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Abstract— We study large population stochastic dynamic
games where the so-called Nash certainty equivalence based
control laws are implemented by the individual players. We first
show a martingale property for the limiting control problem of a
single agent and then perform averaging across the population;
this procedure leads to a constant value for the martingale
which shows an invariance property of the population behavior
induced by the Nash strategies. The situation of a new agent
joining the population is also analyzed.

I. INTRODUCTION

Noncooperative dynamic game theory has attracted a long

lasting research interest for decades. In such games, the

states of the players (also called agents) are governed by

certain dynamics and each agent chooses its strategy in a

process of interaction with other players. The most basic

formulation takes the form of two-person zero-sum dynamic

games, and the classical solution notion is saddle strategies

[15]. By extending to a general N-person situation, one can

assign each player with its own cost function and adopt Nash

equilibrium strategies as a basic solution scheme.

For noncooperative dynamic games, when each agent has

perfect state information for all agents involved, a well

known approach is to study feedback Nash strategies and

employ dynamic programming to examine necessary condi-

tions for the associated strategies and individual costs [1].

In general, the complexity of this approach is high in the

case of many players, and the Nash equilibrium strategies,

if existing, involves high implementational complexity since

each player needs the state information of all other players.

On the other hand, in many social, economic and engi-

neering scenarios [8], [9], [10], [17], [16], it is typical to

have a large number of agents performing decision-making,

and a characteristic feature of these systems is that each

agent faces the average influence of the overall population

while receiving a negligible impact from any other specific

agent; also, relevant vaccination game models arise in public

health research [2], [5]. Motivated by these phenomena, in

our earlier work we formulated a class of stochastic dynamic

games with many players and weak coupling. For obtaining

low complexity solutions, the so-called Nash certainty equiv-

alence (NCE) methodology has been developed in a series

of works [10], [12], [13], [14], [11]. The key idea of this

methodology is to specify a certain consistency relationship
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between the individual strategies and the mass effect (i.e.,

the overall effect of the population on a given agent) within

the population limit, and each decision-maker can ignore

the fine details of the behavior of any individual player by

only focusing on the overall impact of the population. This

procedure leads to decentralized strategies for the individual

players in a large but finite population.

In the NCE methodology, each agent essentially solves a

local optimal control problem. And on the other hand, in the

stochastic optimal control literature, it is well known that

under very mild conditions, the sum of the past cost calcu-

lated up to the current time along the optimal state-control

and the future optimal cost is given as a martingale [4], [6].

In contrast to the usual HJB equation characterization of the

value function, this martingale representation reveals sample

path properties for the optimally controlled process.

By extending the martingale results in optimal control to

the population limit of the dynamic game and averaging

across the population, one obtains a deterministic martingale

and hence a constant value over time. This gives the so-

called invariance property involving the instantaneous cost,

the value function and the empirical distribution function

of the states of all agents. In other words, we obtain an

invariance property associated with the controlled population

behavior when the NCE strategies are implemented.

In a further step, we address the issue of time-varying

population on an infinite time horizon. We will focus on the

LQG case and analyze the entry adaptation of a new player

joining a group.

II. THE STOCHASTIC DYNAMIC GAME MODEL

In a population of N agents, consider the dynamics for an

individual agent

dzi(t) = (1/N)
N

∑
j=1

fai
(zi(t),ui(t),z j(t))dt + σdwi(t), (1)

1 ≤ i ≤ N, t ≥ 0,

where {wi,1 ≤ i ≤ N} denotes N independent standard

scalar Wiener processes and ai ∈ R is a dynamic parameter

indicating the type of agent i. The state variable zi and control

ui are each a scalar, and the initial states {zi(0),1 ≤ i ≤ N}
are mutually independent and also independent of {wi,1 ≤
i ≤ N}. In addition, E|zi(0)|2 < ∞. The diffusion coefficient

σ > 0 is a constant. The associated cost function is given as

Ji = E

∫ T

0
(1/N)

