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Abstract— We consider large population dynamic games and
illuminate methodological connections with the theory of inter-
acting particle systems. Combined with the large population
modelling, a Nash Certainty Equivalence (NCE) Methodology
is introduced for specifying the localized strategy selection
of a given agent within the Nash equilibrium setting. The
NCE methodology closely parallels that found in the study of
uncontrolled interacting particle systems within the framework
of the McKean-Vlasov equation [19]: for both problems the
solution is derived by focussing on a single generic individual
at a microscopic level and analyzing its interaction with the
ensemble of the other individuals of which it is itself, in a
statistical sense, a representative.

I. I NTRODUCTION

In the literature, there has existed little connection between
the physics of interacting particle (IP) systems and stochastic
dynamic game theory, and they are generally regarded as
independent areas. IP systems have long been a major
research focus in statistical physics with the objective of
understanding complex phenomena produced by many ran-
domly moving particles [7], [3], [18], and in a mathematical
context they have also provided a rich source for stochastic
analysis [9], [8], [17], [5], [6].

In contrast, stochastic dynamic game theory is concerned
with a set of agents competing for individual interests
in a random environment. The modelling and analysis of
dynamical systems with many competing agents is of im-
portance due to their wide appearance in socio-economic
and engineering areas [12], [11], [13], [20], [1], [2], as
well as biological science [21], [22]. We are particularly
interested in a large population of weakly coupled agents.
The weak coupling in both dynamics and costs is used to
model the interaction of agents during competitive decision-
making. Specifically, cost coupling is frequently encountered
in economic theory [20], [14], and also in wireless network
resource optimization [13]. On the other hand, dynamic
coupling is used to specify an environment effect generated
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by the population and captures the indirect impact of other
agents’ activity on a specific individual, and an illustrative
example is the oligopoly product advertising competition
model; see, e.g., [10], [11]. A brief literature review for
dynamic games with weak coupling – as described by a small
parameter – can be found in [14], [15], and those existing
work usually dealt with approximate numerical solutions of
Nash strategies for a few players [23].

In this work, we discuss the connection between existing
research on IP systems and a new optimization approach
which has been developed for large population stochastic
dynamic games in our recent work [13], [14], [15]. This
also naturally suggests we look into methodological impli-
cations for large population dynamic games based on existing
methods in physics. In [13], [14], [15], the optimization
paradigm is based on the individual-mass interaction and the
subsequently developed state aggregation which extracts the
mass effect a given agent receives. This leads to a localized
control synthesis generating decentralizedε-Nash strategies.

In order to have a streamlined presentation, we will mostly
work on the game problem and discuss, when appropriate, its
relation with the IP system and the general methodology de-
veloped therein. The organization of the paper is as follows.
We first introduce in Section II the IP system with both finite
and infinite particles, then agent stochastic dynamic game
and its large population limit form. In Section III we analyze
the solution for the infinite population game where the
individual strategy selection is based on the Nash Certainty
Equivalence (NCE) Methodology for the search of a fixed
point mass effect measure, and we further illustrate the
connection of this approach with the IP system modelling via
the notion of consistent pair which has played a fundamental
role in the theory of infinite particle systems. In this setting,
we designate the NCE Principle as the property that the
resulting scheme is consistent in the sense that the prescribed
control laws produce sample paths which produce the mass
effect with respect to which the individual optimal control
is derived. In Section IV we analyze the asymptotic Nash
equilibrium property for the decentralized strategy obtained
in Section III. Section V considers the special case of linear
cost coupling which leads to an explicit solution to the NCE
based approach. In addition, we examine the asymptotic
behavior of the full information based feedback Nash equi-
librium strategies, establish a consistency relationship with
the NCE based approach, and discuss the limitation of the
full state based scheme.



II. IP SYSTEMS AND DYNAMIC GAMES WITH WEAKLY

COUPLED AGENTS

In this section we formalize three different models, i.e., the
IP systems, the finite and infinite population dynamic games.
For the two game problems, we only make brief descriptions
here and leave further discussion in the subsequent sections.

A. The interacting particle system

In an IP system, the state evolution of an individual
particle is affected by an empirical average of coupling terms
with all other particles which are otherwise indistinguish-
able. In other words, when viewed from a given particle,
only the empirical distribution information for other parti-
cles matters. Mathematically, this leads to a set of weakly
coupled diffusions, each describing the motion of a single
particle, where an averaging across the population produces
the coupling term in the individual dynamics. Within this
modelling framework, a single particle may be looked at as
a generic representative of all members in the model, and
the system property is largely captured by the interaction of
an individual and the mass of all others.

