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Abstract

Network routing problems are common across many engineering applications. Computing
optimal routing policies requires knowledge about network demand, i.e., the origin and destina-
tion (OD) of all requests in the network. However, privacy considerations make it challenging to
share individual OD data that would be required for computing optimal policies. Privacy can
be particularly challenging in standard network routing problems because sources and sinks can
be easily identified from flow conservation constraints, making feasibility and privacy mutually
exclusive.

In this paper, we present a differentially private algorithm for network routing problems.
The main ingredient is a reformulation of network routing which moves all user data-dependent
parameters out of the constraint set and into the objective function. We then present an
algorithm for solving this formulation based on a differentially private variant of stochastic
gradient descent. In this algorithm, differential privacy is achieved by injecting noise, and one
may wonder if this noise injection compromises solution quality. We prove that our algorithm
is both differentially private and asymptotically optimal as the size of the training set goes
to infinity. We corroborate the theoretical results with numerical experiments on a road traffic
network which show that our algorithm provides differentially private and near-optimal solutions
in practice.

1 Introduction

Network routing problems appear in many important topics in engineering, including traffic routing
in transportation systems, power routing in electrical grids, and packet routing in distributed
computer systems. Network routing problems study settings where resources must be delivered to
customers through a network with limited bandwidth. The goal is typically to route resources to
their respective customers as efficiently as possible, or equivalently, with as little network congestion
as possible.
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One key challenge in network routing problems is that the requests (i.e., network demand) are
often not known in advance. Indeed, it is difficult to know exactly how much power a neighborhood
will need, or exactly how many visits a particular website will receive on any given day. Since
information about the demand is often necessary to develop optimal or near-optimal network routing
solutions, network routing algorithms often need a way of obtaining or estimating future demand.
With the advent of big data and internet-of-things systems, crowd-sourcing has gained popularity as
a demand forecasting approach for network routing systems. In crowd-sourcing, customers submit
their request history to the network operator. The network operator uses this historical data to
train a statistical or machine learning model to predict future demand from historical demand.

While crowd-sourcing provides a bountiful supply of data for training demand forecasting mod-
els, it can also introduce potential privacy concerns. Since crowd-sourcing uses individual-level
customer data to train demand forecasting models, the model’s outputs may reveal sensitive user
information, especially if it overfits to its training data [CTW™21]. Such privacy risks are problem-
atic because they may deter users from sharing their data with network operators, hence reducing
the supply of training data for demand forecasting models.

To address such concerns, the demand forecasting pipeline should be augmented with privacy-
preserving mechanisms. Differential privacy [DMNS06] is a principled and popular method to
occlude the influence a single user’s data on the result of a population study while also maintaining
the study’s accuracy. This is done by carefully injecting noise into the desired computation so that
data sets that differ by at most one data point will produce statistically indistinguishable results.

Providing differential privacy guarantees for the standard formulation of network routing is
difficult because the constraints contain user data, meaning that in general feasibility and privacy
become mutually exclusive. More specifically, in the standard network routing problem, the demand
sources and sinks can be identified by checking for conservation of flow, and as a result, the presence
of a user going to or from a very rare location can be detected from any feasible solution. Because
differential privacy requires that the presence of any single user’s data be difficult to detect from the
algorithm’s output, privacy and feasibility are at odds with one another in the standard formulation.

1.1 Statement of Contributions

In this paper we present a differentially private algorithm for network routing problems. The main
ingredient is a reformulation of network routing which moves all user data dependent parameters
out of the constraint set and into the objective function. We then present an algorithm for solving
this formulation based on differentially private variants of stochastic gradient descent. In this
algorithm, differential privacy is achieved by injecting noise, and one may wonder if this noise
injection compromises solution quality. We prove that our algorithm is differentially private and
under several reasonable regularity conditions, is also asymptotically optimal (as the size of the
training set goes to infinity). We note that in exchange for becoming compatible with differentially
private algorithms, this new formulation is more computationally expensive.

