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Abstract— The paper presents an analytical control solution
to the problem of transient stabilization of lossy multi-machine
power systems. Firstly, a new form of control Lyapunov
function candidates with a flexible potential-energy-like term is
proposed. This is achieved mainly by introducing an auxiliary
state that contributes to the derivation of a cross-term. Based
on the Lyapunov function candidates, a new control law en-
suring asymptotic stability of the desired closed-loop operating
equilibrium is proposed. Finally, a case study on the model
of a two-machine system to illustrate the effectiveness of the
proposed control solution is presented.

I. INTRODUCTION

Transient stability analysis of power systems is a long-
standing challenge because of several intrinsic complex
characteristics, such as the nonlinear dynamic behaviours of
the synchronous generators (SGs), the network discontinuity
caused by faults or switching operations and the saturation
effects due to limited feasible operating ranges, see e.g. [1]–
[4]. Transient stability is mainly concerned with the ability
of the power system to maintain synchronism when subject
to large disturbances such as a fault on the transmission
facilities [1]. The fault modifies the network topology, there-
fore driving the state away from the pre-fault operating
equilibrium; after the fault is cleared, the question becomes
whether the state trajectory converges back to a desired
post-fault operating equilibrium [1], [5]. Typically, if the
post-fault rotor angular separations between all SGs remain
within certain bounds, the system maintains synchronism;
otherwise, the system is deemed to be transient unstable and
corrective actions have to be undertaken [1], [3], [4]. To
assess the transient stability of a post-fault power system,
time domain simulations (TDS) offer one of the most widely
accepted methods [1], [3]. This is usually achieved through
the numerical integration of the model of the considered
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post-fault power system. However, since the scale of power
systems has been ever increasing, TDS methods have become
computationally expensive and therefore not well-suited for
real-time implementations [3]. Compared to TDS methods,
direct methods have a distinct advantage in that they allow
assessing transient stability of a post-fault trajectory with-
out time-consuming numerical integration [1], [3]. This is
achieved mainly by using a suitable Lyapunov or energy
function to analyze the stability properties of the desired
post-fault operating equilibrium, and to check whether the
initial post-fault state is inside the region of attraction of
the desired post-fault operating equilibrium [3]. Therefore,
direct methods are expected to offer a promising solution to
the problem of real-time transient stability analysis of power
systems [1], [3].

The key issue to the realization of direct methods lies
in the construction of a well-defined Lyapunov or energy
function for the model of the considered post-fault power
system [3]. Historically, considerable efforts have been con-
centrated on the construction of Lyapunov or energy func-
tions especially for the models of multi-machine systems
with lossy transmission lines (see the detailed illustration
in [3, Chapter 6] and e.g. [6]–[9]). However, these efforts
have been partially in vain, since the proposed Lyapunov or
energy functions are either not well-defined or such that their
time-derivatives along the state trajectories are not strictly
negative definite [3].

The main obstacle to the task of constructing an explicit
control Lyapunov function (CLF) stems from the deleterious
effects of resistive elements that hamper the assignment of
the potential-energy-like term [5]. To address this problem,
[5] has proposed a nonstandard cross-term that modifies the
energy transfer and therefore improves the general form of
traditional CLFs. By applying the Implicit Function Theo-
rem, [5] has proved the existence of a CLF for the transient
stability analysis of lossy multi-machine models. However,
neither an explicit form of CLFs nor a feasible control
law has been suggested. As step forward, a well-defined
asymptotically stabilizing controller has been firstly proposed
in [10]. However, the negative definiteness of the time-
derivative of the proposed CLF has not been verified. In [11],
a control law with particular emphasis on limited feasible
operating ranges has been proposed. The corresponding CLF
is such that its time-derivative along the closed-loop state
trajectories is strictly negative definite; moreover, it has been
shown to be applicable to the transient stability analysis of a
single-machine model. However, the feasibility of extending
such a control law and CLF to the transient stability analysis
of multi-machine models has not been demonstrated.
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As a natural extension of [11], the main contribution of
the paper is twofold.

• A new explicit form of CLF is proposed. Its time-
derivative along the closed-loop state trajectories is
proved to be negative definite. This is mainly achieved
by introducing an auxiliary state that contributes to the
derivation of a cross-term. Furthermore, with a suitable
selection of the potential-energy-like term, the proposed
CLF is applicable to the study of the transient stability
of lossy multi-machine models.