We introduce the following dynamics [9] in the form of
N coupled stochastic differential equations (SDE):

dxi =
1
N

N∑

k=1

b(xi, xk)dt + σdwi, 1 ≤ i ≤ N, (1)

whereb(·, ·) is a function fromR2 to R, N is the number
of particles and allxi’s are assumed to have i.i.d. initial
conditions att = 0. Here we assumexi is a scalar although
the modelling is also applicable to the case of vector particle
states. The noises{wi, 1 ≤ i ≤ N} are N independent
Wiener processes independent of the initial conditionsxi(0),
1 ≤ i ≤ N . Let εx = 1

N

∑N
i=1 δxk

denote the empirical
measure of the particle configuration(x1, x2, · · · , xN ) where
δ• is the Dirac measure. Then the drift term in (1) may be
expressed as a function ofxi andεx.

For this class of particle models, one can achieve a
remarkable degree of economy in the description of popu-
lation dynamics, by expressing the aggregate coupling term
in terms of an expectation over an individual’s probability
distribution function. This is based on the intuition that as the
number of particles grows to infinity, there is a decoupling
effect such that a single particle’s statistical properties can
effectively approximate the empirical distribution produced
by all particles [7]. More specifically, asN tends to infinity,
the individual dynamics may be written in the limiting form:

dxt = b[xt, µt]dt + σdwt (2)

which is the celebrated McKean-Vlasov equation. Here
b[x, µt] =

∫
b(x, y)µt(dy) for the probability distributionµt.

This equation, as well as its variants, has been extensively
studied in physics, stochastic analysis, and partial differential
equations. The noisewt may be determined in different ways.
For instance, if one intends to approximatex1 in (1) by xt,
one may setwt = w1 as the driving Brownian motion in (2)

andx0 = x1(0). This leads us to the notion of a consistent
pair for solving equation (2).

Definition 1: The pair(xt, µt) is called a consistent pair
if xt is a solution to the SDE (2) andµt is its distribution
for all t ≥ 0.

Note that by introducing the density functionpt(x) for xt,
one may recast (2) in the form of a Fokker-Planck equation
whose coefficient depends onpt(x) itself. For a detailed
analysis on the existence and uniqueness of a solution to (2),
see [5]. For a weak convergence relation between solutions
of (1) and (2), and large deviation analysis forµt, see [24],
[9] and references therein.

B. The stochastic dynamic game

We consider ann dimensional stochastic system

dzi = (azi + bui)dt+ψ(n)dt+σdwi, 1 ≤ i ≤ n, t ≥ 0,
(3)

where {wi, 1 ≤ i ≤ n} denotesn independent standard
scalar Wiener processes,ψ(n) = 1

n

∑n
i=1 ψ(zi), andψ is a

deterministic function ofzi. Hence,ψ(n) may be looked at as
a driving term imposed by the population. The initial states
zi(0) are i.i.d. and independent of{wi, 1 ≤ i ≤ n}. In addi-
tion, E|zi(0)|2 < ∞ andb 6= 0. Each state component shall
be referred to as the state of the corresponding individual
(also to be called an agent or a player).

The individual cost for theith agent takes the form:

Ji(ui, φ
(n))

4
= E

∫ ∞

0

e−ρt[(zi − Λ(φ(n)))2 + ru2
i ]dt, (4)

whereφ(n) = 1
n

∑n
i=1 φ(zi) with φ : R→ R, andρ, r > 0.

To set the reference trajectory in a more general form, the
nonlinear functionΛ : R → R is introduced to act on the
average termφ(n). The linking termΛ(φ(n)) gives a measure
of the average effect of the mass formed by all agents.

For the system configurationz = (z1, · · · , zn) at
any given timet, define the empirical distributionεz =
1
n

∑n
i=1 δzi . Then the coupling terms in the individual dy-

namics and costs are functionals ofεz.
For the above system, the main objective is to seek

individual control strategies and appropriately characterize
their optimality, and a standard approach is to analyze
Nash (equilibrium) strategies. However, within this basic
solution scheme, each agent needs to have state information
of all other agents, and this leads to a very high control
complexity under large-population conditions. This motivates
us to search for lower complexity control strategies.

C. The limiting game with an infinite population

For then agent dynamic game, asn →∞, and following
the complexity reducing strategies of statistical mechanics,
one may attempt to use a distributionµt over a continuum to
approximate the empirical distribution of(z1, · · · , zn). Thus
we write the dynamics with the new state variablext:

dxt = (axt + but + ψ[µt]) dt + σdwt, (5)



where the distribution ofx0 is the same as that ofzi(0) and
the coupling term isψ[µt] defined in the form:

ψ[µt] =
∫

R
ψ(y)µt(dy). (6)

And corresponding to (4), we set the cost function:

J(u, φ[µ])
4
= E

∫ ∞

0

e−ρt
[
(xt − Λ(φ[µt]))2 + ru2

t

]
dt, (7)

whereφ[µt] is determined by replacingψ by φ in (6). We
may writeΛ(φ[µt]) = Λ ◦ φ[µt].

