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Abstract
We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem.
SCP is a crucial component of protein docking refinement, which is a key step of an important
class of problems in computational structural biology called protein docking. We model SCP as a
combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set
(MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to
solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed
solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein
complexes we demonstrate that our approach leads to more accurate docking predictions
compared to a baseline algorithm that does not solve the SCP.

I. INTRODUCTION
Proteins interact with each other or with other biochemical compounds to carry out some
cellular functions such as cell signaling, ligand binding, metabolic control and gene
regulation. At each interaction, at least two chemical entities are involved: a receptor
molecule and a ligand molecule that binds to the receptor. Based on thermodynamics
principles, proteins bind to each other in a way that minimizes the Gibbs free energy of the
complex. Thus, when a ligand binds to a receptor, the atomic coordinates of the whole
complex change such that the overall free energy of the complex attains its minimum value.
The prediction of the 3-dimensional (3-D) structure of a stable receptor-ligand complex is
known as the protein docking problem. Experimental techniques such as X-ray
crystallography and Nuclear Magnetic Resonance (NMR) can be used to observe such
structures, but they are expensive, time-consuming and not universally applicable. Hence,
using computational methods to solve such problems has drawn a lot of attention.

Our protein docking procedure, first, samples billions of docked receptor-ligand
conformations using either ClusPro 1.0 or ClusPro 2.0 servers [1], [2]. Next, the
conformations retained are clustered [3], and for each cluster, we find a conformation, called
cluster center. For each cluster, we pick the conformations whose Root Mean Squared
Deviation (RMSD) values of their atomic coordinates to the cluster center are less than 12 Å
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for further processing. The retained top conformations of each cluster are then refined using
a refinement technique such as Semi-Definite programming based Underestimation (SDU)
[4], [5] or Monte Carlo Minimization (MCM) [6], [7]. The main goal of this refinement is to
locate the global energy minimum within the regions of conformational space defined by the
different clusters. The output of the refinement protocol is a set of conformations which are
aimed to be the “good” predictions of the native structure.

Side Chain Positioning (SCP) is one of the key components of these refinement algorithms.
SCP enables the refinement algorithms to take advantage of the protein side chains’
flexibility to predict the lowest energy conformation. In this paper, we model SCP as a
combinatorial optimization problem and propose a distributed message-passing algorithm to
solve it. Our results show that the proposed algorithm improves the output of the refinement
algorithms noticeably, yielding conformations with lower energy and lower RMSD from the
true native conformation.

The remainder of the paper is organized as follows. Sec. II provides a basic introduction to
the SCP problem and formulates it as a quadratic integer programming problem. Sec. III
models SCP as a combinatorial optimization problem and presents our distributed message-
passing algorithm. In Sec. IV, we test the algorithm against a protein docking benchmark
set. Concluding remarks are in Section V.

II. SIDE CHAIN POSITIONING PROBLEM
A. Preliminaries and Background

Each protein molecule is composed of one or more peptides. Each peptide is a sequence of
unbranched chains of recurring building blocks called amino acid residues. There are 20
different types of amino acids and the number of residues in a peptide varies from tens to
hundreds. Each residue is a molecule composed of two parts, a backbone part and a side
chain.

When a ligand binds to a receptor, some conformational changes of the form of slight
displacements of the protein atoms are often observed at the interfacial residues that
decrease the energy of the complex. Ideally, one would like to predict the lowest energy
conformation of the receptor and ligand backbones and side chains. However, due to the
high complexity of modeling the backbone movement and its typically rigid structure, most
of the classical models keep the backbone fixed, while allowing the side chains to freely
move in space [8], [9]. Thus, SCP can be defined as a problem which takes fixed receptor
and ligand backbones and predicts the side chain conformations that minimize the overall
energy of the complex.

To model the flexibility of the side chains upon binding, let us first introduce the concept of
rotamers. Although the side chains may be able to move freely in space, they tend to occupy
only a finite number of more probable conformations in actual protein structures called
rotamers. The detailed information of all the rotamers of all different types of residues is
collected into massive data sets called rotamer libraries. For this study, we used the “2010
Smooth Backbone-Dependent Rotamer Library” [10].

It follows that SCP can now be rewritten as the following combinatorial optimization
problem: given a receptor-ligand complex with fixed backbones and flexible side chains, the
goal is to choose one rotamer for each side chain such that the overall energy of the complex
is minimized.
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B. SCP as a Quadratic Integer Programming
In this section, we present our SCP model and formulation. We adapt a framework similar to
[8] derived for protein folding applications.

