy potential, which combines force-field and knowledge-based energy 

terms [20], [21], [22]. In particular, interaction energies are computed as a weighted sum 

(w's are the corresponding weights):
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where EVDW is the Lennard-Jones potential, ESOL is an implicit solvation term [23], EDARS 

is a statistical potential [24], EHB is a knowledge-based hydrogen bonding term, ECOUL is 

the Coulomb potential, and ERP is a statistical energy term associated with a specific 

selection of rotamers from the backbone-dependent rotamer library [25].

In each iteration of SDU, SSDU2 and SSDU4 we re-sample 1,000 conformations around the 

underestimator minimum. In Table II we report the number of “accurate” conformations out 

of 1,000 samples for each algorithm upon convergence. In practice we notice SDU, SSDU2 

and SSDU4 can generally converge after two iterations whereas MCM typically needs many 

more iterations. Such ability to quickly make many “accurate” predictions is a tremendous 

advantage of these stochastic global optimization methods. We can see in Table II that for 

most of the complexes SSDU2 performs the best among the four methods (The most number 

of “accurate” prediction for each complex is shaded blue). SSDU4 gives the best prediction 

quality for 3 complexes. For 1b6c, however, SSDU4 returns no “accurate” prediction. This 

indicates that using a higher degree polynomial underestimator (SSDU4) can potentially 

over-fit the sampled data and thus be more susceptible to outliers. No method improves the 

initial input quality for the second complex 1azs, which represents a case of having multiple 

funnel structures near the native conformation. We can also see that SSDU2 outperforms 

SDU in all these complexes, which confirms the advantage of dimensionality reduction. 

Figure 2 illustrates that SSDU2 can accurately capture the funnel structure by fitting an 

underestimator in the reduced subspace as compared to SDU.

VII. Conclusions

We presented a new method for protein docking refinements with two main contributions. 

The first is dimensionality reduction; we have shown that better underestimators can be 

constructed to capture the energy landscape in the permissive subspace computed via PCA. 

The second contribution is to use higher degree SOS-convex polynomials instead of 

quadratic ones as underestimator; we pose this problem as solving a semi-definite program 

and demonstrate its advantage in test functions. Finally we show by experimenting on 

protein complexes that the proposed SSDU algorithms significantly improves refinement 

quality compared to previous methods.
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Fig. 1. 
A slice at the x1 = x2 = 0 plane of the test function and underestimators of degree four and 

two. The degree four underestimator approximates the test function more closely and 

predicts a global minimum value closer to the true value, which is the origin.
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Fig. 2. 
Refinement comparison of SDU and SSDU2 for 3d5s. The upper three plots show the 

evolution of SDU for 2 iterations. The bottom three plots show the evolution of SSDU2 for 

2 iterations. Each point in the figure is a conformation plotted by its RMSD to the native on 

the X-axis and its energy value on the Y-axis. The input conformations are the same for both 

methods. SSDU2 gives more “accurate” predictions as measured by RMSD.
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TABLE I

Distances from the true global minimum to the predicted minimum by degree four and degree two 

underestimators at different noise levels. Averaged over 20 runs. The degree 4 underestimator predicts a 

minimum closer to the true value.

A = 10 A = 30 A = 50

Degree 4 1.1628 1.4381 1.4760

Degree 2 1.6526 1.9589 2.6754
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TABLE II

Refinement results for 10 systems with the number of accurate conformations out of the output samples for 

four different methods. For each complex the best performing method is shaded in blue.

Complex Total Initial MCM SDU SSDU2 SSDU4

1akj 1000 184 148 92 185 170

1azs 1000 721 570 176 510 270

1b6c 1000 435 511 81 655 0

lgrn 1000 234 170 90 558 184

lxqs 1000 149 101 66 222 52

1e96 1000 241 321 104 386 41

lsyx 1000 215 174 250 292 465

1xd3 1000 335 316 53 383 419

2cfh 1000 515 584 46 596 795

3d5s 1000 666 741 365 993 268
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Algorithm 1

SSDU Algorithm

1: Initialization: Starting from K̄ sample points perform local minimization to obtain K distinct local minima ψ(1),...,ψ(K) of f(·).

2: Dimensionality Reduction: For each sample point i reduce ψ(i) to x(i) in (2) then transform to ϕ(i) in (4) using PCA.

3: Underestimation: Solve the SDP in (7) to obtain the convex polynomial underestimator U(ϕ). Set the predictive point ϕP to be the minimizer 
of U(ϕ). Transform ϕP to ψP in the 6-dimensional conformational space.

4: Exploration: Generate random samples ψ(l); l = 1,...,K̄, in (8) based on the predictive point ϕP. Perform local minimization starting from ψ(l); 

i = l,...,K̄, to obtain a set of distinct local minima L = {ψ̂(1)
, ⋯ , ψ̂(K )} and let ψG = argminψ̂∈L f (ψ̂).

5: Termination: If ∥ψG – ψP∥ < ε or if there is no progress in reducing f(ψ) over the last few iterations then stop; otherwise go to Step 2.
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