1.2 Related Work

Traffic assignment in transportation systems is one of the most well-known applications of network
routing. Herein we focus our literature review on privacy research in transportation networks.
Privacy works in transportation mainly focus on location privacy, where the objectives is to prevent
untrusted and/or external entities from learning geographic locations or location sequences of an
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individual [BS03]. Privacy-preserving approaches have been proposed for various location-based
applications, e.g., trajectory publishing, mobile crowdsensing, traffic control, etc. These techniques
are based on spatial cloaking [CMLI11] and differential privacy [Dwo08]. While not the setting of
interest for this paper, there are many works that use Secure Multi-Party Computation (MPC)
[GMWST] to achieve privacy in distributed mobility systems.

Spatial cloaking approaches aggregate users’ exact locations into coarse information. These
approaches are often based on k-anonymity [Swe(2], where a mobility dataset is divided into equiv-
alence classes based on data attributes (e.g., geological regions, time, etc.) so that each class
contains at least k records [GFCAT14, [HC20]. These k-anonymity-based approaches can guarantee
that every record in the dataset is indistinguishable from at least k — 1 other records. However,
k-anonymity is generally considered to be a weak privacy guarantee, especially when k is small.
Furthermore, very coarse data aggregation is required to address outliers or sparse data, and in
these cases spatial cloaking-based approaches provide low data accuracy.

Differential privacy provides a principled privacy guarantee by producing randomized responses
to queries, whereby two datasets that differ in only one entry produce statistically indistinguishable
responses [DMNSO06]. In other words, differential privacy ensures that an adversary with arbitrary
background information (e.g., query responses, other entries) cannot infer individual entries with
high confidence. Within transportation research, [WHL™ 18, [YLL 19| share noisy versions of lo-
cation data for mobile crowd-sensing applications. [GZFSTH, [GLTY1S, IAHFIT18, [LYH20] use
differential privacy to publish noisy versions of trajectory data. [DKBSI5| and [HTP17] apply
differential privacy to gradient descent algorithms for federated learning in mobility systems.

Many of the works mentioned in the previous paragraph establish differential privacy of their
proposed algorithms by using composition properties of differential privacy. Composition theorems
for differential privacy describe how well privacy is preserved when conducting several computations
one after another. In [DKBS15] and [HTP17], composition theorems are applied as black boxes
without considering the mathematical properties of the gradient descent algorithm. As a result,
the privacy guarantees are overly conservative, meaning that large amounts of noise are added to
the algorithm, leading to suboptimal behavior both in theory and in practice. Similarly, [GZFS15|
GLTYT8, IAHFI"18, [LYH20] use composition rules as a black box, and while privacy is achieved in
this way, there are no accuracy guarantees for the algorithms presented in those works.

While blackbox applications of differential privacy can lead to impractical levels of noise in-
jection, specialized applications of differential privacy were discovered that could provide privacy
with much less noise. [WLK'17] show how a simple adjustment to stochastic gradient descent
can give rise to an algorithm which is both differentially private, and under reasonable regularity
assumptions, is also asymptotically optimal. [FMTTI18] and [FKT20] refined this idea to develop
stochastic gradient descent algorithms that are differentially private, computationally efficient, and
have optimal convergence rates. These techniques cannot directly be used to solve the standard
formulation of network routing because they study unconstrained optimization problems or op-
timization problems with public constraint sets (i.e., constraints that do not include any private
data).

2 Model

In this section we define notations, network models, and assumptions that will allow us to formulate
network routing as a data-driven convex optimization problem.
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2.1 Preliminaries

Indicator Representation of Edge Sets: Let G = (V, E) be a graph with vertices V' and edges
E ={ej,...,em}. For any subset of edges E' C E, we define the indicator representation of E’ as
L(g) as a boolean vector of length m in the following way: The ith entry of 1jp is 1 if e; € £,
and is 0 otherwise.

Derivative Notation: For a scalar valued function x — f(x), we use V f(xo) to denote the gradi-
ent of the f with respect to = evaluated at the point z = xy. For a vector valued function = — g(x),
and a variable z, we use D,[g|(xg) to denote the derivative matrix of g with respect to z evaluated
at the point x = xg.

Projections: For a convex set S C R?, we use IIs : R* — R? to denote the projection operator
for S. For any = € RY, [Ig(x) := arg minges ||z — ||, to be the point in S that is closest to z.

2.2 Network, Demand, and Network Flow

In this section we will introduce a) a graph model of a network, b) a representation of network
demand, c) the standard formulation for network routing and d) privacy requirements. The notation
defined in this section is aggregated in table form in Section [A] for the reader’s convenience.