Geometrically, the space of rigid-body motions in 3-D space is described in terms of the
members of the Special Euclidean group SE(3) expressing rigid body orientation and

position. An element of SE(3) is of the form ξ = (ρ, R) where  describes the
coordinates of the origin of a body with respect to an inertial frame reference and R is a 3 ×
3 real matrix denoting the orientation of the body with respect to the inertial frame
reference.

Let us denote by ξ ∈ SE(3) the position and orientation of the ligand with respect to the
receptor. Our SCP algorithm will select rotamers for all residues in the interface between the
receptor and the ligand. To focus on a single receptor-ligand conformation we fix ξ, and for
ease of notation we will suppress the dependence on ξ of the various quantities we define in
the sequel. Define  as the set of all receptor and ligand residues in the interface. The
interface of a receptor-ligand complex is the set of all residues in each molecule of the
complex whose Cα atom is within a small distance (10 Å in our work) from a Cα atom
located on the partner molecule. Let  denote the set of rotamers for each residue  and
denote by  the cardinality of .

Consider a feasible solution to the SCP problem, which is a set of rotamers that includes
exactly one rotamer ir from each interface residue . The overall energy E associated
with this set of rotamers can be decomposed as follows:

(1)

where E0 is self-energy of the two backbones, E(ir) is the energy of the interaction between
rotamer ir from residue i and the two backbones including the self-energy of the rotamer ir,
and E(ir, js) is the pairwise interaction energy between the selected rotamers ir and js, which
respectively correspond to the two different residues i and j.

Let us construct an undirected -partite graph  with node set ,

in which each , corresponds to the residue , and includes a node u for

each rotamer  with a weight equal to Euu = E(ir). For every pair of nodes  and

, we draw an edge with a weight equal to Euv = E(ir, js), where ir and js
are the rotamers corresponding to u and v, respectively. The SCP problem is equivalent to

selecting one node per  in order to minimize the total weight of the resulting subgraph and
can be formulated as the following Quadratic Integer Programming (QIP) problem:

(2)

where the decision variables yu are the indicator variables selecting the rotamer
corresponding to node u.

QIP problems are in the class of NP-hard problems. By merging the variables yu and yv into
yuv, and at the expense of a larger number of decision variables, one can turn (2) into an
Integer Linear Programming (ILP) problem. ILPs are also NP-hard, yet there exist good
solvers that can solve relatively small instances [9]. A Semi-Definite Programming (SDP)
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relaxation of (2) was developed in [8] and applied to protein folding. In general, SDP
relaxations of combinatorial optimization problems have been shown effective in a class of
hard problems. Another approach based on a Second Order Cone Programming (SOCP)
relaxation of (2) was developed in [11]. The main drawback of these (SDP or SOCP)
relaxations is that one ends up with a centralized algorithm, and can not take advantage of
task parallelism. In this paper, we propose a fully distributed algorithm which is
computationally more efficient than centralized algorithms.

III. METHODOLOGY
In this section, we first model SCP as a Maximum Weighted Independent Set (MWIS)
problem and then develop our distributed algorithm. The algorithm is similar to one from
our earlier work in [12], [13] which was developed in a different application context
(wireless networks). We introduce some modifications to suit the problem at hand.

A. Maximum Weighted Independent Set Formulation
1) Maximum Weighted Independent Set Problem—MWIS is a well-studied NP-hard
combinatorial optimization problem. The goal of the problem is to find the heaviest
independent set of nodes in a given undirected graph  with non-negative weights
on the nodes. A set is called independent if no two nodes in it are adjacent. We can
formulate MWIS as the following Integer Programming (IP) problem:

(3)

where  is the weight of node i, and xi is the indicator variable of selecting node
i.

2) SCP as a MWIS Problem—To re-formulate SCP as a MWIS problem, we construct a

new undirected graph  from  as we next describe.  consists of nodes vrs
for pairs of rotamers  and , i ≠ j, and nodes vrr for each rotamer . We
associate with vrs nodes an energy equal to E(r, s); this is the Ers edge weight in  or,
equivalently, the pairwise energy between the two residues with selected rotamers r and s,
respectively. We also associate with vrr nodes an energy equal to E(r), i.e., the residue-
backbone and residue self-energy corresponding to rotamer r. We then assign node weights
so that nodes with lower associated energy values have larger weights. To that end, we
define a parameter M which is greater than all the energy values, and we set the node
weights as follows: for nodes vrs, wrs = M − Ers > 0, and for vrr nodes, wrr = M − Err > 0.

