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Abstract— Trust management, broadly intended as the ability
to maintain belief relationship among entities, is recognized
as a fundamental security challenge for autonomous and self-
organizing networks.

In this work, we focus on the evaluation process of trust
evidence in distributed networks, where no pre-established
infrastructure can be assumed. After casting the problem into
the framework of Estimation Theory, a distributed Maximum
Likelihood trust estimation algorithm is proposed. Strong
parallels with Spin Glasses Theory are shown, providing key
insights about the algorithm performance and limitations, as
well as useful formulas for parameters tuning.

This work presents a mathematically rigorous analytical
approach to the problem, and proposes the use of statistical
physics methods not only to understand the complex dynamics
that arise from the interactions of peers in decentralized
networks but also to design robust protocols and algorithms
whose performance can be rigorously evaluated.

I. INTRODUCTION
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The lack of centralized coordination and of authoritative
entities in general enforces the use of reputation-based sy
tems, where trust relationships are established and main-
tained by protocols that evaluate the history of previous
interactions with other entities.

Despite the growing role of autonomic networks, most
trust management systems in the literature are still mostly
at an empirical level. As it is pointed out in [10] and in
[6], theoretical analysis is extremely rare and most stéte o
the art systems are prevalently based on heuristics and on
simulation as evaluation method. Solutions are often hard t
compare even on a simulative basis, since they often rely on
different hypothesis and are aimed at different applicatio
scenarios.

A rare exception is the interesting analytical study of the
problem presented in [5], a work that considerably inspired
this study.

A major effort of the networking community is currently The aim of this work is to provide a deeper theoretical

devoted at introducing security services into decentdliz

understanding of the problem through a more mathematically

self-managing and self-configuring networks, broadly resound approach that makes use of some powerful tools and
ferred to as autonomic networks. In fact the lack of adeas arisen in statistical physics. In particular for thkesof
predefined and fixed infrastructure and their highly dynamitractability we will focus on a non adversarial setting wder
nature pose a number of new challenges ahead, especiallyentities cooperate in the identification of faulty nodas

from the security point of view.

practical example is a WSN where malfunctioning sensors

As pointed out in [2] and [1], one of the most importantneed to be recognized as unreliable by the entities they are
challenges for autonomic networks is that of developingnteracting with and a faulty node that is providing inexact
protocols to establish the trustworthiness status of tlleso measurements can perform a self-diagnosis only by querying
in the network. Following [10], we will broadly interpret its neighbors about the quality of its own measurements.
trust as a belief relationship, where an entity is confident

that another one will operate fairly, or as it is designed.

Il. THE TRUSTESTIMATION PROBLEM FORMULATION

In a setting where the global performance depends crit- In our model, we consider a network &f nodes, repre-
ically on the collaborations that take place among selfsented by a directed grapghk = (V, E) where an entity can

managing entities, maintaining belief relationships play

interact with a certain subset of other nodes accordingdo th

key role. In particular it is essential to predict the futureedge setF.

behavior of other entities, that is a fundamental aspect in We represent the real trustworthiness status of each node
the decision-making process of many protocols underlyingwith a bit variableT; € {—1, 1}, with the convention
these network architectures (such as routing in MANETSs and . .

. . : 1 if node: is trustworthy
WSN, as pointed out in [10] and [7]). In general potential T, = .

C L —1 otherwise

damage caused by malfunctioning or even malicious and
selfish entities can be greatly reduced by the employmesb that the trust status of the whole network can be described
of a trust management system, mainly because entities wily areal trust vector 7 € {-1,1}".
generally avoid interacting with nodes that should not be We assume that the completeal trust vector T is
trusted. unknown to the nodes, and that they are able to collect



some evidence about it on the base of the history of thein position (i, j) ¢ E. If insteadC has nonzero entries only
previous interactions with their neighbors, that we assumia (i,j) € E, then
to be statistically correlated with. In particular we assume

(4 —T;Tj)?
that 7" is related to an opinion matriK' € RV*N by the pCcir)y = ] Lt
following equation (ii)eE V2ro?