• An explicit dynamic control law is derived, which en-
sures asymptotic stability of the desired closed-loop op-
erating equilibrium. The resulting closed-loop transient
performance is smooth, indicating that the controller
injects low gains into the loop - a desired features in
practical applications.

The remaining part of the paper is organized as follows. In
Section II the classical flux decay model of a two-machine
system is presented, followed by the problem formulation
of the transient stability analysis of the considered model.
In Section III some typical CLFs adopted for the transient
stability analysis are briefly reviewed. A new CLF candidate
is then proposed, based on which the new control law
is derived. The results are summarized in Proposition 1.
In Section IV a case study on the two-machine model to
demonstrate the merits of the proposed designs is presented.
Finally, conclusions are drawn and future work is discussed
in Section V.

Notation: Throughout the paper, the subscripts i and j
represent the index of the states or parameters of the ith and
the jth SG, respectively; while double-subscripts ij represent
the network connection between the ith and the jth SG. The
integer n represents the number of SGs in the considered
multi-machine model, termed as n-machine model. Note that
i ∈ N, j ∈ N, n ∈ N, i ≤ n and j ≤ n. The superscript ∗

attached to a variable indicates its equilibrium value.

II. MODELLING

The dynamics of the ith SG in the n-machine model can
be described by the classical flux decay model (see e.g. [5,
equation (2)] in a compact form, or [12, equation (9)] in its
original form):

δ̇i = ωi,

ω̇i = −Diωi + Pi −GiiE
2
i − Ei

n∑
j=1,
j ̸=i

EjYij sin (δij + αij),

Ėi = −aiEi +
n∑

j=1,
j ̸=i

bijEj cos (δij + αij) + e∗f i + ui,

(1)

where the dynamic states consist of the generator rotor angle
δi(t) ∈ R, the angular speed deviation with respect to the
synchronous speed ωi(t) ∈ R, and the internal transient
voltage Ei(t) ∈ R>0. The system parameters include the
damping ratio Di ∈ R>0, the mechanical power input Pi ∈
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Fig. 1. A two-machine system model. Note that F represents the location
where the fault occurs in the case study.

R>0, the self conductance Gii ∈ R>0, the magnitude of the
off-diagonal elements in the reduced admittance matrix Yij ∈
R>0 with the corresponding complementary angle αij ∈ R,
two switching coefficients ai ∈ R>0 and bij ∈ R>0, and the
constant component of the field voltage e∗f i ∈ R>0. Finally,
ui(t) ∈ R is the excitation control input.

Note that δij := δi − δj ∈ R represents the rotor angular
separation between the ith and the jth SG. Denote by x∗ =[
x∗1

⊤, x∗2
⊤, · · · , x∗n

⊤]⊤ ∈ R3n the desired stable operating
equilibrium for the whole power system model, where x∗i =
[δ∗i , 0, E

∗
i ]

⊤ ∈ R3 is for the ith SG.
Assumption 1: The equilibrium of the rotor angular

separations and of the internal transient voltages for all SGs,
i.e. δ∗ij and E∗

i for all i and j, are known.
Note that Assumption 1 is necessary and standard in

the transient stability analysis. By considering the rotor
angular separation δij , we remove a strong assumption on
the requirement for the equilibrium of the rotor angle δ∗i .

The paper focuses on a model of a power system consist-
ing of two SGs connected to four resistive loads through
lossy transmission lines, as illustrated in Fig. 1. Such a
consideration is merely for ease of illustration; all results can
be extended to the transient stability analysis of n-machine
models for any n ≥ 3.

Setting n = 2, the equations (1) describing the dynamics
of the two-machine system model become

δ̇1 = ω1,

ω̇1 = −D1ω1 + P1 −
[
G11E

2
1 + E1E2Y12 sin (δ12 + α12)

]
,

Ė1 = −a1E1 + b12E2 cos (δ12 + α12) + e∗f 1 + u1,

δ̇2 = ω2,

ω̇2 = −D2ω2 + P2 −
[
G22E

2
2 + E2E1Y21 sin (δ21 + α21)

]
,

Ė2 = −a2E2 + b21E1 cos (δ21 + α21) + e∗f 2 + u2.

(2)

With the aforementioned specifications, the problem of tran-
sient stability analysis of the two-machine system model is
formulated as follows.

Problem Formulation: Consider the model (2) and a
desired post-fault operating equilibrium x∗. The objective
is to construct a CLF such that the following specifications
are satisfied.

