
Trust Estimation in autonomic networks: a statistical mechanics
approach

Stefano Ermon
Department of Computer Science

Cornell University
Ithaca, New York 14850

Email: ermonste@cs.cornell.edu

Luca Schenato
Department of Information Engineering

Universita di Padova
Padova

Email: schenato@dei.unipd.it

Sandro Zampieri
Department of Information Engineering

Universita di Padova
Padova

Email: zampi@dei.unipd.it

Abstract— Trust management, broadly intended as the ability
to maintain belief relationship among entities, is recognized
as a fundamental security challenge for autonomous and self-
organizing networks.

In this work, we focus on the evaluation process of trust
evidence in distributed networks, where no pre-established
infrastructure can be assumed. After casting the problem into
the framework of Estimation Theory, a distributed Maximum
Likelihood trust estimation algorithm is proposed. Strong
parallels with Spin Glasses Theory are shown, providing key
insights about the algorithm performance and limitations, as
well as useful formulas for parameters tuning.

This work presents a mathematically rigorous analytical
approach to the problem, and proposes the use of statistical
physics methods not only to understand the complex dynamics
that arise from the interactions of peers in decentralized
networks but also to design robust protocols and algorithms
whose performance can be rigorously evaluated.

I. I NTRODUCTION

A major effort of the networking community is currently
devoted at introducing security services into decentralized,
self-managing and self-configuring networks, broadly re-
ferred to as autonomic networks. In fact the lack of a
predefined and fixed infrastructure and their highly dynamic
nature pose a number of new challenges ahead, especially
from the security point of view.

As pointed out in [2] and [1], one of the most important
challenges for autonomic networks is that of developing
protocols to establish the trustworthiness status of the nodes
in the network. Following [10], we will broadly interpret
trust as a belief relationship, where an entity is confident
that another one will operate fairly, or as it is designed.

In a setting where the global performance depends crit-
ically on the collaborations that take place among self-
managing entities, maintaining belief relationships plays a
key role. In particular it is essential to predict the future
behavior of other entities, that is a fundamental aspect in
the decision-making process of many protocols underlying
these network architectures (such as routing in MANETs and
WSN, as pointed out in [10] and [7]). In general potential
damage caused by malfunctioning or even malicious and
selfish entities can be greatly reduced by the employment
of a trust management system, mainly because entities will
generally avoid interacting with nodes that should not be
trusted.

The lack of centralized coordination and of authoritative
entities in general enforces the use of reputation-based sys-
tems, where trust relationships are established and main-
tained by protocols that evaluate the history of previous
interactions with other entities.

Despite the growing role of autonomic networks, most
trust management systems in the literature are still mostly
at an empirical level. As it is pointed out in [10] and in
[6], theoretical analysis is extremely rare and most state of
the art systems are prevalently based on heuristics and on
simulation as evaluation method. Solutions are often hard to
compare even on a simulative basis, since they often rely on
different hypothesis and are aimed at different application
scenarios.

A rare exception is the interesting analytical study of the
problem presented in [5], a work that considerably inspired
this study.

The aim of this work is to provide a deeper theoretical
understanding of the problem through a more mathematically
sound approach that makes use of some powerful tools and
ideas arisen in statistical physics. In particular for the sake of
tractability we will focus on a non adversarial setting where
all entities cooperate in the identification of faulty nodes. A
practical example is a WSN where malfunctioning sensors
need to be recognized as unreliable by the entities they are
interacting with and a faulty node that is providing inexact
measurements can perform a self-diagnosis only by querying
its neighbors about the quality of its own measurements.

II. T HE TRUST ESTIMATION PROBLEM FORMULATION

In our model, we consider a network ofN nodes, repre-
sented by a directed graphG = (V,E) where an entity can
interact with a certain subset of other nodes according to the
edge setE.

We represent the real trustworthiness status of each node
i with a bit variableTi ∈ {−1, 1}, with the convention

Ti =

{

1 if node i is trustworthy
−1 otherwise

so that the trust status of the whole network can be described
by a real trust vector T ∈ {−1, 1}N .

