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_ Abstract—We consider large population dynamic games and by the population and captures the indirect impact of other
illuminate methodological connections with the theory of inter-  ggents’ activity on a specific individual, and an illustrative
acting particle systems. Combined with the large population example is the oligopoly product advertising competition

modelling, a Nash Certainty Equivalence (NCE) Methodology . P .
is introduced for specifying the localized strategy selection model; see, e.g., [10], [11]. A brief literature review for

of a given agent within the Nash equilibrium setting. The dynamic games with weak coupling —as described by a small
NCE methodology closely parallels that found in the study of parameter — can be found in [14], [15], and those existing
uncontrolled interacting particle systems within the framework  work usually dealt with approximate numerical solutions of

of the McKean-Vlasov equation [19]: for both problems the Nash strategies for a few players [23].

solution is derived by focussing on a single generic individual In thi K di th tion bet isti
at a microscopic level and analyzing its interaction with the n this work, we dISCUSs theé connection between existing

ensemble of the other individuals of which it is itself, in a research on IP systems and a new optimization approach

statistical sense, a representative. which has been developed for large population stochastic
dynamic games in our recent work [13], [14], [15]. This
. INTRODUCTION also naturally suggests we look into methodological impli-

In the literature, there has existed little connection betweerations for large population dynamic games based on existing
the physics of interacting particle (IP) systems and stochastigethods in physics. In [13], [14], [15], the optimization
dynamic game theory, and they are generally regarded paradigm is based on the individual-mass interaction and the
independent areas. IP systems have long been a magubsequently developed state aggregation which extracts the
research focus in statistical physics with the objective afhass effect a given agent receives. This leads to a localized
understanding complex phenomena produced by many ragentrol synthesis generating decentralizelash strategies.
domly moving particles [7], [3], [18], and in a mathematical In order to have a streamlined presentation, we will mostly
context they have also provided a rich source for stochastieork on the game problem and discuss, when appropriate, its
analysis [9], [8], [17], [5], [6]- relation with the IP system and the general methodology de-

In contrast, stochastic dynamic game theory is concernegloped therein. The organization of the paper is as follows.
with a set of agents competing for individual interestdVe first introduce in Section Il the IP system with both finite
in a random environment. The modelling and analysis adnd infinite particles, thes agent stochastic dynamic game
dynamical systems with many competing agents is of imand its large population limit form. In Section Il we analyze
portance due to their wide appearance in socio-econontice solution for the infinite population game where the
and engineering areas [12], [11], [13], [20], [1], [2], asindividual strategy selection is based on the Nash Certainty
well as biological science [21], [22]. We are particularlyEquivalence (NCE) Methodology for the search of a fixed
interested in a large population of weakly coupled agentpoint mass effect measure, and we further illustrate the
The weak coupling in both dynamics and costs is used tonnection of this approach with the IP system modelling via
model the interaction of agents during competitive decisiorthe notion of consistent pair which has played a fundamental
making. Specifically, cost coupling is frequently encounteretble in the theory of infinite particle systems. In this setting,
in economic theory [20], [14], and also in wireless networkve designate the NCE Principle as the property that the
resource optimization [13]. On the other hand, dynamicesulting scheme is consistent in the sense that the prescribed
coupling is used to specify an environment effect generatamntrol laws produce sample paths which produce the mass

W _ _ _ effect with respect to which the individual optimal control
e B e e oo Conas (voLRe] defived. In Section IV we analyze the asympotc Nash
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I. 1P SYSTEMS AND DYNAMIC GAMES WITH WEAKLY andzo = z1(0). This leads us to the notion of a consistent
COUPLEDAGENTS pair for solving equation (2).