C=fTw), weQ (1) = q(C)e?? Liipen BT

where (2 is a sample space anf{:) represents the way in whereq(C) is a normalization constant independentTof
which opinions are formed. In this setting an elementof Therefore maximizing(C|T) is equivalent to maximize
the opinion matrixC' is the opinion that nodé has on node [/ (T;(C) := Z(i.j)eE T;T;ci;, SO that
4, assumed to be significant only ifand j are neighbors ' o o
since based on the history of their previous interactions. argmax p(C|T) = argmax U(T'; C')
Within this model, the role of a trust management algo- T T
rithm is that of estimating” from C, assuming thaC and Itis easy to see thdi(7";C) = U(-T; C), a straightforward
the form of f(-) in equation (1) are known. In the following consequence of the symmetrical behavior of trustworthy
sections we will show how to design such an algorithm in and untrustworthy nodes. As a consequence, if alSb)
distributed way, so that in each iteration only local opisio is symmetrical, the resulting complete likelihood funatio
are used. Remarkably, the estimate computed in this way I (T'; C) becomes symmetrical i#", a situation in which
as good as the best one that could be obtained in a centralizdtectively distinguishing between the two kinds of nodes
way assuming that the entire matiix is known. would be clearly impossible. Therefore we will concentrate
on a priori distributions of the real trust vectd@ that
are unbalanced, that is they privilege the presence of one
For the sake of tractability we will mainly consider akind of nodes. In a practical setting, such a requirement
special case of equation (1), where the opinion that node not restrictive, because it is likely that more nodes are

A. The Gaussian case

i has onj is modeled in the following way: trustworthy rather than not.
[ Ty twy i (i,j) € E @ Suppose thgt the a.priori probability distribution Bfis
Cij 0 if (i,7) ¢ E Bernoulli-distributed with parameter, namely
wherew;; ~ N(0,0?) is a Gaussian random variable that p:=PTi=1)

models the uncertainty that affects the opinions.

Within this framework, the role of the trust estimation
algorithm is to find the trust configuratidh € {—1, 1} that w(T) = |{i|T; = 1}|
is more likely to have generated a certain observed opinioH
matrix C, or in other words the trust configuration with thethen we have -
highest a posteriori probability, given that= C. B w(T

The likelihood LH (S; C) of any configurationS given an p(T) = p"DA-p¥ O =1 -p ()
opinion matrixC' is by definition:

Then, assuming independence, if we define

o o Since
LH(T;C) :=p(T|C) w(T) = N+221- T;
wherep(T'|C) is the probability of " conditioned that’' = Iso h
C, so that the maximum likelihood (ML) estimate is We aiso have 5
_ 3(N+) . Ti)
arg max LH(T;C) pT) = (1-p» <1 ﬁp)
Observe that the Bayes rule yields — fp)p]N/%% log(125) Y2, T
C|\T)p(T
p(T|C) = p(p(é;r;() In this way we obtained that
wherep(T) is the a priori probability of the discrete random p(T) = Ve_AZi T 3)

variable T € {-1,1}" while p(C) and p(C|T) are the , G
density and conditional density of the continuous randorWherev normalizes to a probability distribution and

variableC' € RY*N_ This shows that the maximum likeli- 1 P
; A=—=log | ——
hood estimate can be computed as 2 1—p
arg max p(C|T)p(T) Clearly the sign of\ determines if the a priori distribution
T

is biased, while for\ = 0 (or equivalentlyp = 0.5) we have
For the Gaussian model described in (2), assuming inddie symmetrical case in which we cannot expect good results
pendence, we have thetC|T) = 0 if C has a nonzero entry from the estimation.



Putting all together we obtain I1l. THE TRUSTESTIMATION ALGORITHM
For the system described in the previous section a simu-

. _ 712 Z o T:Tjcij —)\Z T; . . . .
LH(T;C) = q(C)e (i)€eE ve i lated annealing scheme can be implemented as an iterative
application of avating rule, in which each node is repeatedly
_ W(C)eg%(z(m@T,;ch,;j—xgzZim evaluated by its neighbors. In particular they expressr thei

opinions with a vote on its trustworthiness, and thoting
rule takes them into consideration together with the current
. . estimated trustworthiness status of the participants & th
We conclude that the following proposition holds. vote. To emulate the Metropolis algorithm we introduce
Proposition 1. The likelihood LH(T'; C) of a configura-  gtgchasticity into the rule so that we obtain the desired
tion T is proportional to a monotonic increasing functionparkov Chain structure with the proper steady state proba-

of bility distribution.
H(T) = Z T Tjcij — WZTi 4) Precisely, as mentioned before, at each time step a node
(i,§)E€E i nodei is chosen randomly. The trustworthineSg(k + 1)
of nodes; different formi are kept constant while, as in
wheren = \o2. [5], the nodei uses the following voting rule to compute
We can therefore compute a ML estimate of the real trusf; (k + 1)
vector by choosing si(m)((zb)imfm
& t(k
9 o? < P > PLSi(k + 1)[mi(k)] = (ma () —m) CAGED) (6)
n=A"=——log | — e +e e
2 L=p wherem; (k) is defined to be