We assume that the completereal trust vector T is
unknown to the nodes, and that they are able to collect



some evidence about it on the base of the history of their
previous interactions with their neighbors, that we assume
to be statistically correlated withT . In particular we assume
that T is related to an opinion matrixC ∈ RN×N by the
following equation

C = f(T, ω), ω ∈ Ω (1)

whereΩ is a sample space andf(·) represents the way in
which opinions are formed. In this setting an elementcij of
the opinion matrixC is the opinion that nodei has on node
j, assumed to be significant only ifi and j are neighbors
since based on the history of their previous interactions.

Within this model, the role of a trust management algo-
rithm is that of estimatingT from C, assuming thatC and
the form off(·) in equation (1) are known. In the following
sections we will show how to design such an algorithm in a
distributed way, so that in each iteration only local opinions
are used. Remarkably, the estimate computed in this way is
as good as the best one that could be obtained in a centralized
way assuming that the entire matrixC is known.

A. The Gaussian case

For the sake of tractability we will mainly consider a
special case of equation (1), where the opinion that node
i has onj is modeled in the following way:

cij =

{

TiTj + wij if (i, j) ∈ E
0 if (i, j) /∈ E

(2)

wherewij ∼ N (0, σ2) is a Gaussian random variable that
models the uncertainty that affects the opinions.

Within this framework, the role of the trust estimation
algorithm is to find the trust configuration̂T ∈ {−1, 1}N that
is more likely to have generated a certain observed opinion
matrix C, or in other words the trust configuration with the
highest a posteriori probability, given thatC = C.

The likelihoodLH(S;C) of any configurationS given an
opinion matrixC is by definition:

LH(T ;C) := p(T |C)

wherep(T |C) is the probability ofT conditioned thatC =
C, so that the maximum likelihood (ML) estimate is

arg max
T

LH(T ;C)

Observe that the Bayes rule yields

p(T |C) =
p(C|T )p(T )

p(C)

wherep(T ) is the a priori probability of the discrete random
variable T ∈ {−1, 1}N while p(C) and p(C|T ) are the
density and conditional density of the continuous random
variableC ∈ RN×N . This shows that the maximum likeli-
hood estimate can be computed as

arg max
T̂

p(C|T̂ )p(T̂ )

For the Gaussian model described in (2), assuming inde-
pendence, we have thatp(C|T ) = 0 if C has a nonzero entry

in position(i, j) 6∈ E. If insteadC has nonzero entries only
in (i, j) ∈ E, then

p(C|T ) =
∏

(i,j)∈E

1√
2πσ2

e−
(cij−TiTj)2

2σ2

= q(C)e
1

σ2

∑

(i,j)∈E
TiTjcij

whereq(C) is a normalization constant independent ofT .
Therefore maximizingp(C|T ) is equivalent to maximize

U(T ;C) :=
∑

(i,j)∈E TiTjcij , so that

arg max
T̂

p(C|T̂ ) = arg max
T̂

U(T̂ ;C)

It is easy to see thatU(T ;C) = U(−T ;C), a straightforward
consequence of the symmetrical behavior of trustworthy
and untrustworthy nodes. As a consequence, if alsop(T )
is symmetrical, the resulting complete likelihood function
LH(T ;C) becomes symmetrical inT , a situation in which
effectively distinguishing between the two kinds of nodes
would be clearly impossible. Therefore we will concentrate
on a priori distributions of the real trust vectorT that
are unbalanced, that is they privilege the presence of one
kind of nodes. In a practical setting, such a requirement
is not restrictive, because it is likely that more nodes are
trustworthy rather than not.

Suppose that the a priori probability distribution ofT is
Bernoulli-distributed with parameterp, namely

p := P (Ti = 1)

Then, assuming independence, if we define

w(T ) = |{i|Ti = 1}|

then we have

p(T ) = pw(T )(1 − p)N−w(T ) = (1 − p)N

(

p

1 − p

)w(T )

Since

w(T ) =
N +

∑

i Ti

2

we also have

p(T ) = (1 − p)N

(

p

1 − p

)
1
2 (N+

∑

i
Ti)

= [(1 − p)p]N/2e
1
2 log( p

1−p )
∑

i
Ti

In this way we obtained that

p(T ) = γe−λ
∑

i
Ti (3)

whereγ normalizes to a probability distribution and

λ = −1

2
log

(

p

1 − p

)

Clearly the sign ofλ determines if the a priori distribution
is biased, while forλ = 0 (or equivalentlyp = 0.5) we have
the symmetrical case in which we cannot expect good results
from the estimation.