In this section we formalize three different models, i.e., the Defmmon 1:.The pair(z, ju) is caIIed_ a_conglst_ent_ pair
x; IS a solution to the SDE (2) and; is its distribution

IP systems, the finite and infinite population dynamic ame%.
y! ini infinite populati y icg fallt 0. O

For the two game problems, we only make brief description? ) _ . )
Note that by introducing the density functipp(x) for x,

here and leave further discussion in the subsequent sections. : )
one may recast (2) in the form of a Fokker-Planck equation

A. The interacting particle system whose coefficient depends gn(x) itself. For a detailed
. o nalysis on the existence and unigueness of a solution to (2),
In an IP system, the state evolution of an |nd|V|duaE

R L , ee [5]. For a weak convergence relation between solutions
particle is affected by an empirical average of coupling terms; (1) and (2), and large deviation analysis for, see [24]
with all other particles which are otherwise indistinguish-[g] and refere,nces therein ' '

able. In other words, when viewed from a given patrticle;
only the empirical distribution information for other parti- 5 1he stochastic dynamic game

cles matters. Mathematically, this leads to a set of weakly ) ) ) )

coupled diffusions, each describing the motion of a single e consider am dimensional stochastic system
particle, where an averaging across the population produces ' (n) , << N
the coupling term in the individual dynamics. Within thisgzl = (azi+bu;)dt + ¢ dt +odw;, 1<i<n, t20,

modelling framework, a single particle may be looked at as (3)
' v@ere {w;;1 < i < n} denotesn independent standard

a generic representative of all members in the model, an alar Wiener processes(™ = 1 " (=), and is a

E:nei%?\fgga‘?rgﬁj?@smlzriez ;ip;ltjr:?:sby the interaction c?Ceterministic function of;. Hence (™ may be looked at as

We introduce the following dynamics [9] in the form of a driving term imposed by the population. The initial states

. . . z;(0) are i.i.d. and independent §fv;, 1 < i < n}. In addi-
N coupled stochastic differential equations (SDE): tio(n)E|z,~(0)|2 <0 andpb 20, Egch state com}|;onent shall

1 X be referred to as the state of the corresponding individual
dr; = — E b(xi, xp)dt + odw;, 1<i< N, (1) (also to be called an agent or a player).
N . )
k=1 The individual cost for théth agent takes the form:

whereb(-,-) is a function fromR? to R, N is the number A o0

of particles and allz;'s are assumed to have iid. initial Ji(ui, ¢"™) = E/ e P! [(z — A(¢™))? + ruf]dt, (4)
conditions att = 0. Here we assume; is a scalar although 0

the modelling is also applicable to the case of vector partickhere ¢(™ = %,,22;1 ¢(z;) with ¢ : R — R, andp,r > 0.
states. The noise$w;,1 < i < N} are N independent To set the reference trajectory in a more general form, the
Wiener processes independent of the initial conditief{f),  nonlinear functionA : R — R is introduced to act on the

1 <i<N.Lete, = &>V 4, denote the empirical average ternp(™). The linking termA(¢(™) gives a measure

measure of the particle configuratiory , o, - - - ,zx) where of the average effect of the mass formed by all agents.
Jde is the Dirac measure. Then the drift term in (1) may be For the system configurationr = (z1,---,z,) at
expressed as a function of ande,. any given timet, define the empirical distributios, =

For this class of particle models, one can achieve éZ?:l d0.,. Then the coupling terms in the individual dy-
remarkable degree of economy in the description of popuramics and costs are functionalsagf
lation dynamics, by expressing the aggregate coupling termFor the above system, the main objective is to seek
in terms of an expectation over an individual's probabilityindividual control strategies and appropriately characterize
distribution function. This is based on the intuition that as théneir optimality, and a standard approach is to analyze
number of particles grows to infinity, there is a decouplingNash (equilibrium) strategies. However, within this basic
effect such that a single particle’s statistical properties cagoplution scheme, each agent needs to have state information
effectively approximate the empirical distribution produceaf all other agents, and this leads to a very high control
by all particles [7]. More specifically, a& tends to infinity, complexity under large-population conditions. This motivates
the individual dynamics may be written in the limiting form: us to search for lower complexity control strategies.

dze = blwe, pre]dt + odwy (2) . The limiting game with an infinite population

which is the celebrated McKean-Vlasov equation. Here For then agent dynamic game, as— oo, and following
blx, ] = [ b(z,y)ue(dy) for the probability distribution:;.  the complexity reducing strategies of statistical mechanics,
This equation, as well as its variants, has been extensivedyie may attempt to use a distributipp over a continuum to
studied in physics, stochastic analysis, and partial differentiapproximate the empirical distribution ¢f1, - - - , z,,). Thus
equations. The noise; may be determined in different ways. we write the dynamics with the new state variable