• The CLF is well-defined and positive definite; and its
time-derivative along the post-fault closed-loop state
trajectories is negative definite.

• The desired post-fault closed-loop operating equilibrium
x∗ is locally asymptotically stable.



III. CONTROL LYAPUNOV FUNCTION DESIGN

A. A Brief Review

Based on the theory of Hamiltonian systems, the tradi-
tional “separable” CLFs for the transient stability analysis
are of the form, see e.g. [5, equation (10)],

H(δ, ω,E) = ψ(δ) +
1

2
ω2 +

1

2
(E − E∗)2, (3)

where the function ψ : R→R is the so-called potential-
energy-like term, while the quadratic term in ω ∈ R is related
to the mechanical kinetic energy. Since the quadratic term in
E ∈ R>0 has no connection to ψ, such a form is usually
termed as “separable”.

Remark 1: The assignment of the candidate ψ is usually
accomplished through the integration of the “gradient vector”
∂ψ
∂δ with respect to δ, see e.g. [5, Proposition 2] or [11,
equation (33)]. However, for lossy n-machine models with
n ≥ 2, the “gradient vector” ∂ψ

∂δ becomes non-integrable due
to the asymmetry properties caused by resistive elements,
i.e. αij ̸= 0. Therefore, the “separable” form in (3) is
applicable only for single-machine models or lossless two-
machine models.

To conduct the transient stability analysis of lossy n-
machine models, a “non-separable” CLF has been proposed,
in [5, equation (27)], i.e.

Hd(δ, ω,E) = ψ(δ) +
1

2

n∑
i=1

ω2
i +

1

2

n∑
i=1

(Ei − λi(δ)E
∗
i )

2,

(4)
where ψ : Rn→R, and λ : Rn → Rn is a vector function
to be defined.

Remark 2: The vector function λ is the so-called cross-
term that allows bypassing the obstacle in the integration of
the “gradient vector” ∂ψ

∂δ , while providing the possibility to
select a suitable ψ. Note that the cross-term is expected to
be such that λ(δ∗) := 1 ∈ Rn.

By applying the Implicit Function Theorem, [5] has proved
the existence of a cross-term λ such that any C1 function
is assignable for ψ. Moreover, the CLF in (4) guarantees
asymptotic stability of the desired operating equilibrium x∗.
However, neither an explicit form of ψ nor an explicit control
law has been suggested for n-machine models in [5], which
is mainly due to the difficulty in the explicit computation of
the cross-term.

Hereinafter, we focus on CLF design for the two-machine
model (2) for ease of illustration. Note that all the following
results can be extended to the transient stability analysis of
n-machine models for any n ≥ 3.

B. Stability Analysis

To solve the problem associated with the computation of
the cross-term, we introduce an auxiliary state, denoted by

ξ(t) ∈ R2
>0. Consider now the CLF candidate

V (δ, ω,E, ξ) = ψ(δ) +
1

2

2∑
i=1

ηiω
2
i

+
1

2

2∑
i=1

µi(Ei − λi(δ, ξ)E
∗
i )

2

+
1

2

2∑
i=1

ρi(λi(δ, ξ)− ξi)
2,

(5)

where the potential-energy-like term is expected to be non-
negative, i.e. ψ : R2 →R≥0; the cross-term contains the
auxiliary state, i.e. λ(δ, ξ) : R2 × R2 →R2; while η ∈ R2

>0,
µ ∈ R2

>0 and ρ ∈ R2
>0 are tunable weighting coefficients.

Remark 3: Compared to (4), a new quadratic term is
added in (5), which is motivated by the objective to drive the
auxiliary state to the cross-term, i.e. |λ(t)− ξ(t)|→0 ∈ R2,
as t→∞. Moreover, since λ(δ∗, ξ∗) := 1 ∈ R2, we set
ξ∗ := 1 ∈ R2.

Taking the time-derivative of V along the trajectories of
the two-machine system model (2) yields

V̇ = −
2∑
i=1

ηiDiω
2
i + ω1

( ∂ψ
∂δ1

+ η1P1

− η1
[
G11E

2
1 + E1E2Y12 sin (δ12 + α12)

])
(6)

+ ω2

( ∂ψ
∂δ2

+ η2P2

− η2
[
G22E

2
2 + E2E1Y21 sin (δ21 + α21)

])
(7)

+

2∑
i=1

(Ei − λiE
∗
i )µi(Ėi − λ̇iE

∗
i ) (8)

+

2∑
i=1

(λi − ξi)ρi(λ̇i − ξ̇i). (9)

Note now the identities

EiEj−λiλjE∗
i E

∗
j = (Ei − λiE

∗
i )Ej + (Ej − λjE

∗
j )λiE

∗
i ,

E2
i − λ2iE

∗
i
2 = (Ei − λiE

∗
i )(Ei + λiE

∗
i ),

(10)

which are useful for rewriting the terms containing (Ei −
λiE

∗
i ).