Putting all together we obtain

LH(T ;C) = q(C)e
1

σ2

∑

(i,j)∈E
TiTjcij

γe−λ
∑

i
Ti

= γq(C)e
1

σ2 (
∑

(i,j)∈E
TiTjcij−λσ2

∑

i
Ti)

We conclude that the following proposition holds.
Proposition 1: The likelihoodLH(T ;C) of a configura-

tion T is proportional to a monotonic increasing function
of

H(T ) :=
∑

(i,j)∈E

TiTjcij − η
∑

i

Ti (4)

whereη = λσ2.
We can therefore compute a ML estimate of the real trust

vector by choosing

η = λσ2 = −σ2

2
log

(

p

1 − p

)

and maximizing (4) over all possible configurationsT . Equa-
tion (4) is very important because it represents the energy
or Hamiltonian of a configurationS in an Ising Model [9]
in the presence of an external magnetic field of strengthη
that breaks the symmetry of the system. Again the physical
interpretation confirms that when the a priori distribution
of T is symmetrical, that isp = 0.5, the magnetic field
disappears. The statistical physics interpretation ensures an
intuitive understanding of the dynamics of the system and
enables us to take advantage of the rich literature in the
field to study our problem. In particular we are referring
to a class of systems known as Spin Glasses [9], that exhibit
randomly distributed ferromagnetic and anti ferromagnetic
interactions between spins, depending on the sign of the
coupling coefficientscij .

So far we have shown how the original trust estimation
problem can be reduced to the problem of finding the
maxima of (4), or in other words the global minima of
−H(S), configurations known in physics asground states
of the system. This problem has been proved to be NP-
Complete for generic graph topologies in [3], and therefore
a global search for a configuration that is provably a global
minimum is computationally intractable. However a natural
approach to solve the problem is a local search strategy
based on Simulated Annealing, a method introduced to solve
optimization problems by searching for the ground states of
a proper energy function, that is exactly the same problem
we need to solve.

An apparently similar approach has been previously pro-
posed in [5], but using a model in which the energy was
unrelated to statistical properties of the estimate. Moreover
they did not solve the optimization problem completely, since
they only used a Metropolis-like algorithm to generate a
suitable Markov Chain to sample solutions from, without
providing any guarantee on the quality of the results.

III. T HE TRUST ESTIMATION ALGORITHM

For the system described in the previous section a simu-
lated annealing scheme can be implemented as an iterative
application of avoting rule, in which each node is repeatedly
evaluated by its neighbors. In particular they express their
opinions with a vote on its trustworthiness, and thevoting
rule takes them into consideration together with the current
estimated trustworthiness status of the participants to the
vote. To emulate the Metropolis algorithm we introduce
stochasticity into the rule so that we obtain the desired
Markov Chain structure with the proper steady state proba-
bility distribution.

Precisely, as mentioned before, at each time step a node
node i is chosen randomly. The trustworthinessSj(k + 1)
of nodesj different form i are kept constant while, as in
[5], the nodei uses the following voting rule to compute
Si(k + 1)

P [Si(k + 1)|mi(k)] =
e

Si(k+1)(mi(k)−η)

t(k)

e
(mi(k)−η)

t(k) + e−
(mi(k)−η)

t(k)

(5)

wheremi(k) is defined to be

mi(k) =
∑

j∈Ni

(cij + cji)Sj(k) , (6)

Ni is the set of neighbors ofi (we assume thati does
not belong toNi) and t(k) is the temperature parameter at
iterationk.

In this way we obtain a Markov chain with state space
{−1, 1}N and with transition probabilitypS,R := P [S(k +
1) = R|S(k) = S] which is equal to zero if the Hamming
distance ofS and R is greater than1, while, if if the
Hamming distance ofS and R is less than or equal to1,
we have that

pS,R =
1

N

e
Ri(mi(S)−η)

t(k)

e
(mi(S)−η)

t(k) + e−
(mi(S)−η)

t(k)

wherei is the index such thatSj = Rj for all j 6= i and

mi(S) :=
∑

j∈Ni

(cij + cji)Sj

If we choose to fix the temperature parametert over time,
the voting rule defined by equation (5) is simply a modified
version of the classical Metropolis-Hastings algorithm, where
we introduce a Markov Chain with different transition proba-
bilities but with the same steady state probability distribution.
In fact the graph associated with the Markov Chain is
strongly connected and consists of a finite number (2N ) of
states, each one with a self-loop. Therefore the transition
matrix is primitive and the resulting chain isregular so that
by Perron-Frobenius Theorem we conclude that there exists
a unique steady state probability distributionπ, and it is
reached from any initial probability distribution.