For instance, if one intends to approximatgin (1) by xzy,

one may setv; = w; as the driving Brownian motion in (2) dry = (az; + bug + Ylp)) dt + odw, ()



where the distribution ok is the same as that af(0) and A. Control synthesis based on the NCE methodology

the coupling term is)[y,] defined in the form: We introduce the function spacg([0, o0), R?) = {f =
_ (f17f2) : le € 0[0700)7Z = 172}’ and let |.ﬂoo =
Y] = Aw(y)”t(dy)- ) laxi_1 o sup,aq |fi(¢)]. We further definesy ([0, oo), R?) =

{f € C([0,00),R?), | f|so < o0}, which is a Banach space
- under the norm - |. The same notion - |, is also used
u S EB e P [(z, — A 2 4 2l at. (7)  for scalar functionz € C[0,00), i.e., ||oo = sup;>q |z(t)],

T, 9li) /o [l = A@uD)” + rec] dt, (1) and G, ([0, 00), R) is defined similarly. -
Whereqﬁ[ut} is determined by replacing by ¢ in (6). We Based on the NCE methodology, the contigl should
may write A(é[u:]) = A o ¢[us). be optimized as if it were acting with respect to exogenous

We give the interpretation for the controlled system dysignals¢? and ¢° (corresponding tay[u] and ¢[u.]) as
namics as follows. For a given feedback contrgl as a functions of timet. Subsequently, one may compute
function of (¢,2,), we look for a consistent paifz,, ;) and¢® using the closed-loop dynamics based on the control
such that the distribution of; in the closed-loop system which has been designed in the first step.
coincides withy, for all ¢ > 0. From this point of view, (5) ~ We setf; = ¥[u;] and fo = A o ¢[u,]. Since f; and f;
may be looked at as a controlled McKean-Vlasov equatiodre treated as exogenous signals, it is natural for the given
with the control performance measured by (7). agent to take an optimal tracking action; see [14], [15], [16]
for details about the motivation for such a control design.
We introduce the scalar algebraic Riccati equation:

And corresponding to (4), we set the cost function:

IIl. LoCcALIZED CONTROL SYNTHESIS VIA THE NCE
METHODOLOGY

This section is based on the infinite population model spec- pIl = 2all — 21‘[2 +1,
ified by (5)-(7), where the paifz;, 1) in (5) is interpreted r
as in the McKean-Vlasov equation (2). At first glance, onand the unique positive solution is given By= (%)‘1[(1—
might think of treating this limiting problem as an optimal ,

P24 b2
control problem: 3t W]-

(P) The objective is formulated as minimizin®(u, ¢[u])

To begin with, we assumefy, f2) € Cy([0, c0), R?), and
by a control law: such that any other control generates uch a property will be established in the proof of Theorem 2.
higher cost. Here:, explicitly controls ;.

fter taking (f1, f2) € Cy([0,00),R?) in the dynamics and
However, after further thinking, one would be cautiOLjOSt’ the individual’'s optimal tracking leads to the closed-
about such an approach if the limiting control proble

oop equation system:
is intended to give an approximate solution to the finite
population game problem in Section II-B. The reason is that
ue in (5) is intended to approximate the empirical distribution ds b?
€, in ann agent system with large. Hence, when the given PS =0 +as — 7Hs +I1f1 — fo, 9)
agent’s strategy is adjusted, its impactanis negligible. It

¢ ! ' ¢ YT where s € C,([0,),R). As long ass is bounded, as
is seen that (P) is not consistent with such a situation.  required in the optimal tracking solution, one can determine
Thus, we formulate the following approach:

a uniques on [0,c0) and the initial condition fors does
(Q) By the NCE Methodology, we mean the overall game,q need to be separately specified [15]. The control law

decomposition into an optimal control problem involving a,<qqciated with the above equation system (8)-(9) is
mass effect measure (treated as an exogenous quantity)

t > 0, and a closed-loop McKean-Vlasov e_quation; these Uy = —Q(Ha:t + 5). (10)
two parts are related to each other by the optimal control law r
derived from the former. The key step here is to construdd fact, (10) is the optimal control law for the auxiliary
a mutually consistent pair of (i) the mass effect and (iigontrol problem with the dynamics and cost given by
the iqdividual strgtegies such that the latter not only each dz; = (azs + bug + f1)dt + oduws,
constitute an optimal response to the mass effect but also o
collectively produce that mass effect. O J=E e P(x — f2)2 4 ru2]dt.