and maximizing (4) over all possible configuratidRsEqua- ma(k) = Z (cij + ¢;i)S; (k) | )

tion (4) is very important because it represents the energy
or Hamiltonian of a configuratiot in an Ising Model [9] , .
in the presence of an external magnetic field of strength Vi IS the set of neighbors of (we assume that does

that breaks the symmetry of the system. Again the physic3Pt Pelong tol;) andi(k) is the temperature parameter at

interpretation confirms that when the a priori distributiorf{€ration. _ o

of T is symmetrical, that igy = 0.5, the magnetic field " th'f[ way we obtain a Markov chain with state space
disappears. The statistical physics interpretation @ssan 111}~ and with transition probabilitys,z := P[S(k +
intuitive understanding of the dynamics of the system and) = £215(k) = 5] which is equal to zero if the Hamming
enables us to take advantage of the rich literature in ttfistance ofS and R is greater thanl, while, if if the

field to study our problem. In particular we are referringj_“"mming distance off and % is less than or equal to,
to a class of systems known as Spin Glasses [9], that exhityig have that

JEN;

R;i(m;(S)—m)

randomly distributed ferromagnetic and anti ferromagneti 1 e iR
interactions between spins, depending on the sign of the PS,R= N me-m ECEIED)
coupling coefficients:;;. _ _ e '™ +e B

So far we have shown how the original trust estimatio¥vhere: is the index such tha$; = R; for all j # i and
problem can be reduced to the problem of finding the mi(S) = Z (cij + ¢1)S;

maxima of (4), or in other words the global minima of Py
—H(S), configurations known in physics agound states ¢ h fix th ' .
of the system. This problem has been proved to be np- If we choose to fix the temperature parametewer time,

Complete for generic graph topologies in [3], and thereforg1e \./otingfj rhule Ideﬂne? by equalt_ion (5).is sirr:ply.ahmodified
a global search for a configuration that is provably a globé1erSIOn of the classical Metropolis-Hastings algorithrheve

minimum is computationally intractable. However a natura%e introduce a Markov Chain with different transition preba

approach to solve the problem is a local search strate jities but with the same s_teady state probability di$mttnn_. .
based on Simulated Annealing, a method introduced to sol fact the graph assomateq with thg_Markov Chain is
optimization problems by searching for the ground states &Frongly connected gnd consists of a finite numbe) (of .
a proper energy function, that is exactly the same probleﬁ{ate,s',eac_h one with a self-lopp. Thgrefore the transition
we need to solve. matrix is primitive and the resulting chain isgular so that

An apparently similar approach has been previously prob—y P_erron-Frobenius Theorem we cqnc!ude_ that the_re_ exists
posed in [5], but using a model in which the energy wa§ Unique steady state probab|!|_ty dl_str|_but|_cm and it is
unrelated to statistical properties of the estimate. Megeo re?crt]ﬁ d ffrﬁm any initial [_)t_robabllny_"d]l_st(rjlbutlon. ion f
they did not solve the optimization problem completelycsin bn E o megtptﬁpog |0|tr) WeMW' km C?n gxpress_ltc)in or
they only used a Metropolis-like algorithm to generate g by showing that the resulting Markov Lhainre/ersile,
suitable Markov Chain to sample solutions from, withou?hat 's the followingbalance equation is satisfied

providing any guarantee on the quality of the results. TS PS,R = TR DR,S @)



for any pair of statesz, S. IV. ANALYSIS

S T .

Proposition 2: If ¢ = 5 is fixed, then the voting rule |, yhis section we address the problem of understanding
defines a Markov Chain whose steady state probability,e ayerage performance of the algorithm described, both
distribution is Boltzmann-distributed from a theoretical point of view and by the means of Monte

ePH(T) Carlo simulations.
=Ty ®) From a qualitative point of view, we firstly note that we
where cannot expect any topology-independent result. For exampl
7 - Z oBH(S) in a network made by isolated vertices we cannot do any
S better than just using the a priori knowledge, so we will

plays the same physical role ofartition function. need to fix a topology in order to show meaningful results.