By (10) and other straightforward manipulations, (6) can
be rewritten as

(6) = ω1

( ∂ψ
∂δ1

+ η1P1 − η1λ1
[
ξ1G11E

∗
1
2

+ ξ2E
∗
1E

∗
2Y12 sin (δ12 + α12)

])
(11)

− η1ω1

(
(λ1 − ξ1)λ1G11E

∗
1
2

+ (λ2 − ξ2)λ1E
∗
1E

∗
2Y12 sin (δ12 + α12)

)
(12)

− η1ω1

(
(E1 − λ1E

∗
1 )G11(E1 + λ1E

∗
1 )

+
(
(E1 − λ1E

∗
1 )E2 + (E2 − λ2E

∗
2 )λ1E

∗
1

)
×Y12 sin (δ12 + α12)

)
. (13)



Analogously, rewriting (7) yields

(7) = ω2

( ∂ψ
∂δ2

+ η2P2 − η2λ2
[
ξ2G22E

∗
2
2

+ ξ1E
∗
2E

∗
1Y21 sin (δ21 + α21)

])
(14)

− η2ω2

(
(λ2 − ξ2)λ2G22E

∗
2
2

+ (λ1 − ξ1)λ2E
∗
2E

∗
1Y21 sin (δ21 + α21)

)
(15)

− η2ω2

(
(E2 − λ2E

∗
2 )G22(E2 + λ2E

∗
2 )

+
(
(E2 − λ2E

∗
2 )E1 + (E1 − λ1E

∗
1 )λ2E

∗
2

)
×Y21 sin (δ21 + α21)

)
. (16)

We now present three design selections rendering V̇ negative
definite.

1) Cross-term design: By zeroing (11) and (14), we derive
the explicit expressions for the cross-term, i.e.

λ1(δ, ξ) =

∂ψ
∂δ1

+ η1P1

η1
[
ξ1G11E∗

1
2 + ξ2E∗

1E
∗
2Y12 sin (δ12 + α12)

] ,
λ2(δ, ξ) =

∂ψ
∂δ2

+ η2P2

η2
[
ξ2G22E∗

2
2 + ξ1E∗

2E
∗
1Y21 sin (δ21 + α21)

] .
(17)

Assumption 2: The function ψ is at least twice differen-
tiable and it is such that ∂ψ

∂δi
= 0, for all i. In addition,

the denominator of λ in (17) remains positive along the
trajectories of the system (2).

Note that, at the desired operating equilibrium, we have

ηi
[
ξ∗iGiiE

∗
i
2 + ξ∗jE

∗
i E

∗
j Yij sin (δ

∗
ij + αij)

]
= ηiPi > 0.

(18)
By continuity, the denominator of λ in (17) remains locally
positive. Hence, Assumption 2 holds locally.

Remark 4: As shown in (17), the expression for the ith
element of the cross-term is independent of the jth element
of the gradient vector, i.e. λi contains no ∂ψ

∂δj
for all i ̸= j.

This indicates that, with a suitable selection of ψ, the cross-
term in (17) can be used with minor changes for the transient
stability analysis of the n-machine model for any n ≥ 3.

2) Auxiliary state design: We design the dynamics of the
auxiliary state as

ξ̇1 = λ̇1 + κ1(λ1 − ξ1)

− 1

ρ1

(
η1ω1λ1G11E

∗
1
2

+ η2ω2λ2E
∗
2E

∗
1Y21 sin (δ21 + α21)

)
,

ξ̇2 = λ̇2 + κ2(λ2 − ξ2)

− 1

ρ2

(
η2ω2λ2G22E

∗
2
2

+ η1ω1λ1E
∗
1E

∗
2Y12 sin (δ12 + α12)

)
,

(19)

where κ ∈ R2
>0 is a tunable coefficient.