N

∑
j=1

g(zi(t),ui(t),z j(t))dt. (2)
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We note that our analysis may be easily generalized to

deal with variants of the set of costs (2). For the system

configuration z = (z1, · · · ,zN), define the empirical distribu-

tion εz = (1/N)∑N
i=1 δzi

where δ• is the Dirac measure. We

introduce a set of costs of the form

J̃i = E

∫ T

0
g̃(zi(t),ui(t),εz(t))dt, (3)

where εz(t) = (1/N)∑N
i=1 δzi(t). Here g̃(·, ·, ·) may be rep-

resented as a function from R×U ×R
N such that under

the permutation of all other entries in (z1, · · · ,zn) except zi,

g̃ remains the same value when (zi,ui) is given. It can be

checked that (3) includes the cost (2) as a special case.

For simplicity of exposition, in this paper, the general

formulation of the game will be based upon the cost (2).

Let ui(·) denote a control input on [0,T ], and ui(t) its value

at time t from a closed set U ⊂ R. Each ui(·) is adapted to

the σ -algebra σ(zi(0),wi(s), s ≤ t,1 ≤ i ≤ N).
The sequence {ai, i≥ 1} takes values from a finite set A ,

{θ1, · · · ,θK}, and denote the empirical distribution function

FN({θk}) = (1/N)
N

∑
i=1

1(ai=θk)
.

We assume the existence of a limit empirical distribution

function F on A for the sequence {FN ,N ≥ 1} and denote

π = (π1, · · · ,πK) where πk = F({θk}) = limN→∞ FN({θk}).

A. Interacting Particle Systems

In an interacting particle (IP) system, the state evolution

of an individual particle is affected by an empirical average

of coupling terms involving all other particles. Mathemati-

cally, this leads to a set of weakly coupled diffusions, each

describing the motion of a single particle. We introduce the

following dynamics [7] in the form of N coupled stochastic

differential equations (SDE):

dxi(t) = (1/N)
N

∑
k=1

b(xi(t),xk(t))dt + σdwi(t), (4)

1 ≤ i ≤ N, t ≥ 0,

where b(·, ·) is a function from R
2 to R, N is the number

of particles and all xi’s have i.i.d. initial conditions at t =
0. Here we assume xi is a scalar although the modelling

is also applicable to the case of vector particle states. The

noises {wi,1 ≤ i ≤ N} are N independent Wiener processes

independent of the initial conditions xi(0), 1 ≤ i ≤ N.

For this class of particle models, heuristically one may

approximate the aggregate coupling term in terms of an

expectation over a typical individual’s probability distribution

function which evolves with time. This is based upon the fol-

lowing intuition: as the number of particles grows to infinity,

the collective impact of all particles on a given particle is

averaged into a deterministic effect. More specifically, as N

tends to infinity, the individual dynamics may be written in

the limiting form:

dx(t) = b[x(t),µt ]dt + σdw(t), t ≥ 0, (5)

which is the celebrated McKean-Vlasov (M-V) equation

[18]. Here b[x,νt ] =
∫

b(x,y)νt(dy) for a probability distribu-

tion νt on R. The noise w(t) may be determined in different

ways. For instance, if we intend to approximate x1(t) in (4)

by x(t), we may set w(t) = w1(t) and x(0) = x1(0) in (5).

Definition 1: A pair (x(t),µt), t ≥ 0, is called a consistent

pair if x(t) is a solution to the SDE (5) and µt is its

distribution at time t, i.e., P(x(t) ≤ α) =
∫

(−∞,α ] µt(dy) for

all α ∈ R and t ≥ 0.

By introducing the density function pt(x) for µt (or x(t)) in

a consistent pair, one may recast (5) in the form of a Fokker-

Planck equation whose coefficients depend upon pt(x) itself.

B. Related Notation for the Large Population Game

Let µo
t , (µ1

t , · · · ,µK
t ) for 0 ≤ t ≤ T , where

each µk
t is a probability distribution on R. Define

fa[x,u,µo
t ] = ∑K

i=1 πi

∫

R
fa(x,u,y)µ i

t (dy), and g[x,u,µo
t ] =

∑K
i=1 πi

∫

R
g(x,u,y)µ i

t (dy). Here fa[x,u,µo
t ] and g[x,u,µo

t ]
may be viewed as functions from R×U × [0,T ] to R.