In this setting, we designate the NCE Principle as the 0
property that the resulting scheme is consistent in the senseDenote

b2 b?
dry = (a — —I)xydt — —sdt + frdt + odwy,  (8)
r r

that the prescribed control laws produce sample paths which 2 P P b2

produce the mass effect with respect to which the individual 81 = —a + —II = 3 +1/(a — 5)2 + —, (11)

optimal control is derived. It is a property of this overall 2 " 5

closed-loop behavior that each agent's optimal behavior with 3, — _; + ILH tp= g +1/(a— g)z + IL (12)
T T

respect to all other agents holds in the game theoretic Nash
sense. The solution to the overall problem, and hence tiNote that 3, > £. We may express the solution «
demonstration of the NCE Principle, or Property, relies o’ ([0, cc),R) to (9) in the forms(t) = [, e P2 (T[T f; —
finding a fixed point mass effect. fol](T)dr.



Now we write the closed-loop equation fo:

b2
dl‘t = (CL — 7H)£Ctdt + w[ﬂt]dt

AT A
= [ ] = Ao ol ) dr
+ odwy. (13)

which gives

B2 T — g1leo + Lalfo — g2)ac
L |f1 = 91loo + Lalf2 — 92|
r

B1532

. (15)

Hence

This equation may be regarded as a generalized McKean-| i1, (f,, fo) — Hy (g1, 92)|so = sup |Ev(z]) — By (a?)]
t>0

Vlasov equation in that at time the right hand side depends

on the future distribution of the state,, = > t¢. For

specifying a solution to (13), Definition 1 introduced for—

L b2 |fi — gileo + L — 92|00
< ﬁiflf|fligl‘oo+Lw7H |f1 gl‘ A|f2 g2|

B152 ’

the standard McKean-Vlasov equation may be adapted to \Ho(f1, f2) — Halgr, g2)]c0 = Sup|E¢(a?f) — E¢(z?)]
equation (13) in an obvious manner, and accordingly, we ’ ’ t>0 ! !

call (x4, u¢) an (individual-mass) consistent pair.

B. Existence of an individual-mass consistent pair

. 1_[|f1 _gl‘oo + LA|f2 _92‘00
B152 '

Ly b2
< 20 g+ Ly
<3 [f1 = g1leo + Lo~

For obtaining existence results, we make the assumptions:HenceH (f1, f2) is a contraction or€’y ([0, o0), R?) (with
(H1) The functionsA, ¢, ¢ are Lipschitz continuous with the norm|-|) by (H3), with a unique fixed point satisfying

Lipschitz constantdy, Ly, Ly, respectively. O
(H2) The constanp; > 0. O

2
(H3) (Lo V Ly) - [ + 55 (I + Ly)| < 1. o

H(fy, f3) = (fi,f3). Let xfl"f‘; be the corresponding
solution to (14). Themc{l’f2 and its marginal distribution
uy give a consistent pair. We see that=T"; o I'y(p*). O

Theorem 2:Assuming (H1)-(H3) hold, then there exists a Remark: The Lipschitz constantd.,, Ly, Ly provide a

consistent paifz;, ;) satisfying (13).
Proof. Letting (f1, f2) € Cy([0, o), R?), there is a unique
strong solution to the SDE,

2
dzy =(a — b—H)xtdt + fidt (14)
r

2 [e'e]

- %H/ e P20 (1) — Ao fo} drdt + odw,
t

with the fixed initial conditionzy. The solution is de-
noted asz/"/*, with marginal distributionu/*/>, ¢ > 0.
Denote ui/7? = Ty(f1, f2), which is a mapping from
Cy([0,00),R?) to the spaceM of probability distributions
pi. indexed byt € [0,00). For u. € M, let fi(t) = [u]
and f5(t) = ¢[w], and denote f1, f2) = I'2(u.).