Since λ̇(δ, ξ) contains ξ̇, the expression for ξ̇ in (19) is
basically given in an implicit form. Then, for any selection

of ψ verifying Assumption 2, we can calculate λ̇ and obtain

ξ̇ = [I − A]−1B, (20)

where I ∈ R2×2 is the identity matrix; while A ∈ R2×2 and
B ∈ R2×1 are two matrices, the elements of which are given
by

Aij =
∂λi
∂ξj

, (21)

Bi =
2∑
j=1

∂λi
∂δj

ωj + κi(λi − ξi)

− 1

ρi

(
ηiωiλiGiiE

∗
i
2

+

2∑
j=1,
j ̸=i

ηjωjλjE
∗
jE

∗
i Yji sin (δji + αji)

)
, (22)

for all i and j.
Assumption 3: The matrix [I −A] is invertible along the

trajectories of the system (2).
Remark 5: Through suitable selections of ψ and of ξ̇, both

Assumptions 2 and 3 can be locally satisfied. In addition, the
auxiliary state can be initialized at its desired equilibrium,
i.e. ξ(0) := ξ∗ = 1 ∈ R2. This mechanism contributes to the
local satisfactions of the assumptions.

Now, note that (20) is such that

(9) + (12) + (15) = −
2∑
i=1

ρiκi(λi − ξi)
2 ≤ 0. (23)

3) Control law design: We propose the dynamic control
law as

u1 = a1λ1E
∗
1 − b12E2 cos (δ12 + α12)− e∗f 1

+ λ̇1E
∗
1 − Sat1(E1 − λ1E

∗
1 )

+
1

µ1

(
η1ω1

(
G11(E1 + λ1E

∗
1 )

+ E2Y12 sin (δ12 + α12)
)

+ η2ω2λ2E
∗
2Y21 sin (δ21 + α21)

)
,

u2 = a2λ2E
∗
2 − b21E1 cos (δ21 + α21)− e∗f 2

+ λ̇2E
∗
2 − Sat2(E2 − λ2E

∗
2 )

+
1

µ2

(
η2ω2

(
G22(E2 + λ2E

∗
2 )

+ E1Y21 sin (δ21 + α21)
)

+ η1ω1λ1E
∗
1Y12 sin (δ12 + α12)

)
,

(24)

in which the saturation term is set as1

Sati(Ei − λiE
∗
i ) = Li tanh

( ki
Li

(Ei − λiE
∗
i )
)
, (25)

with L ∈ R2
>0 and k ∈ R2

>0 tunable constants. Note that the
inclusion of such a saturation term is motivated by the desire
to limit the control input range.

1Any differentiable, monotonically increasing saturation function can be
used.



Therefore, (24) is such that

(8) + (13) + (16) = −
2∑
i=1

µiai(Ei − λiE
∗
i )

2

−
2∑
i=1

µi(Ei − λiE
∗
i )Sati(Ei − λiE

∗
i ) ≤ 0.

(26)

As a result, the selections in (17), (20) and (24), provided
Assumptions 2 and 3 hold, are such that

V̇ = −
2∑
i=1

ηiDiω
2
i

−
2∑
i=1

µi

(
ai(Ei − λiE

∗
i )

2

+ (Ei − λiE
∗
i )Sati(Ei − λiE

∗
i )
)

−
2∑
i=1

ρiκi(λi − ξi)
2 ≤ 0,

(27)

from which we conclude stability of the desired closed-loop
operating equilibrium x∗. Furthermore, a direct application
of LaSalle’s invariance principle shows that x∗ is also
attractive, hence it is asymptotically stable. The results are
summarized in the following statement.

Proposition 1: Consider the lossy two-machine system
model (2) and a desired operating equilibrium x∗. Select
ψ : R2→R≥0, such that ψ ∈ C2, δ∗ij = arg minψ, ∂ψ

∂δi
= 0,

∀ i, j ∈ [1, 2]. Assume Assumptions 2 and 3 hold. Then,
the dynamic control law (24) is such that x∗ is locally
asymptotically stable.

IV. CASE STUDY

A. Selection of ψ(δ)

The potential-energy-like term must satisfy the conditions
stated in Proposition 1. In this case study, we select

ψ(δ) := σ

(
1− cos

(
w(δ21 − δ∗21)

))
, (28)

where σ ∈ R>0 and w ∈ R>0 are tunable parameters.
Note that ψ(δ∗12) = 0, and that ψ is positive definite

around the local minimizer at the desired post-fault operating
equilibrium.

B. Scenario Specifications

The simulations conducted are based on the two-machine
system model (2). As shown in Fig. 1, the short circuit fault
is assumed to occur at the location denoted by F.