Next we introduce the edges of  that are designed to identify conflicts between rotamers.
Specifically, an edge (vrs, vtw) ∈ ε if the choice of rotamers r, s, t, w has a conflict. This
conflict arises if there exist two different rotamers from the same residue in the set of {r, s, t,
w}. (It is not possible to have more than two conflicting rotamers in this set due to the
definition of the nodes). The construction of  guarantees that for each residue one and only
one rotamer can be selected.

From the construction of  and the discussion in this section the following result is
obtained.
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Theorem III.1 Consider a MWIS of the graph  with total weight W. Then the rotamers
associated with the nodes in the MWIS form an optimal solution to the SCP problem with
associated minimal energy equal to M − W.

B. A Distributed Algorithm for MWIS
Following [12] we will first solve the Linear Programming (LP) relaxation of (3) and then
use the optimal solution of the relaxation to estimate feasible ILP solutions. The LP
relaxation of (3) is derived from (3) by replacing the last (integrality) constraint with 0 ≤ xi ≤
1 for all i = 1, … , N. Such a problem can be solved efficiently by LP solvers, but in a
centralized fashion. Here however, we employ a fully distributed approach from [12] that
uses only local information at the graph nodes. The first phase consists of a coloring and a
gradient projection procedure, which can be performed in parallel. The second phase takes
the outputs of the first phase as its input, and estimates a feasible solution to the MWIS
problem.

The distributed algorithm proposed in [12] uses a coloring method from [14] which is
developed for a general unweighted graph. This coloring algorithm works well with the
whole protocol if the GP phase detects enough number of nodes from the solution set and
equivalently outputs enough number of xi’s with assigned values close to 1. In SCP
application, due to the specific graph structure that SCP modeling imposes, the GP phase is
not as successful as in the sensor network application reported in [12]. Thus, the coloring
phase plays a more significant role in finding the optimal solution in the SCP problem. We
modified the coloring algorithm of [14] with the some randomized heuristics in order to
enable the coloring phase to prioritize the nodes of graph G based on their weights.

1) Phase I.1: Coloring—The objective of the Coloring procedure is to color all nodes of
 using the minimum possible number of colors such that no two adjacent nodes share the

same color. In this work, we use the self-stabilizing algorithm proposed in [14] which can be
implemented in a distributed fashion. This algorithm needs to take one node as the special
node, i.e., the root, and to inform each node whether it is the root or not. The root is the first
node that the algorithm colors. Graph  can be colored with at most 2D colors [14], where
D is the degree of . This procedure can be done in a number of steps which is polynomial
in size of  [14]. The color assigned to node i is represented by an integer ci ∈ {1, … , 2D}.
Thus, the output of the coloring procedure is of the form of a vector c = {c1, …, cN}.

If node i is colored before node j, then ci ≤ cj and the priority of node i is more than node j.
These relational priorities are consequential in the estimation phase, and a good choice of a
coloring policy can improve the overall performance of the protocol. In this work we select
the node with the highest weight as the root, and we find this node in a distributed fashion as
described in [12].

The algorithm in [14] is designed for a general unweighted graph and does not use the
weights of the nodes in . We modify this algorithm with the following randomized
heuristic in order to improve the quality of the MWIS feasible solution our two-phase
algorithm obtains. Let  be the set of uncolored nodes of . Select the nodes in  which
account for the top 50% of the overall weight of  and let them form set . For each

node , compute . Then, shifting those values to ensure they are non-
negative, and normalizing by some normalization factor C we obtain

. Now, instead of the general approach applied in [14] to choose the

next node to color, we select one of the nodes of  with probability . This heuristic
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essentially filters out the low weight nodes at each run and increases the priority of heavier
nodes by coloring them earlier.

2) Phase I.2: Gradient Projection—The Gradient Projection (GP) procedure solves the
LP relaxation of (3) and its dual concurrently. The algorithm starts by adding a logarithmic
barrier function to the objective:

(4)

where ε is a positive constant. Viewing (4) as the primal problem, each primal variable is
associated with a node in . Let θ = {θij; (i, j) ∈ ε} denote the dual variables of the first set
of constraints in (4). Note that θij and θji are identical due to the undirected structure of .
Therefore, we can rewrite θ = {θij; (i, j) ∈ ε, i < j} so that each edge of  is associated with
one and only one dual variable. As shown in [12], the dual problem of (4) has the following
form:

(5)

with

(6)

where , and its unique maximizer xi(θ) ∈ [0, 1] is given
by:

(7)

It is not hard to verify that for any (i, j) ∈ ε:

(8)

and q(θ) is continuously differentiable. Employing a gradient projection method to solve the
dual we obtain the algorithm shown in Fig. 1, where [·]+ = max{·, 0}. At each iteration n of
this algorithm, x(n) and θ(n) denote the values of the vectors x and θ, γ, and is a pre-
specified step-size.