We give the interpretation for the controlled system dy-
namics as follows. For a given feedback controlut, as a
function of (t, xt), we look for a consistent pair(xt, µt)
such that the distribution ofxt in the closed-loop system
coincides withµt for all t ≥ 0. From this point of view, (5)
may be looked at as a controlled McKean-Vlasov equation
with the control performance measured by (7).

III. L OCALIZED CONTROL SYNTHESIS VIA THE NCE
METHODOLOGY

This section is based on the infinite population model spec-
ified by (5)-(7), where the pair(xt, µt) in (5) is interpreted
as in the McKean-Vlasov equation (2). At first glance, one
might think of treating this limiting problem as an optimal
control problem:

(P) The objective is formulated as minimizingJ(u, φ[µ])
by a control lawû such that any other control generates a
higher cost. Hereut explicitly controlsµt.

However, after further thinking, one would be cautious
about such an approach if the limiting control problem
is intended to give an approximate solution to the finite
population game problem in Section II-B. The reason is that
µt in (5) is intended to approximate the empirical distribution
εz in ann agent system with largen. Hence, when the given
agent’s strategy is adjusted, its impact onεz is negligible. It
is seen that (P) is not consistent with such a situation.

Thus, we formulate the following approach:
(Q) By the NCE Methodology, we mean the overall game

decomposition into an optimal control problem involving a
mass effect measure (treated as an exogenous quantity)µt,
t ≥ 0, and a closed-loop McKean-Vlasov equation; these
two parts are related to each other by the optimal control law
derived from the former. The key step here is to construct
a mutually consistent pair of (i) the mass effect and (ii)
the individual strategies such that the latter not only each
constitute an optimal response to the mass effect but also
collectively produce that mass effect.

In this setting, we designate the NCE Principle as the
property that the resulting scheme is consistent in the sense
that the prescribed control laws produce sample paths which
produce the mass effect with respect to which the individual
optimal control is derived. It is a property of this overall
closed-loop behavior that each agent’s optimal behavior with
respect to all other agents holds in the game theoretic Nash
sense. The solution to the overall problem, and hence the
demonstration of the NCE Principle, or Property, relies on
finding a fixed point mass effect.

A. Control synthesis based on the NCE methodology

We introduce the function spaceC([0,∞),R2) = {f̄ =
(f̄1, f̄2) : f̄i ∈ C[0,∞), i = 1, 2}, and let |f̄ |∞ =
maxi=1,2 supt≥0 |f̄i(t)|. We further defineCb([0,∞),R2) =
{f̄ ∈ C([0,∞),R2), |f̄ |∞ < ∞}, which is a Banach space
under the norm| · |∞. The same notion| · |∞ is also used
for scalar functionx ∈ C[0,∞), i.e., |x|∞ = supt≥0 |x(t)|,
andCb([0,∞),R) is defined similarly.

Based on the NCE methodology, the controlut should
be optimized as if it were acting with respect to exogenous
signals ψ0 and φ0 (corresponding toψ[µt] and φ[µt]) as
functions of time t. Subsequently, one may computeψ0

andφ0 using the closed-loop dynamics based on the control
which has been designed in the first step.

We setf1 = ψ[µt] and f2 = Λ ◦ φ[µt]. Sincef1 and f2

are treated as exogenous signals, it is natural for the given
agent to take an optimal tracking action; see [14], [15], [16]
for details about the motivation for such a control design.
We introduce the scalar algebraic Riccati equation:

ρΠ = 2aΠ− b2

r
Π2 + 1,

and the unique positive solution is given byΠ = ( b2

r )−1[a−
ρ
2 +

√
(a− ρ

2 )2 + b2

r ].
To begin with, we assume(f1, f2) ∈ Cb([0,∞),R2), and

such a property will be established in the proof of Theorem 2.
After taking (f1, f2) ∈ Cb([0,∞),R2) in the dynamics and
cost, the individual’s optimal tracking leads to the closed-
loop equation system:

dxt = (a− b2

r
Π)xtdt− b2

r
sdt + f1dt + σdwt, (8)

ρs =
ds

dt
+ as− b2

r
Πs + Πf1 − f2, (9)

where s ∈ Cb([0,∞),R). As long ass is bounded, as
required in the optimal tracking solution, one can determine
a uniques on [0,∞) and the initial condition fors does
not need to be separately specified [15]. The control law
associated with the above equation system (8)-(9) is

ut = − b

r
(Πxt + s). (10)

In fact, (10) is the optimal control law for the auxiliary
control problem with the dynamics and cost given by

dxt = (axt + but + f1)dt + σdwt,

J = E

∫ ∞

0

e−ρt[(x− f2)2 + ru2]dt.