We define H(fi,f2) = (Hi(f1,[f2), Ha2(f1,[f2)) =
Ty o T1(f1, f2) for (f1,f2) € Cu([0,00),R?). In fact,
Hy(f1, [>)(t) = E¢(a"), Ho(f1, f2)(t) = Eg(al7),
which are functions on0, co). It is easy to verify that
H;(f1, f2), i = 1,2, are continuous and bounded {fnoo)
by the Lipschitz continuity ofy and¢. HenceH =T'5 01"
gives a well defined mapping froifi, ([0, 00), R?) to itself.

Now we take (fi,f2) € Cp([0,00),R?), (g1,92) €

measure of the agent’s sensitivity to the population effect in
either the dynamics or costs. 0

It should be noted that in the nonlinearly coupled model,
an explicit construction for the operatdd is in general
unavailable, although it is well defined by a probabilistic
calculation. However, it is of interest to mention that for
the casey(r) = ax and ¢(r) = 2%, one may characterize
the consistent paifz;, ;) by using a finite dimensional
equation system involving deterministic functions [0noo)
by a similar fixed point procedure as in [13], [14], [15]. The
main reason is that if a consistent pait;, u;) exists, the
componentz, is Gaussian by (13); and therefore it can be
specified by its mean and variance processno).

To characterize uniqueness of the solution, we introduce
the class:C consists of all{(x:,u:) which satisfies the
conditions i) (x¢, u¢) IS a consistent pair to (13), iip[u.]
andy[u] are measurable functions 6fon [0, c0), and iii)
sup;>q fp [Ylpe(dy) < oo}

Corollary 3: Under the conditions in Theorem 2, there is
a unique solution(z;, ;) to (13) in the clas€.

Proof. Assume a solutionz}, ;) € C. Write fi(t) =
W[uy] and fo(t) = ¢[j] and we can show thattfy, f») €

Cy(]0,00),R?) and denote the two corresponding solutiong™, ([0, oo), R?) since|u)] = Ev () and ¢[u}] = E¢(x})

by zf = 2/ andz? = 2992, It follows that

dof — da? = = By(af — 29)dt + (fy — g1)dt
b2 >
- —H/ e RN, (1)drdt
,

t
whereA; , =TI(f1 —g1) — (Ao f — Ao g9) and the initial
condition satisfiegz! — 29]|,—o = 0. It follows that

t
of —af = / P (f - gr)(r)dr

b2 t 00
_7H/0/9 e =0 g=Ba(=OA - (\drdf

and z; is given by the linear equation (13). By the proof
of Theorem 2, we see théf,, f>) is the unique fixed point
determined therein. Thus, and henceu; coincide with the
solution obtained in Theorem 2, and uniqueness follo@s.

IV. AsYMPTOTIC NASH EQUILIBRIA FOR LARGE
POPULATIONS

We now employ the control strategy obtained in the
limiting system to the system ofi agents described in
Section II-B. We write

b
w=——(z+s), 1<i<n,  (16)
r



based on (10), where the associated, , f> are determined and our focus is on explicit calculation for the centralized
from the fixed point procedure in Theorem 2. We first shovsolution.
a stabilizing property of the control law (16).

Theorem 4:Assuming (H1)-(H3), there exists a constan
C independent of, such that for the closed-loop system We consider the casg(z) = 0, ¢(z) = (2 + ), and
under (16), we haveup, -, supg<,<o E22(t) < C. O A(z) = z. The state aggregation equation system resulting

We can further show the following approximation result.from the NCE methodology reduces to