Definition 1 (Network Representation). We use a directed graph G = (V| E) to represent the
network, where V' and FE represent the set of vertices and edges in the network, respectively. We
will use n := |V| and m := |E| to denote the number of vertices and edges in the graph, respectively.
For vertex pairs (0,d) € V x V we will use P (0,d) to denote the set of simple paths from o to d
in G.

Definition 2 (Operation Period). We use T := [tstart, tend] to denote the operation period within
which a network operator wants to optimize its routing decisions. We will also use T' to denote the
number of minutes in the operation period. For example, tgart = 8 : 00am, tepng = 9 : 00am could
represent a morning commute period where T' = 60.

Definition 3 (Demand Representation). We study a stationary demand model where demand
within the operation period 7 is specified by a matrix A € R,*". For each ordered pair of vertices
(0,d) € V xV, A(o,d) is the number of requests arriving per minute (i.e., the arrival rate) during
T that need routing from vertex o to vertex d.

Remark 1 (Estimating A from historical data). The arrival rates from historical demand are
computed empirically, i.e., if A; represents the demand for day ¢, then A;(o,d) is calculated by
counting the number of (o,d) requests appearing on day ¢, and then dividing it by 7' to obtain
requests per minute.

Definition 4 (Link Latency Functions). To model congestion effects, each link e € E has a latency
function f. : R4 — Ry which specifies the average travel time through the link as a function of the
total flow on the link.

In this paper we study a setting where a network operator wants to route demand while min-
imizing the total travel time for the requests. With these definitions, the standard formulation of
minimum travle time network routing is described in Definition
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Definition 5 (Standard Formulation of Network Flow). For a network G = (V, E) with link latency
functions { fe}.cp and demand A, the standard network flow problem is the following minimization
program:

minimize Z Yefe(Ye) (1a)
’ eclk
: _ (0,d) 1
subject to x {z }(o,d)erV’ (1b)
Ye = Z 2> for all e € E, (1c)
(0,d)EV XV
o,d ,d
Sooal - 0 = Ao, d)ju—g) — A0, d)Ljy_g) for all u € V, (0,d) € V x V. (1d)
vi(u,v)EE w:(w,u)€E
In , the decision variable x is a collection of flows {x(o’d)}( o, d)cVxyr ONe for each non-zero

entry of A, as represented by constraint . are flow conservation constraints to ensure that
2(>9 sends A(o,d) units of flow from o to d. Constraints ensure that {y.} .y represents the
total amount of flow on each edge. Finally, the objective function is to minimize the total
travel time as a function of total network flow.

In the next subsection we will describe the rigorous privacy requirements that we will mandate
while designing algorithms for network flow. We then describe in Section [2.4] why privacy and
feasibility are mutually exclusive in the standard network flow formulation.

2.3 Privacy Requirements

We will use differential privacy to reason about the privacy-preserving properties of our algorithms.
At a high level, changing one data point of the input to a differentially private algorithm should
lead to a statistically indistinguishable change in the output. To make this concept concrete we
will need to define data sets and adjacency.

Definition 6 (Data sets). Given a space of data points Z, a data set L is any finite set of elements
from Z. In practice, each element of a data set is data collected from a single user, or data collected
during a specific time period. We will use £ to denote the set of all data sets.

Definition 7 (Data Set Adjacency). Given a space of data sets £, an adjacency relation Adj is
a mapping Adj : £L x £ — {0,1}. Two data sets Ly, Ly are said to be adjacent if and only if
Adj(Lq, Le) = 1.

While the exact definition can vary across applications, adjacent data sets are sets that are
very similar to one another. The most common definition of adjacency is the following: L, L’ are
adjacent if and only if L’ can be obtained by adding, deleting, or modifying at most one data point
from L, and vice versa. Thus comparing a function’s output on adjacent data sets measures how
sensitive the function is to changes in a single data point.

With these definitions in place, we are now ready to define differential privacy.

Definition 8 (Differential Privacy). For a given adjacency relation Adj, a function M : £ — X is
(¢, 0)-differentially private if for any L, Ls € £ with Adj(L1, L) = 1, the following inequality

P[M(L,) € E] < eP[M(Ly) € E] + 6
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holds for every event E C X.