III. THE NASH CERTAINTY EQUIVALENCE BASED

STRATEGIES

The basic idea for circumventing the dimensionality dif-

ficulty to the game problem (1)-(2) is as follows. Similar

to the approximation of weakly coupled diffusions by the

McKean-Vlasov equation, we use K probability measures

to approximate the effect of K classes of agents. Next, the

dynamics and cost of agent i can be approximated using its

own state, control and the above K probability measures.

Note that these measures are only assumed at this stage

and must still be determined. We complete the procedure

by requiring that the individual local optimal reactions will

collectively produce the same set of probability measures

in the closed-loop system; this is essentially to extend

the consistency relationship in the original McKean-Vlasov

equation to the optimal control situation. We call this scheme

of control synthesis as the NCE methodology.

Following [14], we introduce the NCE based equation

system

dxi(t) = fai
[xi(t), ûi(t,xi(t)),µo

t ]dt + σdwi(t), (6)

−
∂vai

(t,xi)

∂ t
= min

ui∈U

{

fai
[xi,ui,µo

t ]
∂vai

(t,xi)

∂xi

+ g[xi,ui,µo
t ]

}

+
σ2

2

∂ 2vai
(t,xi)

∂x2
i

, (7)

ûi(t,xi) , ϕai
(t,xi)

= arg min
ui∈U

{

fai
[xi,ui,µo

t ]
∂vai

(t,xi)

∂xi

+ g[xi,ui,µo
t ]

}

, (8)

where 0 ≤ t ≤ T and µk
t denotes the distribution of xi(t) in

(6) when ai = θk. In (7), vai
(t,xi) is the value function for the

associated optimal control problem in the population limit.

An alternative method to characterize the closed-loop
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behavior is to express (6) via a Fokker-Planck equation:

∂ pai
(t,xi)

∂ t
=−

∂
{

fai
[xi, ûi(t,xi),µo

t ]pai
(t,xi)

}

∂xi

+
σ2

2

∂ 2 pai
(t,xi)

∂x2
i

, (9)

where pai
(t,xi), 0 ≤ t ≤ T , denotes the density function for

xi(t). Note that in (9), the density pai
(t,xi) should generate

the distribution µk
t (as a component in µo

t ) if ai = θk. The

description by (9) avoids sample path dependent information.

To distinguish from the original game model, a different

variable xi is used in (6), but the same driving noise wi

and initial condition zi(0) are used in both (1) and (6). We

note that (6) is interpreted in the generalized McKean-Vlasov

equation sense for multi-class particles, and the control law

ûi is a minimizer of the right hand side of (7). A solution to

the above McKean-Vlasov-HJB system consists of a triple

(xi(t),vai
(t,xi), ûi(t,xi)), t ≥ 0, representing the closed-loop

solution, the value function and the feedback control law.

A detailed analysis is developed in [14] about the existence

of a solution to the above equation system. This amounts to

a fixed point argument with certain nonlinear operators. In

this paper, we will focus on the large population behavior

subject to the optimal control laws of the individual agents

which are assumed to exist.

IV. A MARTINGALE PROPERTY OF THE POPULATION

A. The Optimal Control Problem

Before considering the game problem, as a preliminary

step, we first give a brief review of results on martingale

representation in optimal stochastic control. Consider the

control problem for a single agent

dz(t) = f (z(t),u(t))dt + σdw(t), 0 ≤ t ≤ T, (10)

where z(0) is independent of the standard Wiener process

w(t) and satisfies E|z(0)|2 < ∞. The cost function is J0 =
E

∫ T
0 g(z(t),u(t))dt. For simplicity, we restrict the analysis to

a scalar state x(t) and control u(t) taking values from a closed

subset U of R. A control u(·) is called admissible if u(t)∈U

and is adapted to the σ -algebra σ(z(0),w(s),s ≤ t). Assume

f is Lipschitz with respect to (z,u) and g ≥ 0 satisfies a

polynomial growth condition with respect to (z,u).