Denote

β1 = −a +
b2

r
Π = −ρ

2
+

√
(a− ρ

2
)2 +

b2

r
, (11)

β2 = −a +
b2

r
Π + ρ =

ρ

2
+

√
(a− ρ

2
)2 +

b2

r
. (12)

Note that β2 > ρ
2 . We may express the solutions ∈

Cb([0,∞),R) to (9) in the forms(t) =
∫∞

t
e−β2(τ−t)[Πf1−

f2](τ)dτ .



Now we write the closed-loop equation forxt:

dxt = (a− b2

r
Π)xtdt + ψ[µt]dt

− b2

r
Π

∫ ∞

t

e−β2(τ−t) {Πψ[µτ ]− Λ ◦ φ[µτ ]} dτdt

+ σdwt. (13)

This equation may be regarded as a generalized McKean-
Vlasov equation in that at timet, the right hand side depends
on the future distribution of the statexτ , τ ≥ t. For
specifying a solution to (13), Definition 1 introduced for
the standard McKean-Vlasov equation may be adapted to
equation (13) in an obvious manner, and accordingly, we
call (xt, µt) an (individual-mass) consistent pair.

B. Existence of an individual-mass consistent pair

For obtaining existence results, we make the assumptions:
(H1) The functionsΛ, φ, ψ are Lipschitz continuous with

Lipschitz constantsLΛ, Lφ, Lψ, respectively.
(H2) The constantβ1 > 0.
(H3) (Lφ ∨ Lψ) ·

[
1
β1

+ b2Π
rβ1β2

(Π + LΛ)
]

< 1.
Theorem 2:Assuming (H1)-(H3) hold, then there exists a

consistent pair(xt, µt) satisfying (13).
Proof. Letting (f1, f2) ∈ Cb([0,∞),R2), there is a unique

strong solution to the SDE,

dxt =(a− b2

r
Π)xtdt + f1dt (14)

− b2

r
Π

∫ ∞

t

e−β2(τ−t) {Πf1 − Λ ◦ f2} dτdt + σdwt

with the fixed initial condition x0. The solution is de-
noted asxf1,f2

t , with marginal distributionµf1,f2
t , t ≥ 0.

Denote µf1,f2· = Γ1(f1, f2), which is a mapping from
Cb([0,∞),R2) to the spaceM of probability distributions
µ· indexed byt ∈ [0,∞). For µ· ∈ M, let f̂1(t) = ψ[µt]
and f̂2(t) = φ[µt], and denote(f̂1, f̂2) = Γ2(µ·).

We define H(f1, f2) = (H1(f1, f2), H2(f1, f2)) =
Γ2 ◦ Γ1(f1, f2) for (f1, f2) ∈ Cb([0,∞),R2). In fact,
H1(f1, f2)(t) = Eψ(xf1,f2

t ), H2(f1, f2)(t) = Eφ(xf1,f2
t ),

which are functions on[0,∞). It is easy to verify that
Hi(f1, f2), i = 1, 2, are continuous and bounded on[0,∞)
by the Lipschitz continuity ofψ andφ. HenceH = Γ2 ◦Γ1

gives a well defined mapping fromCb([0,∞),R2) to itself.
Now we take (f1, f2) ∈ Cb([0,∞),R2), (g1, g2) ∈

Cb([0,∞),R2) and denote the two corresponding solutions
by xf

t = xf1,f2
t andxg

t = xg1,g2
t . It follows that

dxf
t − dxg

t =− β1(x
f
t − xg

t )dt + (f1 − g1)dt

− b2

r
Π

∫ ∞

t

e−β2(τ−t)∆f,g(τ)dτdt

where∆f,g = Π(f1− g1)− (Λ ◦ f2−Λ ◦ g2) and the initial
condition satisfies[xf

t − xg
t ]|t=0 = 0. It follows that

xf
t − xg

t =
∫ t

0

e−β1(t−τ)(f1 − g1)(τ)dτ

− b2

r
Π

∫ t

0

∫ ∞

θ

e−β1(t−θ)e−β2(τ−θ)∆f,g(τ)dτdθ

which gives

|xf
t − xg

t | ≤
1
β1
|f1 − g1|∞

+
b2

r
Π · Π|f1 − g1|∞ + LΛ|f2 − g2|∞

β1β2
. (15)

Hence

|H1(f1, f2)−H1(g1, g2)|∞ = sup
t≥0

|Eψ(xf
t )− Eψ(xg

t )|

≤ Lψ

β1
|f1 − g1|∞ + Lψ

b2

r
Π · Π|f1 − g1|∞ + LΛ|f2 − g2|∞

β1β2
,

|H2(f1, f2)−H2(g1, g2)|∞ = sup
t≥0

|Eφ(xf
t )−Eφ(xg

t )|

≤ Lφ

β1
|f1 − g1|∞ + Lφ

b2

r
Π · Π|f1 − g1|∞ + LΛ|f2 − g2|∞

β1β2
.