A The Nash equilibrium solution

Lemma 5:Under (H1)-(H3) and the control law (16), as ds b2
n — oo, we have ps = +as — —Hs -z (29)
1 — 2 1 dz b2 b2
0<s;1<p E - Z [2:(t) — Ezi(t)] ‘ = O(E)’ a7 a =(a— 71_[)2' - (20)
T . 2 = 8(2) = (2 +), (22)
JSap Bl > [C(zi(t) = Clpe]] ’ = O(E), (18)  wherez is the mean of the state. Setting the derivatives to
= =1 zero, we write a set of steady state equations as follows
where the functior{ stands fory or ¢. O ﬁgs( )+ 2*(00) = 0

Now we state the asymptotic Nash equilibrium result; see s 22)
e.g. [14], [15] for the definition of-Nash equilibrium. B 5(00) — f12(c0) =

Theorem 6:Assume (H1)-(H3) hold. For a system of VZ( ) — 2"(00) = —n.
agents specified by (3)-(4), the set of control laws (16) i# can be verified tzhat under the conditions in Theorem 2 we
an e-Nash equilibrium wherd < ¢ — 0, asn — oo, i.e., have® = B281 — =2 > 0, and therefore (22) is nonsingular
the unilateral strategy change (allowed to take as a functi@nd has a unlque solutiofis(c0), z(c0), 2*(c0)). Denote

of (z1,---,2,), @as long as a closed-loop solution is well)\ _ V4o o
defined) of any given agent can produce a cost reduction for Proposr[2|on 7: [15] The unique bounded solutida, s) in
itself by at mosts > 0. 0 (19)-(20) is given by

V. EXPLICIT SOLUTIONS WITH LINEAR DYNAMICS 2(t) = 2(00) + (2(0) — z(m))em’

In this section we consider the case of linear dynamics ~v —all At
and compute the explicit solutions for two different control s(t) = s(00) + By — Mt (2(00) = 2(0))e™",
schemes. To simplify the analysis, the linear coupling only 2
appears in the costs as in [14]. where\; <0 andf; = —a+ T+ p. O

We first analyze the solution based on the NCE method- Proposition 8: Assume the existence and uniqueness of
ology which gives alecentralizectontrol law as each agent & set of feedback Nash strategies for each population size
only requires its own state. Next we consider a system of » > 1 and the conditions in Theorem 2 hold. Then titie
agents and compute the exact solution for the set of feedbagient’s feedback Nash strategy is given as

Nash strategies (under the specific definition in [4]) and b ,

examine its asymptotic behavior as the population size Wi = _;(Klzi + ZKZZJ' +s1), l<is<n,
increases to infinity. For a fixed, the resulting solution I#

is characterized by a coupled algebraic Riccati equation agghere K, = IT + O(%), =24 0( ) and

leads tocentralizedindividual control laws where each agent , ’ .

needs to know the states of other agents. By its definition, the b, _, p P b2y
equilibrium property holds in a strogg sensg since it requires >~ =T BB+ 5)7 - r] <0
the control to possess the Nash equilibrium property for - 1

subgames (from an#, to oo, with the attained state; (to), $1=— 2 m— tO0(=), co=1IL

1 < i < n, as the initial conditions). In the end we show that Tat et e "

asymptotically the two different optimization approaches arand moreover, if we set(™ = " | Ez, then z(n) —
equivalent; this indicates the decentralized strategy performs, 0( ), wherez is given by Proposition 7. O

as effectively as the centralized one. However, it should be Thus asymptotically the decentralized and centralized
pointed out that for more complicated coupling or wherontrol strategies lead to the same mass effeckee Ap-

the agents have different dynamic parameters, it is difficuffendix for the calculation associated with Proposition 8.
if not impossible to carry out the full information based

Nash strategy computation while the NCE based approach V|- DISCUSSIONS ON MORE GENERAL DYNAMICS

is powerful for dealing with more complicated models [15]. In the above analysis, the McKean-Vlasov equation for the
We note that unlike the standard optimal control case, thyynamic game is linear in the state, which is separated

existence and uniqueness result for feedback Nash stratediesn the nonlinear coupling term in the drift. Such a struc-

for LQG games is far less complete. In our analysis, waural property makes it possible to have explicit calculation

assume there is a unique set of feedback Nash strategaghe individual control via optimal tracking. Moreover, with



the separation of; from the coupling term, the mass effectthank Tamer Basar for discussions on the Nash certainty
may be approximated by a deterministic function. All thesequivalence principle and full information based feedback
features combined together simplify the existence proof fddash equilibria.

the consistent pair. For future work, there exist different ways
for generalizing our methodology to more general models:

« There drift term is given in the form of summation of [
Y(z;,z;), and the control term is given as a nonlinear
function of its own state and control. In general, to deal
with such a situation, one needs to develop more gener:iiZ
fixed point techniques for existence analysis.