Proof: We will show that (7) holds true. Notice that, if A, Case study: complete graphs

the Hamming distance betweehand 12 is greater thari, Even if it not representative of the topologies of most

thenps,r = pr,s = 0 and so (7) holds true. If the Hamming real world networks, we will focus our attention on the case

e et i1 s boegl . STPE commuatn aph. many becatse s
o : nalytical results from Spin Gl heory ar rived f@ th
S and R is 1, and leti be the index such thai; = R; for alytical results from Spin Glass theory are derived fe t

R B topology.
all j # i and 5; # R;. Observe now thatn; (S) = m(R), In the the case of a complete communication graph with
and denote this number by the symho)]. Then N nodes, equation (2) becomes
PR (mi($)—n) ’

Ps,r _ _ o—2B8i(mi—n) _
prs  ePSimi(S)—m) — € C=TT" +W
On the other hand notice that where each element of the matfi is w;; ~ N (0,0?). Let
H(R) — H(S) = T := argmaxgeqy, 1y~ H(S)
28im — 285; Z Sjcij — 25; Z Sjcji Let moreover
ilGd)eE en WD) = |{i: T} £ T}
where the sums are over all outgoing and ingoing edges Rimely the number of incorrect estimates givenZbyThen
1. By substituting (6) Proposition 3: If 1 # 0
H(R) — H(S) = —25;(m; —n) h(T)
lim E{——=| =0
Therefore N—oo N
PSR _ oBH(R)—H(S) Proof: Observe that

PRr,s

and hence (7) holds withg = (5, Finally notice that

Z?TSPS,R = Z?TRPR,S =TR ZPR,S =TR
5 5 5

B[H(T) = E[T'CT-n) T]=

E[T'TT'T] +E[I'WT] -y E[T}] =

which shows thatrg is the steady state probability distribu- = N?+ ZE[wij]]E[TiTj] —nN(2p—-1) =
tion. [ | ij
As in the standard Simulated annealing case ([8]), using = N?2-yN(@2p—1)

the voting rule with a logarithmic temperature scheduling

to
t(k) = e 1 F) E[H(T) = E[(T'T)?+E[T'WT] - ]E[TIZTi]

and with an initial temperaturg large enough, the probabil-

ity of finding a global minimum converges tbask — co.  Notice now thatl”T = N — 2h(T") and that—n 32, T; <
According to the previously described trust managemeny| N. Moreover from spin glass theory ([4]) we know that
system, each iteration of the algorithm consists in a locahe sequenceN‘%E[maxs S'WS] converges asN tends

vote, where the results are decided according to equatjon (g infinity and so there exists a constant such that
The most remarkable result is that the iterations are Iocqg[:ﬁ/wﬂ < aN3/2 for all N. These facts imply that

that is they involve only the opinions of the neighbors of a . .

node being voted. In this way the opinions data do not have ~ E[H(T)] < E[(N — 2h(T))*] + aN*/? 4 || N

to travel all over the network, as it happens for example WitgmCe we always have thaH(T) > H(T), thenE[H(T)] >
a consensus-based system, but yet it achieves an estimat%fﬁ(T)] which implies that - -
good as it would be the one obtained by a centralized serve

that knows the entire opinion matrig. N2 —ypN(2p—1) <E[(N — 2h(T))?}] + aN*/2 + |n|N

On the other hand we have that



If we denoteh(7")/N with the symbolz y, then the previous
inequality together with) < zy < 1 proves that

Elzy — 2%] — 0

as N tends to infinity. We need to show that this implies that

In the remaining part of the proof we will restrict ourselves

to the casen < 0 for the ease of explanation. A totally
symmetric argument can be developed for the ease0.

Recall that the symbolv(7") denotes the number com-
ponents inT equal to+1. Now notice thatw(T") > N/2.
Indeed this follows from the fact thaf (1) > H(—1") which
implies that

H(T)=T'CT —nY T,>T'CT+nY Ti=H(-T)

and so—2r;ZiT} > 0. Sincen < 0 then we must have

Performance of the algorithm with Gaussian opinion errors and p=0.7
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Fig. 1. Performance of the algorithm with a complete commurocati
graph of N nodes for several values @f. The a priori probabilityp that

S, T; > 0 and sow(T) > N/2. Consider now the three setsa node is trustworthy i§.7.