HenceH(f1, f2) is a contraction onCb([0,∞),R2) (with
the norm| · |∞) by (H3), with a unique fixed point satisfying
H(f∗1 , f∗2 ) = (f∗1 , f∗2 ). Let x

f∗1 ,f∗2
t be the corresponding

solution to (14). Thenxf∗1 ,f∗2
t and its marginal distribution

µ∗t give a consistent pair. We see thatµ∗· = Γ1 ◦ Γ2(µ∗· ).
Remark: The Lipschitz constantsLψ, Lφ, LΛ provide a

measure of the agent’s sensitivity to the population effect in
either the dynamics or costs.

It should be noted that in the nonlinearly coupled model,
an explicit construction for the operatorH is in general
unavailable, although it is well defined by a probabilistic
calculation. However, it is of interest to mention that for
the caseψ(x) = αx and φ(x) = x2, one may characterize
the consistent pair(xt, µt) by using a finite dimensional
equation system involving deterministic functions on[0,∞)
by a similar fixed point procedure as in [13], [14], [15]. The
main reason is that if a consistent pair(xt, µt) exists, the
componentxt is Gaussian by (13); and therefore it can be
specified by its mean and variance process on[0,∞).

To characterize uniqueness of the solution, we introduce
the class:C consists of all{(xt, µt) which satisfies the
conditions i) (xt, µt) is a consistent pair to (13), ii)φ[µt]
and ψ[µt] are measurable functions oft on [0,∞), and iii)
supt≥0

∫
R |y|µt(dy) < ∞}.

Corollary 3: Under the conditions in Theorem 2, there is
a unique solution(xt, µt) to (13) in the classC.

Proof. Assume a solution(x′t, µ′t) ∈ C. Write f1(t) =
ψ[µ′t] and f2(t) = φ[µ′t] and we can show that(f1, f2) ∈
Cb([0,∞),R2) sinceψ[µ′t] = Eψ(x′t) and φ[µ′t] = Eφ(x′t)
and x′t is given by the linear equation (13). By the proof
of Theorem 2, we see that(f1, f2) is the unique fixed point
determined therein. Thusx′t and henceµ′t coincide with the
solution obtained in Theorem 2, and uniqueness follows.

IV. A SYMPTOTIC NASH EQUILIBRIA FOR LARGE

POPULATIONS

We now employ the control strategy obtained in the
limiting system to the system ofn agents described in
Section II-B. We write

ui = − b

r
(Πzi + s), 1 ≤ i ≤ n, (16)



based on (10), where the associateds, f1, f2 are determined
from the fixed point procedure in Theorem 2. We first show
a stabilizing property of the control law (16).

Theorem 4:Assuming (H1)-(H3), there exists a constant
C independent ofn such that for the closed-loop system
under (16), we havesup1≤i≤n sup0≤t≤∞Ez2

i (t) ≤ C.
We can further show the following approximation result.
Lemma 5:Under (H1)-(H3) and the control law (16), as

n →∞, we have

sup
0≤t≤∞

E
∣∣∣ 1
n

n∑

i=1

[zi(t)− Ezi(t)]
∣∣∣
2

= O(
1
n

), (17)

sup
0≤t≤∞

E
∣∣∣ 1
n

n∑

i=1

[ζ(zi(t))− ζ[µt]]
∣∣∣
2

= O(
1
n

), (18)

where the functionζ stands forψ or φ.
Now we state the asymptotic Nash equilibrium result; see

e.g. [14], [15] for the definition ofε-Nash equilibrium.
Theorem 6:Assume (H1)-(H3) hold. For a system ofn

agents specified by (3)-(4), the set of control laws (16) is
an ε-Nash equilibrium where0 < ε → 0, asn → ∞, i.e.,
the unilateral strategy change (allowed to take as a function
of (z1, · · · , zn), as long as a closed-loop solution is well
defined) of any given agent can produce a cost reduction for
itself by at mostε > 0.