Also, it is of interest to study the steady state behavior
of the population distribution evolution. [

« The modelling of non-uniform agents in the setting of [4]
McKean-Vlasov equations. One potential approach is
to re-construct the driving distribution in the McKean-
Vlasov equation as the averaging of a family (indexed
via a parameter set) of distributions, which mimics thel6]
aggregate behavior of multi-class interacting particles.

Below we give a heuristic description of applying the NCE [7]

methodology to the nonlinear model

(8]

dxy = by, pe]dt + g, ug)dt + odw, (23)
where bz, 1] is defined as in the uncontrolled McKean- 19

Vlasov equation (2). The range spaceupfis denoted as the

setU. The cost function is given as (10]
oo [11]

J = E/ e Pl [we, o] + Lo, up) Yt (24)
0 [12]
wherel [z, u] = [, 11 (2, y)pe(dy), andly, I, are determin- [13]

istic functions. We assume sufficient regularity of the system
(in terms of the dynamics and cost) to ensure:

(i) There exists a distribution; such that the HIB equation [14]

, . ov
pV((E,t) _E—"_gg(r}{[b[xvut] +g(x,u)}% 5]
. a2 9*v
o] + o) |+ S5 (25)
has a smooth solutiol (¢, ) and the optimal control
u = u*(t,x) is continuous int, z) and Lipschitz inz;  [16]
(i) For the controlu; = u*(t,z) in (23), there exists a
strong solution:; with the distributiony;. We have the
closed-loop equation [17]
dxy = by, pf)dt + g(ag, u*(t, 0))dt + odw, (26) [18]
[19]

which induces a Fokker-Planck equation fg.

The HJB equation (25) results from the NCE based control
synthesis whedu*, ¢ > 0} is first presumed to be known. By [20]
the above procedure, the limiting game problem is decon[m]
posed into a stochastic control problem to be solved algng
and a specification of the density fof by a Fokker-Planck [22]
equation induced from the closed-loop dynamics. 23]
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APPENDIX: COMPUTATION VIA THE DIRECT APPROACH By (A.1), we have the following coupled equations:
b? 202

2 7\2
For then agents, their value function§l;,1 < i < n} pK1 = 20K, — *Kl r —Ki(n—1)+ (1~ ﬁ) ’
are characterized by the HIB equation system as follows b2 b> 9
pK2 = QCI,KQ — 7K1K2 — 7[K1K2 + K2 (n — 2)]
TV, 107V, 0TV, b? 7\
- ¢ _ 'B. B ¢ — — Ky K3 + KoK -2)-(1=—=)—
pVi = 8:5 Az — = BBl - l 22 3+ 22 an=2)] =1 —-)—,
n_ AT T/ b 2b
0 Vi 6 Vi pK3 = 2aK3 — *Kz - 7[K1K3 + KoKy (n —2)] + (7)27
o oo Oz Oz b2 b2 n
52 pKy = 20K, — —K2 — —[K3Ks + K4K| + K4 Ko(n — 2)]
+27CTCiw + 2H;z + D + 7 y "

b
= — KKy + KoK + Ko Ka(n = 2)] +(%)2.