Let v(t,y) = infu(·) E
[

∫ T
t g(z(s),u(s))ds|z(t) = y

]

, where

t ∈ [0,T ], be the value function. In addition, we assume that

there exists an optimal control law u∗(t,z) ∈ C([0,T ]×R)
satisfying Lipschitz continuity in z, such that

v(t,y) = E

[

∫ T

t
g(z(s),u∗(s,z(s)))ds|z(t) = y

]

.

After assuming the existence of the optimal control law,

Lemma 2 below essentially follows from the optimality

principle. Its proof is similar to the method in [4].

Lemma 2: The process ξt ,
∫ t

0 g(z(s),u∗(s,z(s)))ds +
v(t,z(t)) is a martingale, where t ∈ [0,T ] and z(t) is the

closed-loop solution when the control law u∗ is applied.

Note that, based upon our assumption on f and u∗, the

closed-loop system for (10) has a unique strong solution.

B. The Martingale Property and Its Limiting Form

We now extend the martingale property to the controlled

McKean-Vlasov equation. Before so doing, we need to make

the existence and growth rate assumptions.

(A1) There exists a solution (xi(t),vai
(t,xi), ûi(t,xi)) to the

McKean-Vlasov-HJB system (6)-(8).

(A2) The closed-loop drift coefficient fai
(xi, ûi(t,xi)) is in

C([0,T ]×R) and Lipschitz continuous in xi.

(A3) Under the control ûi, g[xi, ûi(t,xi),µo
t ] is in C([0,T ]×

R) and has a polynomial growth rate with respect to xi.

Theorem 3: Suppose (A1)-(A3) hold. Then the process
∫ t

0 g[xi(s), ûi(s,xi(s)),µo
s ]ds+ vai

(t,xi(t)) is a martingale.

Proof: For t ∈ [0,T ], let ζt =
∫ t

0 g[xi(s), ûi(s,xi(s)),µo
s ]ds + vai

(t,xi(t)), and Ft be

the σ -algebra generated by (xi(s),s ≤ t). We have

E[ζt2 |Ft1 ] =E
[

∫ t2

0
g[xi(s), ûi(s,xi(s)),µo

s ]ds+ vai
(t2,xi(t2))|Ft1

]

=E
[

ζt1 +

∫ t2

t1

g[xi(s), ûi(s,xi(s)),µo
s ]ds+ vai

(t2,xi(t2))

− vai
(t1,xi(t1))|Ft1

]

.

On the other hand, given µo
s , ûi may be interpreted as a

usual optimal control. Hence, by the optimality principle,

we have vai
(t1,xi(t1))

= E
[

∫ t2
t1

g[xi(s), ûi(s,xi(s)),µo
s ]ds + vai

(t2,xi(t2))|Ft1

]

.

Hence E[ζt2 |Ft1 ] = ζt1 and this completes the proof.

Theorem 4: In addition to (A1)-(A3), we assume i.i.d.

initial conditions {xi(0),1 ≤ i ≤ N} with E|xi(0)|k < ∞ for

any finite k > 0. Then for all t ∈ [0,T ], the process

ΛN
t ,

1

N

N

∑
i=1

∫ t

0
g[xi(s), ûi(s,xi(s)),µo

s ]ds+
1

N

N

∑
i=1

vai
(t,xi(t))

converges in L2 to a constant value c, as N → ∞.

Proof: For µo
t satisfying (6)-(8), let µ i

t , 1 ≤ i ≤ N, be

its components. Theorem 3 implies

c =

∫ t

0

∫

R2

K

∑
i, j=1

πiπ jg(x,ϕθi
(s,x),y)µ j

s (dy)µ i
s(dx)ds

+
∫

R

K

∑
i=1

πivθi
(t,x)µ i

t (dx), 0 ≤ t ≤ T, (11)

where c is determined by the initial condition of the popu-

lation. Then the theorem follows by standard estimates and

the fact that {xi(·), i ≥ 1} are independent processes.