In the following proposition we will find an expression for
π by showing that the resulting Markov Chain isreversible,
that is the followingbalance equation is satisfied

πS pS,R = πR pR,S (7)



for any pair of statesR,S.
Proposition 2: If t = 1

β is fixed, then the voting rule
defines a Markov Chain whose steady state probability
distributionπ is Boltzmann-distributed

πT =
eβH(T )

Z
(8)

where
Z =

∑

S

eβH(S)

plays the same physical role of apartition function.
Proof: We will show that (7) holds true. Notice that, if

the Hamming distance betweenS and R is greater than1,
thenpS,R = pR,S = 0 and so (7) holds true. If the Hamming
distance betweenS and R is zero, thenS = R and so (7)
holds true. Assume now that the Hamming distance between
S andR is 1, and leti be the index such thatSj = Rj for
all j 6= i andSi 6= Ri. Observe now thatmi(S) = mi(R),
and denote this number by the symbolmi. Then

pS,R

pR,S
=

eβRi(mi(S)−η)

eβSi(mi(S)−η)
= e−2βSi(mi−η)

On the other hand notice that

H(R) − H(S) =

2Siη − 2Si

∑

j|(i,j)∈E

Sjcij − 2Si

∑

j|(j,i)∈E

Sjcji

where the sums are over all outgoing and ingoing edges of
i. By substituting (6)

H(R) − H(S) = −2Si(mi − η)

Therefore
pS,R

pR,S
= eβ(H(R)−H(S))

and hence (7) holds withπS = eβH(S). Finally notice that
∑

S

πSpS,R =
∑

S

πRpR,S = πR

∑

S

pR,S = πR

which shows thatπS is the steady state probability distribu-
tion.

As in the standard Simulated annealing case ([8]), using
the voting rule with a logarithmic temperature scheduling

t(k) =
t0

log(2 + k)

and with an initial temperaturet0 large enough, the probabil-
ity of finding a global minimum converges to1 ask → ∞.

According to the previously described trust management
system, each iteration of the algorithm consists in a local
vote, where the results are decided according to equation (5).
The most remarkable result is that the iterations are local,
that is they involve only the opinions of the neighbors of a
node being voted. In this way the opinions data do not have
to travel all over the network, as it happens for example with
a consensus-based system, but yet it achieves an estimate as
good as it would be the one obtained by a centralized server
that knows the entire opinion matrixC.

IV. A NALYSIS

In this section we address the problem of understanding
the average performance of the algorithm described, both
from a theoretical point of view and by the means of Monte
Carlo simulations.

From a qualitative point of view, we firstly note that we
cannot expect any topology-independent result. For example,
in a network made by isolated vertices we cannot do any
better than just using the a priori knowledge, so we will
need to fix a topology in order to show meaningful results.

A. Case study: complete graphs

Even if it not representative of the topologies of most
real world networks, we will focus our attention on the case
of a complete communication graph, mainly because most
analytical results from Spin Glass theory are derived for this
topology.

In the the case of a complete communication graph with
N nodes, equation (2) becomes

C = TT ′ + W

where each element of the matrixW is wij ∼ N (0, σ2). Let

T̂ := argmaxS∈{1,−1}N H(S)

Let moreover
h(T̂ ) := |{i : T̂i 6= Ti}|

namely the number of incorrect estimates given byT̂ . Then
Proposition 3: If η 6= 0

lim
N→∞

E

[

h(T̂ )

N

]

= 0

Proof: Observe that

E[H(T )] = E[T ′CT − η
∑

i

Ti] =

= E[T ′TT ′T ] + E[T ′WT ] − η
∑

i

E[Ti] =

= N2 +
∑

ij

E[wij ]E[TiTj ] − ηN(2p − 1) =

= N2 − ηN(2p − 1)