The definition of differential privacy requires that changing one data point in the input to a dif-
ferentially private algorithm cannot change the distribution of the algorithm’s output by too much.
Such a requirement ensures the following strong privacy guarantee: It is statistically impossible to
reliably infer the properties of a single data point just by examining the algorithm’s output, even
if the observer knows all of the other data points in the input [DMNSQG].

To proceed, we must specify what data set adjacency means in the context of network routing.
For network routing problems, historical data is often a collection of routing requests through the
network. To protect the privacy of those who submit requests, we want the routing policy we
compute to not depend too much on any single request that appears in the historical data. This
motivates the the following notion of data set adjacency that we will be using throughout this

paper.

Definition 9 (Request Level Adjacency (RLA)). We define a function RLA : £x £ — {0, 1} which
maps pairs of data sets to booleans. For two historical datasets of network demand L := (Ay, ..., Ax)
and L' := (A},...,Aly), we say L and L’ are request-level-adjacent (RLA) if exactly one of the
following statements is true:

1. L contains all of the requests in L', and contains one extra request that is not present in L.

2. L' contains all of the requests in L, and contains exactly one extra request that is not present
in L.

Mathematically, L, L’ are request-level-adjacent, i.e., RLA(L, L') = 1, if and only if they satisfy all
of the following relations:

o There exists ¢ so that Ay = A} for all k # ¢.
e There exists two vertices o and d so that A(o',d") = Aj(d/,d') for all (o/,d’) # (o,d).
* |At(07 d) - AQ(O, d)| < %

Indeed, these relations dictate that one of the datasets contains an extra request from o to d which
happened on the tth day. A difference of 1 request within a T" minute operation period leads to a
change of % in the arrival rate. Aside from this difference, the datasets are otherwise identical.

2.4 Differential Privacy Challenges in Standard Network Flow

In the introduction we mentioned that privacy and feasibility can be mutually exclusive in the
standard formulation of network flow described in (I]). In this section we formally show that if A
is constructed from a data set of trips as described in Remark [I} then trips to or from uncommon
locations can be easily detected from any feasible solution to . As a result, announcing or
releasing a feasible solution to is not, in general, differentially private. Formally, we will prove
the following theorem in this section.

Theorem 1 (Differential Privacy Impossibility for Standard Network Flow). Let M be a function
that takes as input a matrix A with non-negative entries and returns a feasible solution to the
optimization problem where A is used as a demand matriz. Then M cannot be (€, 0)-differentially
private for any § < 1.
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We further note that (e, d)-differential privacy only provides a meaningful privacy guarantee
when € < 1 and § < 1 [Dwo08].

Proof of Theorem[1. Let G = (V, E) be a network, and A be constructed from a historical data set
of requests in GG. Suppose there exist uncommon locations o and d for which A contains no trips
to or from either o or d. Mathematically, this means that

A(o,u) = 0,A(u,0) = 0,A(d,u) = 0,A(u,d) =0 for all u € V.

Such situations are not uncommon in transportation networks, if, for example, o and d are the
homes of two different people who do not drive (perhaps they walk or bike to and from work).

If we now add a trip from o to d to the data set, and let A’ be the resulting demand matrix,
then we have

i A(d,d')=N(d,d) for all (o/,d') # (0,d), and
ii Afo,d) =0, N(o,d) = #.

Let Probi, Probs be the optimization problem using demand A, A’ respectively. Because
A, A" are request-level-adjacent, any differentially private algorithm must behave similarly when
acting on Prob; and Probs. However, this is impossible because the feasible sets of Proby, Probs
are disjoint. If we look at constraint with u = d and (o, d) then any feasible solution to Prob;
satisfies

(0,d) (0,d) .
Z Tlud) Z Llu,d)y = Ao, d) 14— = 0.

u:(u,d)eE wi(d,w)eFE

However, any feasible solution to Proby satisfies

(Ovd) (O,d) _ _ ].
Z Tu,d) ~ Z Llu,d) = Ao, d)1jg—g = T
u:(u,d)EE wi(dw)EE

In other words, checking the net flow leaving node d will detect the presence of any trips going to
or from d. We will now show that any algorithm which returns a feasible solution to cannot
be differentially private. To this end, define the event E to be the event that flow is conserved at
node d. Then for any algorithm M that takes as input a demand matrix and returns a feasible
solution to (1) with the specified demand matrix, we have P[M(A) € E] = 1,P[M(A’) € E] = 0.
Recalling Definition [8, M is (e, §)-differentially private only if P[M(A) € E] < eP[M(A) € E] + 6.
This equation can only be satisfied if § > 1. O