Define ḡt =
∫

R2 ∑i, j πiπ jg(x,ϕθi
(s,x),y)µ j

s (dy)µ i
s(dx) and

v̄t =
∫

R ∑N
i=1 πivθi

(t,x)µ i
t (dx). Then it follows that

dv̄t

dt
= −ḡt, 0 ≤ t ≤ T.

We may interpret ḡt as the instantaneous average cost over

the population limit at time t and v̄t is the average future

cost to go across the population. Thus (11) shows how the

forward propagation of the state distribution should preserve

this equality relation in terms of the instantaneous cost and

the future cost to go based upon the population averaging.
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C. The LQG System

Now we specialize the analysis to an LQG game. First,

let the individual dynamics be given as

dzi(t) = aizi(t)dt + bui(t)dt +(α/N)
N

∑
j=1

z j(t)dt + σdwi(t),

1 ≤ i ≤ N, (12)

and the cost for the ith agent is given as

Ji = E

∫ T

0

{

[zi(t)− (γ/N)
N

∑
j=1

(z j(t)+ η)]2 + ru2
i (t)

}

dt.

(13)

For simplicity, we assume the independent initial states zi(0)
have zero mean. For the dynamic parameters we make the

more general assumption that all ai ∈ A 0 where A 0 is a

compact subset of R. The dynamic parameters have a limit

empirical distribution, still denoted by F(a).
For (12)-(13), we introduce the auxiliary control problem:
{

dzi(t) = aizi(t)dt + bui(t)dt + α z̄(t)dt + σdwi(t)

Ji = E
∫ T

0

{

[zi(t)− z∗(t)]2 + ru2
i (t)

}

dt
(14)

where z̄,z∗ ∈ C[0,T ]. The tracking problem (14) may be

easily solved [3]. Write the Riccati differential equation

dΠi(t)

dt
+ 2aiΠi(t)−

b2

r
Π2

i (t)+ 1 = 0 (15)

with terminal condition Πi(T ) = 0. Also write the equation

dsi(t)

dt
+(ai−

b2

r
Πi(t))si(t)+ αΠi(t)z̄(t)− z∗(t) = 0, (16)

where the terminal condition is si(T ) = 0.

Finally, we introduce the equation

dqi(t)

dt
−

b2

r
s2

i (t)+ |z∗(t)|2 + 2α z̄(t)si(t)+ σ2Πi(t) = 0, (17)

where qi(T ) = 0.

The optimal control law is given as

ui(t) = −
b

r
(Πi(t)zi(t)+ si(t)).

It can be verified that the resulting individual optimal cost is

vi(t,x) = Πi(t)x
2 + 2si(t)x + qi(t)

when the initial time-state pair is (t,x) with t ∈ [0,T ].
Using the solution to the auxiliary tracking problem (14),

the NCE scheme may be expressed in a more explicit form:

dsa(t)

dt
+(a−

b2

r
Πa(t))sa(t)+ αΠa(t)z̄(t)− z∗(t) = 0, (18)

dz̄a(t)

dt
= (a−

b2

r
Πa(t))z̄a(t)−

b2

r
sa(t)+ α z̄(t), (19)

z̄(t) =
∫

a∈A 0
za(t)dF(a), (20)

z∗(t) = γ(z̄(t)+ η). (21)

Compared with the original NCE equation system (6)-(8),

here we only need the dynamics of the mean process of

the closed-loop for the individual agents, instead of the

controlled diffusion process or its Fokker-Planck equation.

We give a sufficient condition to ensure the existence and

uniqueness of a solution to the above equation system. For

a ∈ A 0, let Φa(t,s) = exp
{

−
∫ t

s (a− b2

r
Πa(τ))dτ

}

.

Theorem 5: There exists a unique solution to (18)-(21) if

sup
t∈[0,T ]

b2

r

∫

a∈A 0

∫ T

0
Φa(κ ,t)×

{

∫ T

κ
Φa(κ ,τ)[|α|Πa(τ)+ |γ|]dτ + |α|

}

dκdF(a) < 1,

where F is the limit empirical distribution and a ∈ A 0.