For the LQG model of uniform agents with cost coupling: We look for a solution in the form:

c 1 c 1
K11010+£+0(5), K2:E2+O(ﬁ)7
A=al,, Bi=ber, D= (ym)? . +(1) K% aol) (a3
= — o\— ). .
01:[1_1,_1’...7_1? 57 n? LT 2 n?
" % v " Yor By use of the equation foK';, we have
Hl = _777[[1 Ty T Ty a_i] )
n n n b2 5
pPC10 = 2(1610 — 7010 + 1,

wheree; is theith unit vector in the canonical coordinate 22 22
of R™. For agent;, the coefficient{C;, H;) are determined pci1 = 2acyy — —C1cn — 702 —27.

easily. We seek a solution of the forti(z) = =7 Pz +
QSiTx + g, where P, > 0 is ann x n matrix, andsS; € R".
In the following we consider the particular indéx= 1. It is 2b2 b2

And based onK, we have

— 2
easy to show thaP; is described by the equation pez = 2acy — =, €l = 6 .
Finally, the equations fok; and K, lead to
1 1 —
P, =P A+ A"P,— —-P BB P, -~ - P,B;BP; b? 202
PEY 14+ 11— bbby TZ 15585 I pes = 2acs — —c2 — ——[c1ocs 4 caca] + 2,
J#1 r T
1 o - - _ 5 b? 2b2[ terea] 4
- > PB;Bl P +ClCy. (A1) pea = 2acq — — c ~lerocs +eaca 97
3#1

Note that we may add the terﬁ;;i and% in (A.3), leading
And to two additional equations involving; and ¢ linearly.
However, these two equations may be eliminated by simply
taking ¢4 = ¢} = 0.

pSy = AS; — 1P1B131TS1 _ lz plEijng By using the notation in the previous sections, we express
T T
b b
1« T co=M=(=)" a2 ( —£)2+— > 0,
— = P;B;B]'S + Hi. (A.2) r 2 2
" ]#1 b2

b2
02_(7«)1[(&1 ) (51+g)2—:1<0»
By use of symmetry, we may write

where in calculating:; we exclude the
since for a fixedn, ¢, should vanish wher is 0. Hence

square root case

K Ky Ky -+ K> S
Ky Ky Ky -+ Ky S12 b2 ) P b2y
P = Ky Ky Ks -+ Ky .S = S12 €11 = —{(T) (B + ) (514‘5)2—7
; : ; 1
Ky Ky Ky -+ Ks Sio +7}X(61+5) <0,
2
= v _LCQ
and the matrices corresponding to other agents are deter-* — 2/ (61 + 202 - vy
mined in an obvious manner. 1773 T



and finally, and in addition,z(co0) = %

B1B2

o B2 A2 — Y this verifies the consistency.

r

C3 = 1-— .
( (ﬁ1+§)2_bﬂ Tl op+2B

r

Sincec, < 0 and we can further checked thet — @ > 0,
it follows thatcs > 0 andcy > 0.
For (A.2), we now write the reduced order equations:
b2 b2
pS11 = aSi1 — 7K1511 - 7K25’11(n —1)
b2

= K25 —1) — (1 - %), (A.4)
b2 b2
pSi2 = aSia — 7K2511 — 7[K4511(n —2) + K3511]
b2 2
— K181 + KaSia(n - 2)] + % (A.5)

Let
b2 b?
All = —a -+ 7K1 +p+ 7K2(n — 1)7
b2
Alg = 7K2(n — 1),

2

b
Aoy =

—[K2 + K3 + Ka(n — 2)],
r

b2 b?
AQQ = —a -+ 7K1 —|—p—|— 7K2(’FL — 2),

2
11—y, py=-11
n n
We may write equations (A.4)-(A.5) in the compact form:
0=A11511 +A12512 + Dy,

0= Ag1511 + A22S12 + Ds.

Dy = yn(

We have
AD) AP
Sn= —F—oDi1+—5D2
A |A
M 1
= — + O(-),
_a—l—gclo—i—p—l— %CQ (n)

Where|A| = A11A99 — A12Ao;.
Now we may express the feedback Nash equilibrium
strategy in the form

b
i =——(Kiz; Kox; + 511).
U r( 1% + E 22 + S11)

i
The dynamics foe(™) = 15" Bz, is
b2 b2(n — ].) . b2S11

E(n) = (a — le — KQ)Z(n)
r

r

where the initial condition i£(™(0) = 0. As n — oo, we
have the limit solutiorz.

z =

ynb® ! —(1- e—(ﬂﬁ*%)t).
N

It can be verified that

bey P \/p2 +4(B182 — )

—ﬁl—T: D) = A1,

in Proposition 7. And
0