Theorem III.2 guarantees the convergence of the GP algorithm; the proof is in [12].

Theorem III.2 For any γ such that , the GP algorithm converges to the optimal
primal-dual pair (x*, θ*) that solves problems (4) and (5).

The algorithm in Fig. 1 requires a stopping criterion; one possibility is to stop whenever

 for all (i, j) ∈ ε. Choosing an appropriate ε is another practical issue. In
general, it is not easy to guess a good particular ε before running the algorithm. Instead, we
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start with some ε to run the algorithm until its convergence, and then reduce ε and repeat the
process until two consecutive runs yield θ’s that are close enough.

3) Phase II: Estimation—This phase constructs a feasible solution to (3). By solving (4)
using the GP procedure with the diminishing ε policy, we obtain an optimal solution

 for all nodes i = 1, … , N which can be fractional. Yet, all integer  obtained are
in fact “correct” as the following Lemma from [12] establishes. Then, it suffices to “round”
just the fractional .

Lemma III.3 For any  where , there is always an optimal solution  to
problem (3) such that .

This can be done with the algorithm shown in Fig. 2, where  represents the vector of
estimated MWIS decision variables, and  stands for the “undetermined” state of a decision
variable .

This algorithm first assigns  for any node i whose  is 0 or 1. Then, for any remaining
node i, it iterates the following procedure: it first checks the neighbors of node i, if there
exist a node  whose assigned value  is equal to 1, the algorithm assigns  in
favor of feasibility of the solution. If there is no such node j, the algorithm compares ci, the
color of node i, with all its neighbors. If node i has the highest priority compared to its
neighbors, it sets ; otherwise it does nothing and continues to the next iteration.

At each iteration of the algorithm depicted in Fig. 2 at least one new node is colored. Thus,
the algorithm takes at most 2D iterations, since the most number of colors needed to color a
graph is 2D according to the coloring method we used. We summarize this discussion in the
following theorem.

Theorem III.4 The estimation algorithm in Fig. 2 outputs a feasible solution for problem
(3).

So far, we formulated the SCP problem (2) as a MWIS problem (3) and employed a variant
of the distributed algorithm proposed in [12] to solve it. In particular, we introduced some
randomized coloring heuristics that are beneficial in our side chain positioning application.
These heuristics help the coloring phase to assign more priority to the nodes whose weights
are greater than the summation of all the weights of their neighbors. Thus, if GP fails in
deciding which node to select amongst a set of connected nodes, the coloring will help the
protocol to pick the nodes with higher priority first. Consider a simple case when GP can not
decide which node to choose between two adjacent nodes, i.e. GP assigns xi = 0.5 and xj =
0.5 when (i, j) ∈ ε, then the estimation phase will assign xi = 1 and xj = 0 if ci < cj.

IV. COMPUTATIONAL RESULTS
We tested SCP on a benchmark set consisting of 15 enzyme inhibitor protein complexes
listed in the first column of Table I. To generate the input data for each complex, as
mentioned in the Introduction, our docking procedure first samples billions of docked
receptor-ligand conformations, then clusters and filters them. The retained thousands of
conformations are used as the input data for the refinement stage.

The refinement algorithm we use is based on an MCM approach. For each conformation,
our algorithm works by iteratively proposing a sequence of rotational and translational
motions of the ligand while fixing the receptor. We denote by ξ ∈ SE(3) the initial position
and orientation of the ligand with respect to the receptor and run 50 MCM iterations. The
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final position, denoted by  is our prediction corresponding to that specific initial
conformation.

At each MCM iteration, the following rigid-body motions are applied to the ligand: first the
ligand position and orientation with respect to the receptor are randomly perturbed to obtain

, and then a rigid-body minimization algorithm starts from  and locally minimizes the

energy of the complex over ligand positions in SE(39) to obtain . We then compare the

total energies of the conformational states at ξ and  and decide either to accept or reject

this move based on Metropolis criterion. In case of acceptance,  will be used as an input to
the next MCM iteration.

Based on this criterion the probability of accepting an attempted conformation is:

(9)

where ΔE is the difference between the total energy of the resulting conformation  and the
energy of the initial conformation ξ , and T is the absolute temperature of the system.