Now we end this section by computation with the concrete

parameter set A 0 = {θ1, · · · ,θK} where F({θk}) = πk, 1 ≤
k ≤ K. In equations (15)-(17), when ai = θk, we denote the

resulting solutions, respectively, by Πθk
(t), sθk

(t) and qθk
(t).

Then the invariance property translates into the form

c =
K

∑
k=1

πk

{

∫ t

0

∫

R

[

(x− z∗(τ))2 +
b2

r
(Πθk

(τ)x + sθk
(τ))2

]

×dFτ
θk

(x)dτ

+
∫

R

[x2Πθk
(t)+ 2xsθk

(t)]dF t
θk

(x)+ qθk
(t)

}

, (22)

where Fτ
θk

(x) denotes the state distribution at time τ for an

agent with dynamic parameter θk.

For the state distribution above, we assume the existence

of a density pt
θk

(x) with suitable regularity; then by taking

differentiation with respect to t on both sides of (22), we get

0 =
K

∑
k=1

πk

{

∫

R

[

(x− z∗(t))2 +
b2

r
(Πθk

(t)x + sθk
(t))2

]

pt
θk

(x)dx

+

∫

R

∂{[x2Πθk
(t)+ 2xsθk

(t)]pt
θk

(x)}

∂ t
dx +

dqθk
(t)

dt

}

. (23)

Due to the quadratic cost structure, the NCE scheme (18)-

(21) gives little information directly about the variance, or

spread, of the population behavior, but (23) provides such in-

formation by placing specific constraints on the propagation

of the state distribution.

V. VARIABLE POPULATION WITH RANDOM ENTRY TIME

For the random entry problem we consider an LQG model

with uniform agents. Since the individual cost is defined on

an infinite horizon, a discounted cost integrand is used.

We suppose that a system of N agents starts the game

from the initial time t = 0. Now assume the (N +1)th agent

joins at time τe (away from the time origin of the system),

but it does not know the value of τe although it may know

its statistical properties. At the system level, τe is treated as

a random variable and its value may be observed. However,

this value is generally unknown to the agent in question.

Such a situation easily arises in many practical scenarios. To

illustrate this point, we consider a queuing model where the

(N +1)th customer arrives with an exponentially distributed

time gap after the previous customer; but the new customer

does not know the value of the time gap unless the existing

customers can communicate that information to it.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeA05.1

124



Hence in this setting, the main problem is for the new

agent to adapt with respect to its random entry time. We

may term this as a clock free adaptation problem in that the

new comer has no information about the time origin at which

other players started their game.

A. Switched Dynamics due to Agent Entry

We assume that the entry time τe is bounded by a constant

and is a Markov time, i.e., for any t ≥ 0, {τe ≤ t} ∈ Ft ,

F (zi(0),wi(τ),1 ≤ i ≤ N,τ ≤ t). For 1 ≤ i ≤ N, let the

individual dynamics be

dzi =







azidt + buidt + αz(N)dt + σdwi, for t < τe,

azidt + buidt + αz(N+1)dt + σdwi, for t ≥ τe,

where z(N) = 1/N ∑N
i=1 zi and z(N+1) = 1/(N + 1)∑N+1

i=1 zi.

Thus, starting from τe, the previously existing agents will

receive a small impact from the new agent with its dynamics:

dzN+1 = azN+1dt + buN+1dt + αz(N+1)dt + σdwN+1, t ≥ τe,

where wN+1 is a Brownian motion (with the initial time t =
τe) which is independent of (w1, · · · ,wN).

For the first N agents, we accordingly use z(N+1) to modify

the cost integrand starting at τe to get

Ji , E

∫ ∞

0
e−ρt

{

[zi −Φ(z(N))1(t<τe) −Φ(z(N+1))1(t≥τe)]
2

+ ru2
i

}

(t)dt, (24)

where r > 0, Φ(y) = γ(y+η). The cost for the new agent is

JN+1 , E

∫ ∞

τe

e−ρ(t−τe){[zN+1 −Φ(z(N+1))]2 + ru2
N+1}(t)dt.