V. EXPLICIT SOLUTIONS WITH L INEAR DYNAMICS

In this section we consider the case of linear dynamics
and compute the explicit solutions for two different control
schemes. To simplify the analysis, the linear coupling only
appears in the costs as in [14].

We first analyze the solution based on the NCE method-
ology which gives adecentralizedcontrol law as each agent
only requires its own state. Next we consider a system ofn
agents and compute the exact solution for the set of feedback
Nash strategies (under the specific definition in [4]) and
examine its asymptotic behavior as the population sizen
increases to infinity. For a fixedn, the resulting solution
is characterized by a coupled algebraic Riccati equation and
leads tocentralizedindividual control laws where each agent
needs to know the states of other agents. By its definition, the
equilibrium property holds in a strong sense since it requires
the control to possess the Nash equilibrium property for
subgames (from anyt0 to ∞, with the attained statexi(t0),
1 ≤ i ≤ n, as the initial conditions). In the end we show that
asymptotically the two different optimization approaches are
equivalent; this indicates the decentralized strategy performs
as effectively as the centralized one. However, it should be
pointed out that for more complicated coupling or when
the agents have different dynamic parameters, it is difficult
if not impossible to carry out the full information based
Nash strategy computation while the NCE based approach
is powerful for dealing with more complicated models [15].

We note that unlike the standard optimal control case, the
existence and uniqueness result for feedback Nash strategies
for LQG games is far less complete. In our analysis, we
assume there is a unique set of feedback Nash strategies

and our focus is on explicit calculation for the centralized
solution.

A. The Nash equilibrium solution

We consider the caseψ(z) = 0, φ(z) = γ(z + η), and
Λ(z) = z. The state aggregation equation system resulting
from the NCE methodology reduces to

ρs =
ds

dt
+ as− b2

r
Πs− z∗, (19)

dz̄

dt
= (a− b2

r
Π)z̄ − b2

r
s, (20)

z∗ = φ(z̄) = γ(z̄ + η), (21)

where z̄ is the mean of the state. Setting the derivatives to
zero, we write a set of steady state equations as follows





β2s(∞) + z∗(∞) = 0
− b2

r s(∞)− β1z̄(∞) = 0
γz̄(∞)− z∗(∞) = −γη.

(22)

It can be verified that under the conditions in Theorem 2 we
haveΘ

4
= β2β1− b2γ

r > 0, and therefore (22) is nonsingular
and has a unique solution(s(∞), z(∞), z∗(∞)). Denote

λ1 = ρ−
√

ρ2+4Θ

2 < 0.
Proposition 7: [15] The unique bounded solution(z̄, s) in

(19)-(20) is given by

z̄(t) = z̄(∞) + (z̄(0)− z̄(∞))eλ1t,

s(t) = s(∞) +
γ − αΠ
β2 − λ1

(z̄(∞)− z̄(0))eλ1t,

whereλ1 < 0 andβ2 = −a + b2

r Π + ρ.
Proposition 8: Assume the existence and uniqueness of

a set of feedback Nash strategies for each population size
n > 1 and the conditions in Theorem 2 hold. Then theith
agent’s feedback Nash strategy is given as

ui = − b

r
(K1zi +

∑

j 6=i

K2zj + s1), 1 ≤ i ≤ n,

whereK1 = Π + O( 1
n ), K2 = c2

n + o( 1
n ) and

c2 = (
b2

r
)−1

[
−(β1 +

ρ

2
) +

√
(β1 +

ρ

2
)2 − b2γ

r

]
< 0

s1 = − γη

−a + b2

r c10 + ρ + b2

r c2

+ O(
1
n

), c10 = Π.

And moreover, if we set̄z(n) =
∑n

i=1 Ezi, then z̄(n) =
z̄ + O( 1

n ), wherez̄ is given by Proposition 7.
Thus, asymptotically the decentralized and centralized

control strategies lead to the same mass effectz̄. See Ap-
pendix for the calculation associated with Proposition 8.

VI. D ISCUSSIONS ON MORE GENERAL DYNAMICS

In the above analysis, the McKean-Vlasov equation for the
dynamic game is linear in the statext, which is separated
from the nonlinear coupling term in the drift. Such a struc-
tural property makes it possible to have explicit calculation
of the individual control via optimal tracking. Moreover, with



the separation ofxt from the coupling term, the mass effect
may be approximated by a deterministic function. All these
features combined together simplify the existence proof for
the consistent pair. For future work, there exist different ways
for generalizing our methodology to more general models:

• There drift term is given in the form of summation of
ψ(xi, xj), and the control term is given as a nonlinear
function of its own state and control. In general, to deal
with such a situation, one needs to develop more general
fixed point techniques for existence analysis.
Also, it is of interest to study the steady state behavior
of the population distribution evolution.