In addition to running the random perturbation and rigid-body minimization steps that exert
rigid-body motions to the ligand, we can also use SCP as another important step of MCM
iterations to position the side chains of the interfacial residues of both receptor and ligand in
order to reduce the total energy of the complex. In our procedure, we run the SCP algorithm
right after the completion of the random perturbation and before running the rigid-body
minimization.

Our tests on 15 protein complexes indicate the effectiveness of SCP for the protein docking
refinement procedures. For each protein complex, we compare three different
conformations: (i) the initial conformations before refinement, (ii) the refined conformations
excluding SCP from the MCM iterations, and (iii) the refined conformations including SCP
as a step in the MCM iterations. For each one of these conformations we calculate its RMSD
from the native structure and report in Table I the number of conformations whose RMSD to
the native structure is less than 5 Å (in columns 3, 4, and 5 for conformations of type (i), (ii),
and (iii), respectively). This number corresponds to the number of “good” predictions our
protein docking procedure can make for a specific protein complex. A prediction is
considered “good” when the RMSD of the predicted structure is below 5 Å from its native
structure.

Our results show that in 12 (out of the 15) protein complexes, using our SCP algorithm
increases the number of “good” predictions and improves the overall refinement
performance. These 12 complexes are marked in the last column of Table I. The remaining 3
complexes whose number of “good” predictions decreases by adding SCP to the protocol are
1BVN, 1NW9 and 1PPE. In 1BVN, even though the number of good predictions decreases
by adding SCP, the overall performance of the protocol is still acceptable since the
algorithm has predicted 201 “good” predictions. In 1NW9 and 1PPE the inputs to the
refinement procedure do not have an adequate number of near-native structures to initiate
good starting conformations. 1NW9 has only 39 and 1PPE has only 1 near-native structures,
which means that the ligand and the receptor have not bound to each other well and using
SCP may not help. However, there are several complexes with similar low initial near-native
concentrations for which SCP is pretty effective; these include 1K74, 1N8O, 1NW9, 1TMQ
and 7CEI.
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Another criterion we use to evaluate the effect of SCP on protein docking refinement is to
investigate how an RMSD-score plot changes by applying SCP. Fig. 3 depicts such plots for
two protein complexes: 1R0R and 7CEI. Each plot consists of numerous points whose exact
number can be found in the 2nd column of Table I. Each point represents a single
conformation refined by either the MCM or the MCM+SCP method. The x-coordinate of
each point corresponds to the RMSD between the associated conformation and the native
structure. The y-coordinate indicates the overall energy of the conformation after
refinement. In protein docking refinement, we aim to achieve an RMSD-score plot which
exhibits a funnel leading to low energy and low RMSD structures. In presence of such
funnels, as we approach to the native structure (as RMSD decreases), the overall energy
value decreases. This correlation is inline with the fact that the native structure attains the
lowest overall energy value compared to other possible conformations. Our results in Fig. 3
show that if we run MCM refinement without SCP, the RMSD-score plots usually lack such
funnels. However, if we add our SCP algorithm to the MCM steps, the resulting RMSD-
score plots reveal the presence of such a funnel. Furthermore, compared to the baseline
algorithm, MCM+SCP achieves the same trend in covering the whole conformational space
and gives rise to the same number of clusters while reveals a funnel-like behavior leading to
low energy and low RMSD structures.

V. CONCLUSIONS
We formulated the side chain positioning problem as a maximum weighted independent set
problem and devised a message-passing algorithm to solve it. Compared to alternative
algorithms, the main advantage of our approach is that it takes advantage of task parallelism
when solving the optimization problem. In the context of side chain positioning application,
the parallel approach is of great importance due to the large problem instances one has to
tackle.

One of the most significant applications of side chain positioning is in protein docking
refinement procedures. To verify the effectiveness of our algorithm, we have implemented a
refinement protocol based on a Monte Carlo Minimization approach, and compared the
overall refinement results in the absence and in the presence of side chain positioning in
each Monte Carlo step. Our results show that the latter improves the overall performance of
protein docking refinement procedures in two different ways: increasing the number of near
native predictions and revealing a funnel-like behavior in RMSD-score plots that leads to
low-energy near-native structures.
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Fig. 1.
Gradient projection algorithm for solving (5).
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Fig. 2.
Rounding x* to obtain a feasible solution for (3).
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Fig. 3.
RMSD-score plots for complexes 1R0R and 7CEI. Upper left: 1R0R plot after MCM. Upper
right: 1R0R plot after MCM+SCP. Lower left: 7CEI plot after MCM. Lower right: 7CEI
plot after MCM+SCP. The plots on the right show that applying SCP in the MCM steps
improves the RMSD-score plots to reveal a funnel-like behavior.
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