(25)

For 1 ≤ k ≤ N + 1, we may alternatively write

Jk(u1, · · · ,uN+1) to indicate the associated controls.

B. The LQG-NCE Equation System

We denote

Πa = (
b2

r
)−1

[

a− ρ
2

+
√

(a− ρ
2
)2 + b2

r

]

,

β1(a) = − ρ
2

+
√

(a− ρ
2
)2 + b2

r
, (26)

β2(a) = ρ
2

+
√

(a− ρ
2
)2 + b2

r
. (27)

Here Πa is the solution to the algebraic Riccati equation:

ρΠ = 2aΠ− b2

r
Π2 + 1.

To simplify the aggregation procedure we assume zero

initial mean for all agents, i.e., Ezi(0) = 0, i ≥ 1. The NCE

consistency requirement leads to the equation system:

ρsa =
dsa

dt
+ asa −

b2

r
Πasa + αΠaz̄− z∗, (28)

dz̄a

dt
= (a−

b2

r
Πa)z̄a −

b2

r
sa + α z̄, (29)

z̄ = z̄a, (30)

z∗ = Φ(z̄). (31)

See [12] for details on construction of this equation system

in an LQG context. Due to the uniform population, the mass

effect z̄ is given by any representative agent (i.e., by z̄a).

In (28) it is unnecessary to specify the initial condition

sa(0) for the bounded solution sa derived from optimal

tracking [12].

(H1) β1(a) > 0 and
|α |

β1(a)
+ b2(γ+|α |Πa)

rβ1(a)β2(a)
< 1, where

β1(a),β2(a) are defined by (26)-(27).

(H2) All agents have mutually independent initial con-

ditions of zero mean, i.e. Ezi(0) = 0, i ≥ 1. In addition,

supi≥1 Ez2
i (0) < ∞.

Theorem 6: [12] Under (H1)-(H2), the equation system

(28)-(31) admits a unique bounded solution.

In fact, z̄(t) and sa may be given in an explicit form (see

[12]). Let u0
i denote the optimal tracking based control law,

u0
i = −

b

r
(Πazi + sa), (32)

where sa is derived from (28)-(31).

For the control calculation of the new comer, the equation

system (28)-(31) may be used for computing the mass effect

z̄(t) off-line. Once the new agent joins the game, it needs to

re-construct a truncated version (started from that moment)

of z̄(t) based upon its online measurement of the population

mean z(N+1) which is now supplied as the additional infor-

mation in order to deal with the unknown entry time. Next, if

z(N+1)(t) is approximated by z̄(t), t ≥ τe, it can construct its

own control as a standard tracking problem by determining

the function sa appearing in (32).

C. Control Strategy for the New Agent

At the system level, (25) gives a well defined quantity once

the control inputs are properly selected and the condition

(x1, · · ·xN+1) at τe is given. In our problem setting, we first

take the control laws u0
i given by (32), for 1 ≤ i ≤ N, and

the remaining issue is to find a control law uN+1 which may

be implemented by the information of the (N + 1)th agent.

Heuristically, if the first N agents take the controls u0
i , 1≤

i ≤ N, we may effectively approximate the term Φ(z(N+1))
by a deterministic function z∗ and subsequently find a

suboptimal strategy uN+1 based upon tracking z∗. Intuitively,

the influence of the new agent is negligible, and we may use

(28)-(31) to determine z∗ for the set of uniform agents.

Denote λ1 = (ρ +α−
√

(ρ + α)2 + 4Θ)/2 < 0 where Θ =

β2(β1 −α)+ b2

r
(αΠa − γ) > 0. Since the initial value z̄(0) =

0 by (H2), it is easy to verify the relation

z̄(t) = z̄(τe)e
λ1(t−τe) +(1− eλ1(t−τe))z̄(∞)

for all t ≥ τe. However, the new agent has no means to know

the exact value of z̄(τe) as the entry time is unknown. To

circumvent this difficulty, we approximate the value of z̄(τe)
by the population mean sampled at τe as follows:

z̄(τe) ≈ z(N+1)(τe) =
1

N + 1

N+1

∑
i=1

zi(τe), (33)

which is the measurement at the entry time. This quantity is

available to the new agent without knowing the entry time
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τe (relative to the system time origin) since it is marked by

the event that the new player commences its play.