On the other hand we have that

E[H(T̂ )] = E[(T̂ ′T )2] + E[T̂ ′WT̂ ] − E[η
∑

i

T̂i]

Notice now thatT̂ ′T = N − 2h(T̂ ) and that−η
∑

i T̂i ≤
|η|N . Moreover from spin glass theory ([4]) we know that
the sequenceN− 3

2 E[maxS S′WS] converges asN tends
to infinity and so there exists a constantα such that
E[T̂ ′WT̂ ] ≤ αN3/2 for all N . These facts imply that

E[H(T̂ )] ≤ E[(N − 2h(T̂ ))2] + αN3/2 + |η|N
Since we always have thatH(T̂ ) ≥ H(T ), thenE[H(T̂ )] ≥
E[H(T )] which implies that

N2 − ηN(2p − 1) ≤ E[(N − 2h(T̂ ))2] + αN3/2 + |η|N



If we denoteh(T̂ )/N with the symbolxN , then the previous
inequality together with0 ≤ xN ≤ 1 proves that

E[xN − x2
N ] −→ 0

asN tends to infinity. We need to show that this implies that
E[xN ] −→ 0.

In the remaining part of the proof we will restrict ourselves
to the caseη < 0 for the ease of explanation. A totally
symmetric argument can be developed for the caseη > 0.

Recall that the symbolw(T ) denotes the number com-
ponents inT equal to+1. Now notice thatw(T̂ ) ≥ N/2.
Indeed this follows from the fact thatH(T̂ ) ≥ H(−T̂ ) which
implies that

H(T̂ ) = T̂ ′CT̂ − η
∑

i

T̂i ≥ T̂ ′CT̂ + η
∑

i

T̂i = H(−T̂ )

and so−2η
∑

i T̂i ≥ 0. Since η < 0 then we must have
∑

i T̂i ≥ 0 and sow(T̂ ) ≥ N/2. Consider now the three sets
A1 = {i|Ti = T̂i}, A2 = {i|Ti = −1}, andA3 = {i|T̂i =
−1}. ClearlyA1∪A2∪A3 = {1, . . . , N} from which follows
that their cardinality satisfy|A|+|A2|+|A3| ≥ |{1, . . . , N}|,
or equivalently(N−h(T̂ ))+(N−w(T ))+(N−w(T̂ )) ≥ N ,
which implies:

h(T̂ ) ≤ 2N − w(T ) − w(T̂ )

Using this inequality together withw(T̂ ) ≥ N/2, we can
argue thath(T̂ ) ≤ (3/2)N −w(T ). Observe now thatw(T )
is a binomial random variable, namely

P [w(T ) = k] =

(

N

k

)

pk(1 − p)N−k

We want to use this fact in order to estimateP [xN ≥
1 − δ] where δ is such that0 < δ < p − 1/2. Since
h(T̂ ) ≤ (3/2)N − w(T ), then h(T̂ )/N ≥ 1 − δ implies
that w(T )/N ≤ 1/2 + δ and so

P [xN ≥ 1 − δ] ≤ P [w(T ) ≤ (1/2 + δ)N ]

Since(1/2 + δ)N ≤ Np = E[w(T )] we are in a position to
apply the Chernoff bound which ensures that

P [w(T ) ≤ (1/2 + δ)N ] ≤ e−νN

where

ν :=
(p − 1/2 − δ)2

2p

We can therefore argue thatP [xN ≥ 1 − δ] ≤ e−νN . We
want to use this inequality in order to estimateE[x2

N ]. Indeed,
observe that

E[x2
N ] =

1

N2

N
∑

k=0

k2P [h(T̂ ) = k] =

=
1

N2

∑

k≤(1−δ)N

k2P [h(T̂ ) = k] +

+
1

N2

∑

k>(1−δ)N

k2P [h(T̂ ) = k]
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Fig. 1. Performance of the algorithm with a complete communication
graph ofN nodes for several values ofN . The a priori probabilityp that
a node is trustworthy is0.7.