• The modelling of non-uniform agents in the setting of
McKean-Vlasov equations. One potential approach is
to re-construct the driving distribution in the McKean-
Vlasov equation as the averaging of a family (indexed
via a parameter set) of distributions, which mimics the
aggregate behavior of multi-class interacting particles.

Below we give a heuristic description of applying the NCE
methodology to the nonlinear model

dxt = b[xt, µt]dt + g(xt, ut)dt + σdwt (23)

where b[xt, µt] is defined as in the uncontrolled McKean-
Vlasov equation (2). The range space ofut is denoted as the
setU . The cost function is given as

J = E

∫ ∞

0

e−ρt{l1[xt, µt] + l2(xt, ut)}dt, (24)

wherel1[x, µ] =
∫
R l1(x, y)µt(dy), and l1, l2 are determin-

istic functions. We assume sufficient regularity of the system
(in terms of the dynamics and cost) to ensure:

(i) There exists a distributionµ∗t such that the HJB equation

ρV (x, t) =
∂V

∂t
+ min

u∈U

{
[b[x, µ∗t ] + g(x, u)]

∂V

∂x

+ l1[x, µ∗t ] + l2(x, u)
}

+
σ2

2
∂2V

∂x2
(25)

has a smooth solutionV (t, x) and the optimal control
u = u∗(t, x) is continuous in(t, x) and Lipschitz inx;

(ii) For the controlut = u∗(t, x) in (23), there exists a
strong solutionxt with the distributionµ∗t . We have the
closed-loop equation

dxt = b[xt, µ
∗
t ]dt + g(xt, u

∗(t, xt))dt + σdwt (26)

which induces a Fokker-Planck equation forµ∗t .

The HJB equation (25) results from the NCE based control
synthesis when{µ∗t , t ≥ 0} is first presumed to be known. By
the above procedure, the limiting game problem is decom-
posed into a stochastic control problem to be solved alongµ∗t
and a specification of the density forxt by a Fokker-Planck
equation induced from the closed-loop dynamics.
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APPENDIX: COMPUTATION VIA THE DIRECT APPROACH

For then agents, their value functions{Vi, 1 ≤ i ≤ n}
are characterized by the HJB equation system as follows

ρVi =
∂T Vi

∂x
Ax− 1

4r

∂T Vi

∂x
BiB

T
i

∂T Vi

∂x

− 1
2r

n∑

j 6=i

∂T Vi

∂x
BjB

T
j

∂T Vj

∂x

+ xT CT
i Cix + 2Hix + D +

σ2

2

n∑

j=1

∂2Vi

∂x2
j

.

For the LQG model of uniform agents with cost coupling:

A = aIn, B1 = be1, D = (γη)2

C1 = [1− γ

n
,−γ

n
, · · · ,−γ

n
]T

H1 = −γη[[1− γ

n
,−γ

n
, · · · ,−γ

n
]T ,

where ei is the ith unit vector in the canonical coordinate
of Rn. For agenti, the coefficients(Ci,Hi) are determined
easily. We seek a solution of the formVi(x) = xT Pix +
2ST

i x + q, wherePi ≥ 0 is ann× n matrix, andSi ∈ Rn.
In the following we consider the particular indexi = 1. It is
easy to show thatP1 is described by the equation

ρP1 = P1A + AT P1 − 1
r
P1B1B

T
1 P1 − 1

r

n∑

j 6=1

P1BjB
T
j Pj

− 1
r

n∑

j 6=1

PjBjB
T
j P1 + CT

1 C1. (A.1)

And

ρS1 = AS1 − 1
r
P1B1B

T
1 S1 − 1

r

n∑

j 6=1

P1BjB
T
j Sj

− 1
r

n∑

j 6=1

PjBjB
T
j S1 + H1. (A.2)

By use of symmetry, we may write

P1 =




K1 K2 K2 · · · K2

K2 K3 K4 · · · K4

K2 K4 K3 · · · K4

...
...

K2 K4 K4 · · · K3




, S1 =




S11

S12

S12

...
S12




and the matrices corresponding to other agents are deter-
mined in an obvious manner.

By (A.1), we have the following coupled equations:

ρK1 = 2aK1 − b2

r
K2

1 −
2b2

r
K2

2 (n− 1) + (1− γ

n
)2,

ρK2 = 2aK2 − b2

r
K1K2 − b2

r
[K1K2 + K2

2 (n− 2)]

− b2

r
[K2K3 + K2K4(n− 2)]− (1− γ

n
)
γ

n
,

ρK3 = 2aK3 − b2

r
K2

2 −
2b2

r
[K1K3 + K2K4(n− 2)] + (

γ

n
)2,

ρK4 = 2aK4 − b2

r
K2

2 −
b2

r
[K3K2 + K4K1 + K4K2(n− 2)]

− b2

r
[K1K4 + K2K3 + K2K4(n− 2)] + (

γ

n
)2.