Ay = {i|Ti = Ty}, Ay = {i|T; = —1}, and A3 = {i|T; =
—1}. Clearly A,UAUA3 = {1, ..., N} from which follows
that their cardinality satisfyA|+|Az|+|As| > [{1,..., N},
or equivalently(N —h(T"))+(N —w(T))+(N—w(T)) > N,
which implies:
h(T) < 2N — w(T) — w(T)

Using this inequality together With)(T) > N/2, we can
argue thath(T') < (3/2)N —w(T'). Observe now thai(7T')
is a binomial random variable, namely

(Z)pk(l —p)NF

We want to use this fact in order to estimaifry >
1 — 4] where ¢ is such that0 < § < p — 1/2. Since
R(T) < (3/2)N — w(T), then h(T)/N > 1 — § implies
thatw(T)/N <1/2+ 4§ and so

Play > 1— 6] < Plw(T) < (1/2 + 6)N]

Since(1/2+ §)N < Np = E[w(T)] we are in a position to
apply the Chernoff bound which ensures that

Plw(T) < (1/2+ §)N] < e N
where
_p=1/2-97
2p

We can therefore argue th&zy > 1 — 6] < e "V, We
want to use this inequality in order to estimalie'?,]. Indeed,
observe that

E[z}]

1o o e
e kzzok P[A(T) = k]

1

o2
E<(1—8)N
1

N2 >

k>(1-6)N

E2P[h(T) = k] +

E2P[h(T) = k|

Observe thak? < N? and that, wherk < (1 — §)N, then
k? < (1 — 6)Nk. Using these inequalities we obtain that

B < 120 S kppd) =k +
E<(1—8)N
+ > PhI)=k<
k>(1-6)N
(1-0) &
< > kPA(T) = k] +
k=1
+P[R(T) > (1-6§)N] <
< (1-=0E[zyn]+e N

Observe finally that

SE[zy] = Elzy — 2%] + E[z%]

—(1-0)E[zn] <E[zy — x?\,] +e VN

Since both term in the sum tends to zero, alBz ] tends
to zero.

In the case) > 0 one should considef(T) = N—w(T) =
[{i|T; = —1}| in place ofw(T) and repeat an analogous
argument.

[

B. Smulative Results

From a simulative point of view, we are interested in
measuring what is the fraction of nodes that are not cogrectl
identified, in expectation. 1{5* is the ML configuration
returned by the algorithm, we are interested in the average

error rate 15— ]| h(S")
ElL _—f| _glZ
] ==
where the expectation is taken over all levels of random-
ness. The first experiment is performed by simulating the

environment described by the Gaussian model presented in
section 1I-A, for various values oV ando?. The estimation




Performance of the algorithm with Bernoulli distributed errors and p=0.7

algorithm uses the simulated annealing approach, with an os ; : : : e
exponential temperature coolingk + 1) = « t(k) of e
parameternr = 0.91 starting from an initial temperature of TR
10N2. However, the choice of these parameters is not very

important and does not affect significantly the results. 0asl

As we can note in figure 1 the performance of the

algorithm decreases as does the quality of the a posteriori
information (measured by a larger variance on the opinions)
However it is remarkable that the algorithm is never outper-
formed by the optimal estimator that is based solely on the
a priori informationsS; :

0451

0.4

o

I

a
T

Average error rate

o
N
T

0.15

0.1
g — 1,...,1] ifp>
a ) —[1,...,1] ifp<

0 0.1 0.2 03 ‘0 4 05 0.6 0.7

that clearly shows an average error rate bf- p). Error probabily p,
To show the robustness of the algorithm proposed we
consider another reasonable model for (1), where the errdrg. 2. Performance of the algorithm with a complete commurdoagraph

S oty : :of N nodes for several values @f and opinions generated according to
a,re_ Bernoulli distributed. In particular we assume that Irﬁwdel (9). The a priori probability that a node is trustworthy i8.7.
(i,7) € E then

y 0.05

N[0 | =

e — T;T;  with probability 1 — p, ) o )
W=\ —T/T; with probability p, whgre_ |.Itt|e is known or can be assumed on t.he behaymr
) . ) of individual nodes, but it is necessary to obtain a desired
This means that if a node is trustworttiyj (= 1), thenc;; = grdered behavior of the network as a whole.
T with probability 1 — p, while the contrary holds when | this perspective statistical physic tools and more gen-
T = —1. Thus the parameter. represents the probability ¢4y theories about disordered systems have already been
for a trustworthy node of misjudging a neighbor. successfully applied to the study of collective animal be-

The results obtained with various error probabilitigs  havior and flocking. This case study on trust management

and various networks sizes are shown in figure 2. The trugty esents a first attempt to lift the use of these tools to a
estimation algorithm uses a value of design perspective from an engineering point of view.
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