Observe thatk2 ≤ N2 and that, whenk ≤ (1 − δ)N , then
k2 ≤ (1 − δ)Nk. Using these inequalities we obtain that

E[x2
N ] ≤ (1 − δ)

N

∑

k≤(1−δ)N

kP [h(T̂ ) = k] +

+
∑

k>(1−δ)N

P [h(T̂ ) = k] ≤

≤ (1 − δ)

N

N
∑

k=1

kP [h(T̂ ) = k] +

+P [h(T̂ ) ≥ (1 − δ)N ] ≤
≤ (1 − δ)E[xN ] + e−νN

Observe finally that

δE[xN ] = E[xN − x2
N ] + E[x2

N ]

−(1 − δ)E[xN ] ≤ E[xN − x2
N ] + e−νN

Since both term in the sum tends to zero, alsoδE[xN ] tends
to zero.

In the caseη > 0 one should considerr(T ) = N−w(T ) =
|{i|Ti = −1}| in place of w(T ) and repeat an analogous
argument.

B. Simulative Results

From a simulative point of view, we are interested in
measuring what is the fraction of nodes that are not correctly
identified, in expectation. IfS∗ is the ML configuration
returned by the algorithm, we are interested in the average
error rate

E

[ ||S∗ − T ||1
2N

]

= E

[

h(S∗)

N

]

where the expectation is taken over all levels of random-
ness. The first experiment is performed by simulating the
environment described by the Gaussian model presented in
section II-A, for various values ofN andσ2. The estimation



algorithm uses the simulated annealing approach, with an
exponential temperature coolingt(k + 1) = α t(k) of
parameterα = 0.91 starting from an initial temperature of
10N2. However, the choice of these parameters is not very
important and does not affect significantly the results.

As we can note in figure 1 the performance of the
algorithm decreases as does the quality of the a posteriori
information (measured by a larger variance on the opinions).
However it is remarkable that the algorithm is never outper-
formed by the optimal estimator that is based solely on the
a priori informationS∗

ap:

S∗
ap =

{

[1, . . . , 1] if p > 1
2

−[1, . . . , 1] if p ≤ 1
2

,

that clearly shows an average error rate of(1 − p).
To show the robustness of the algorithm proposed we

consider another reasonable model for (1), where the errors
are Bernoulli distributed. In particular we assume that if
(i, j) ∈ E then

cij =

{

TiTj with probability 1 − pe

−TiTj with probability pe
(9)

This means that if a node is trustworthy (Ti = 1), thencij =
Tj with probability 1 − pe, while the contrary holds when
Ti = −1. Thus the parameterpe represents the probability
for a trustworthy node of misjudging a neighbor.

The results obtained with various error probabilitiespe

and various networks sizes are shown in figure 2. The trust
estimation algorithm uses a value of

σ2 = E[(cij − TiTj)
2] = 4pe (10)

and it shows a good performance at least untilpe approaches
0.5. The results are comparable with those obtained with
model (2), when the variance of the error on the opinions is
the same according to equation (10). However whenpe >
0.5, on average there are more wrong opinions than correct,
and the algorithm is outperformed by the one based solely
on the a priori information. The average error rate shows a
sharp phase transition phenomenon aroundpe = 0.45, that
is typical of spin glass systems.

These results can again be interpreted in the framework
of Spin Glass theory. In particular in [4] it is shown that the
Spin glass qualitative behavior relies on weak hypothesis on
the distribution of the couplingscij in equation (4), that we
assumed to be Gaussian. This fact ensures a great degree of
robustness, as it is confirmed by our simulative analysis.

CONCLUSIONS

The local interactions on which the algorithm is based
are characterized by several levels of randomness, both
unavoidable because modeling the uncertainty in the opinions
that the nodes have on each other and artificially introduced
by the algorithm in the voting rule. Despite that, a predictable
and ordered global behavior is obtained, as suggested by Spin
glass theory models developed by physicists.

In our opinion this concept might play a fundamental
role in the design of protocols for decentralized settings
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Fig. 2. Performance of the algorithm with a complete communication graph
of N nodes for several values ofN and opinions generated according to
model (9). The a priori probabilityp that a node is trustworthy is0.7.

where little is known or can be assumed on the behavior
of individual nodes, but it is necessary to obtain a desired
ordered behavior of the network as a whole.

In this perspective statistical physic tools and more gen-
erally theories about disordered systems have already been
successfully applied to the study of collective animal be-
havior and flocking. This case study on trust management
represents a first attempt to lift the use of these tools to a
design perspective from an engineering point of view.
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