Consider now the classical test scenario whereby the
fault occurs at tf = 1s, resulting in the switching of the
considered model from the pre-fault mode to the fault-on
mode; then, the fault is cleared at tc = 1.080s by switching-
off the faulty transmission line, resulting in the switching
from the fault-on mode to the post-fault mode.

The values of the parameters and of the coefficients in the
pre-fault mode, the fault-on mode and the post-fault mode,
respectively, are listed in Table I. In addition, the values of

TABLE I
PARAMETERS, COEFFICIENTS AND OPERATING EQUILIBRIUM

Mode pre-fault fault-on post-fault
G11 21.9365 8.0846 24.7152

G22 16.1875 0.0008 15.6692

Y12 41.0925 0.0006 34.7940

Y21 58.2485 0.0008 49.3205

α12 0.3123 1.5980 0.3057

α21 0.3123 1.5980 0.3057

a1 0.6844 0.9535 0.6634

a2 0.8321 1.2291 0.7344

b12 0.2819 0 0.2387

b21 0.4187 0 0.3545

δ∗12 −0.2042 − −0.2294

δ∗21 0.2042 − 0.2294

E∗
1 1.1590 − 1.1433

E∗
2 1.4959 − 1.5996

TABLE II
CONSTANT PARAMETERS AND WEIGHTING COEFFICIENTS

D [0.3770, 0.5344]⊤

P [37.1558, 86.0933]⊤

e∗f [0.3740, 0.8228]⊤

σ 1.7684

w 0.8000

κ [20, 20]⊤

L [5, 5]⊤

k [20, 20]⊤

η [0.1, 0.1]⊤

µ [3.7699, 5.3438]⊤

ρ [15.0796, 21.3754]⊤

the desired operating equilibrium are also given in Table I.
Note that there exists no operating equilibrium in the fault-
on mode. The values of the constant parameters in (2), (28)
and (24), and of the weighting coefficients in (5) are listed
in Table II.

C. Transient Performance

Fig. 2 illustrates the transient performance yielded by two
control approaches, i.e. the solid lines yielded by the pro-
posed control law in (24) and the dash-dotted lines yielded
by an existing control law in [11, equation (23)], respectively.
Note that each approach has its own merits. On one hand,
since the control law in [11] acts directly on the internal
transient voltage, it yields better performance in terms of
the transient dynamics of this state. On the other hand, the
proposed control law yields better performance in terms of
the transient dynamics of the rotor angular separation and of
the angular speed deviation.

Fig. 3 illustrates the time histories of the auxiliary state and
of the cross term. It can be observed that the auxiliary state
converges to the equilibrium of the cross-term as desired.

Fig. 4 illustrates the time histories of the control input
(24), limited inside a feasible operating range. Notably, with
proper weighting coefficients, such a limitation does not
destroy closed-loop performance.



Fig. 2. Time histories of the states of the two-machine system model:
rotor angular separation (top), angular speed deviation (middle) and internal
transient voltage (bottom)

Fig. 3. Time histories of the auxiliary state (top) and of the cross-term
(bottom)

Fig. 4. Time histories of the bounded control input u

Fig. 5 illustrates the time histories of the CLF in (5), which
serves as a monitor for the stable transient performance
with respect to the post-fault mode. Note that, after the
fault-clearing time tc, the CLF decreases monotonically to
zero, consistent with the fact that the post-fault trajectory
converges asymptotically to the desired post-fault operating
equilibrium.

V. CONCLUSION

The paper has presented a new analytical control solution
to the long-standing problem of transient stabilization for
lossy multi-machine power systems. A new form of control
Lyapunov functions including a flexible potential-energy-like
term has been proposed. The introduction of an auxiliary
state allows computing the cross-term without relying on

Fig. 5. Time history of the control Lyapunov function V

any integration. Therefore, the proposed control Lyapunov
function can be extended to the study of the transient
stability of lossy multi-machine models with any number
of synchronous generators. Finally, the proposed dynamic
control law ensures asymptotic stability of the desired post-
fault operating equilibrium.

One natural direction for future work is to verify the
performance of such a Lyapunov-based transient stability
analysis tool for benchmark n-machine model with n ≥ 3.
Note that the proposed control law relies on the information
exchange between all the synchronous generators, which
might be hard to implement. Hence, another possible direc-
tion is to render the proposed control law decentralized by
using local information available from the ith synchronous
generator only.
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