Thus, we take the approximation

z̄(t) ≈ z(N+1)(τe)e
λ1(t−τe) +(1− eλ1(t−τe))z̄(∞). (34)

Now by use of (33) and a time shifted version of (28),

we construct the corresponding approximation for sa with a

time shift, as a function on [τe,∞) in the form:

ŝ(t) = [z(N+1)(τe)− z̄(∞)](αΠa − γ)
eλ1(t−τe)

β2 + |λ1|

+
z̄(∞)(αΠa − γ)

β2

−
γη

β2

.

The new player’s control law is given as

u∗N+1(t) = −
b

r
(ΠazN+1 + ŝ)(t) (35)

for t ≥ τe. The control (35) may be implemented since it

depends upon z(N+1)(τe) and the post-entry time t − τe both

assumed to be known by the new agent.

For the equilibrium analysis, we use the control sets

Ui, 1 ≤ i ≤ N, consisting of Lipschitz continuous feedback

controls using (t,z1(t), · · · ,zN(t)) and zN+1(t) (when t ≥ τe),

for the first N agents. Each control uN+1 in UN+1 satisfies

that it is continuous in (t − τe,z
(N+1)(τe),z1(t), · · · ,zN+1(t))

and is Lipschitz in (z1(t), · · · ,zN+1(t)). The definition for

ε-Nash equilibria in [10], [13] may be adapted to the variable

population model in an obvious manner. For simplicity in

Theorem 7 below we assume zero initial condition for zN+1

at τe, although this may be relaxed.

Theorem 7: Under (H1)-(H2), the set of controls

(u0
1, · · · ,u

0
N ,u∗N+1) is an ε-Nash equilibrium where ε → 0,

as N → ∞.

Proof: (Sketch) — Let C > 0 (or C1) denote a generic

constant independent of N. Given u0
i , 1 ≤ i ≤ N, there exists

a fixed constant C and uN+1 such that

JN+1(u
0
1, · · · ,u

0
N ,uN+1) ≤C. (36)

For instance, we may take uN+1 = ūN+1(t) =
− b

r
[ΠazN+1(t) + sa(t − τe)] for t ≥ τe, and verify (36)

by basic estimates for the stable closed-loop system. Below

we restrict uN+1 to satisfy (36), and we can further get

E

∫ ∞

τe

e−ρ(t−τe)(z2
N+1 + u2

N+1)(t)dt ≤C1. (37)

Next we can show that

E|z̄(τe)− z(N+1)(τe)|
2 = O(

1

N
), (38)

E

∫ ∞

τe

e−ρ(t−τe)|z̄(t)− z(N+1)(t)|2dt = O(
1

N
). (39)

We get (38) by the closed-loop on [0,τe], and (39) by the

closed-loop of the N + 1 agents and the boundedness of sa.

Now we introduce the auxiliary control model

dz′N+1 = az′N+1dt + bu′N+1dt + α z̄dt + σdwN+1, t ≥ τe,

with the initial condition z′N+1(τe) = 0 and cost

J′N+1 , E

∫ ∞

τe

e−ρ(t−τe){[z′N+1 −Φ(z̄)]2 + ru′
2
N+1}(t)dt.

J′N+1 is minimized to get infJ′N+1 by a standard

optimal tracking control law. We can check that

JN+1(u
0
1, · · · ,u

0
N ,u∗N+1) = infJ′N+1 + o(1) and, furthermore,

by (37) we can show JN+1(u
0
1, · · · ,u

0
N ,uN+1) ≥

infJ′N+1 + o(1) with any other control uN+1 satisfying

(36). The ε-Nash equilibrium property of u∗N+1 then follows.

Similarly, we can show an ε-Nash equilibrium property for

u0
i , 1≤ i≤ N. The estimates may be obtained by forming the

closed-loop dynamics of N (resp., N + 1) dimension before

(resp., after) the entry time τe.

REFERENCES
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