We look for a solution in the form:

K1 = c10 +
c11

n
+ o(

1
n

), K2 =
c2

n
+ o(

1
n

),

K3 =
c3

n2
+ o(

1
n2

), K4 =
c4

n2
+ o(

1
n2

). (A.3)

By use of the equation forK1, we have

ρc10 = 2ac10 − b2

r
c2
10 + 1,

ρc11 = 2ac11 − 2b2

r
c10c11 − 2b2

r
c2
2 − 2γ.

And based onK2 we have

ρc2 = 2ac2 − 2b2

r
c10c2 − b2

r
c2
2 − γ.

Finally, the equations forK3 andK4 lead to

ρc3 = 2ac3 − b2

r
c2
2 −

2b2

r
[c10c3 + c2c4] + γ2,

ρc4 = 2ac4 − b2

r
c2
2 −

2b2

r
[c10c4 + c2c4] + γ2.

Note that we may add the termc
′
3
n and c′4

n in (A.3), leading
to two additional equations involvingc′3 and c′4 linearly.
However, these two equations may be eliminated by simply
taking c′3 = c′4 = 0.

By using the notation in the previous sections, we express

c10 = Π = (
b2

r
)−1

[
a− ρ

2
+

√
(a− ρ

2
)2 +

b2

r

]
> 0,

c2 = (
b2

r
)−1

[
−(β1 +

ρ

2
) +

√
(β1 +

ρ

2
)2 − b2γ

r

]
< 0,

where in calculatingc2 we exclude the “–” square root case
since for a fixedn, c2 should vanish whenγ is 0. Hence

c11 = − {(b2

r
)−1

[
−(β1 +

ρ

2
) +

√
(β1 +

ρ

2
)2 − b2γ

r

]2

+ γ} × (β1 +
ρ

2
)−1 < 0,

c4 =
γ2 − b2

r c2
2

2
√

(β1 + ρ
2 )2 − b2γ

r

,



and finally,

c3 = (1− c2√
(β1 + ρ

2 )2 − b2γ
r

b2

r
)
γ2 − b2c2

2
r

ρ + 2β1
.

Sincec2 < 0 and we can further checked thatγ2− b2c2
2

r > 0,
it follows that c3 > 0 andc4 > 0.

For (A.2), we now write the reduced order equations:

ρS11 = aS11 − b2

r
K1S11 − b2

r
K2S11(n− 1)

− b2

r
K2S12(n− 1)− γη(1− γ

n
), (A.4)

ρS12 = aS12 − b2

r
K2S11 − b2

r
[K4S11(n− 2) + K3S11]

− b2

r
[K1S12 + K2S12(n− 2)] +

γ2η

n
. (A.5)

Let

∆11 = −a +
b2

r
K1 + ρ +

b2

r
K2(n− 1),

∆12 =
b2

r
K2(n− 1),

∆21 =
b2

r
[K2 + K3 + K4(n− 2)],

∆22 = −a +
b2

r
K1 + ρ +

b2

r
K2(n− 2),

D1 = γη(1− γ

n
), D2 = −γ2η

n
.

We may write equations (A.4)-(A.5) in the compact form:

0 = ∆11S11 + ∆12S12 + D1,

0 = ∆21S11 + ∆22S12 + D2.

We have

S11 = −∆22

|∆| D1 +
∆12

|∆| D2

= − γη

−a + b2

r c10 + ρ + b2

r c2

+ O(
1
n

),

where|∆| = ∆11∆22 −∆12∆21.
Now we may express the feedback Nash equilibrium

strategy in the form

ui = − b

r
(K1xi +

∑

j 6=i

K2xj + S11).

The dynamics for̄z(n) = 1
n

∑n
i=1 Exi is

˙̄z(n) = (a− b2

r
K1 − b2(n− 1)

r
K2)z̄(n) − b2S11

r

where the initial condition is̄z(n)(0) = 0. As n → ∞, we
have the limit solution̄z.

z̄ =
γηb2

r

1

β1β2 − b2γ
r

(1− e−(β1+
b2c2

r )t).

It can be verified that

−β1 − b2c2

r
=

ρ−
√

ρ2 + 4(β1β2 − b2γ
r )

2
= λ1,

and in addition,z̄(∞) = γη b2
r

β1β2− γb2
r

in Proposition 7. And

this verifies the consistency.