We have two remarks regarding Theorem

Remark 2. The same result holds if M returns the total flow y associated with a feasible solution
(see ), rather than returning the feasible solution itself. In other words, even total traffic
measurements (without knowing the breakdown by (o, d) pairs) can already expose trips to or from
uncommon locations.
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Remark 3. The vulnerability of trips to and from uncommon locations is not a purely theoretical
concern. A study on the New York City Taxi and Limousine data set was able to identify trips
from residential areas to gentlemen’s club [Pani4]. Because the start locations were in residential
areas, it was easy to re-identify the users who booked the taxi trips as the owners of the homes that
the taxi trips began at. As a result, despite the data set being anonymized, users who had taken
taxis to this gentlemen’s club were re-identified, and their reputations may have been negatively
affected.

3 Routing Policy Formulation of Network Flow

To sidestep the impossibility result described in Theorem (1} we present an alternative formulation
for the network flow problem in this section. The alternative formulation avoids the issues men-
tioned in Theorem [I] by moving all parameters related to user data from the constraints to the
objective function, as described in . We note that can only be solved if the demand A is
known, which may not always be the case. For this reason, we present two variations of : @
is the stochastic version of where A is drawn from a distribution 9, and is the data driven
approximation to @ that one would solve if Q is unknown.

Before formally defining the model, we provide a high level description of how this formulation

works. In this formulation, a feasible solution x = {x("’d) } (0,d)EV XV specifies, for each (0,d) € VXV,

a flow z(>? that routes 1 unit of flow from o to d. We note that a flow is specified for (o, d)
even if there is no demand for this origin and destination in A, i.e., A(o,d) = 0. We refer to
x as a routing policy due to its connection to randomized routing, which Remark [5| discusses in
further detail. Given a feasible solution x, the objective function first calculates the total traffic on
each edge by taking a linear combination of {x(o’d)}(g DeVxV flows, where the coefficients of the
linear combination are determined by the demand A, with high demand (o, d) pairs having larger
coefficients. The total travel time can be computed from the total traffic in the same way as .

These ideas are formalized by the following definitions.

Definition 10 (Unit (o,d) flow). For a given origin-destination pair (o,d), we say that a flow
zlod) ¢ R is a unit (o0, d) flow if and only if it routes exactly 1 unit of flow from o to d. Formally,
this condition is represented by the following constraints:

-1 fu=o0

Z szZ)) - Z xEZi)) = 1 ifu=d forallueV (2)
veEV:(vu)EE veV:i(uw)EE 0 otherwise.

Indeed, requires that the net flow entering o is —1, the net flow entering d is 1, and that flow
is conserved at all other vertices in the graph.

Definition 11 (Unit Network Flow). A unit network flow is a collection of flows x = {x("’d)} (0d)eV XV

so that z(®® is a unit (o0,d) flow for each (0,d) € V x V. We use X to denote the set of all unit
network flows.

Remark 4. We can represent x as a concatenation of the vectors {:c("’d)} ( Since each

0,d)eV V"
. . . . 2
unit (o,d) flow is a m dimensional vector, we have x € R™™.
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We will refer to unit network flows as routing policies, due to their connection with randomized
routing, described in the following remark.

Remark 5 (Routing demand using unit flow policies). A unit network flow represents a randomized
routing policy. Due to the flow decomposition theorem [Trell], every unit (o, d) flow can be written
as a distribution of paths from o to d. Formally, for any unit (o,d) flow z(>% there exist paths

pgo’d),pgo’d), ...,pgn 9 from o to d and weights fw(o d) o wﬁg’d) so that the following equations hold:

o) wa 1o ©

i (o d)
wl(’)z()foralllgigm.
(o,d) (0,d) (o,d) (0,d)

Furthermore, p; ", ...,pm" " and w; ., Wy are efficiently computable. Defining the probability
distribution P, ,a)

P (Uv@(]l[p('o,d)}) = wgo’d) forall 1 <7 <m,

x
xﬁf”d) represents the probability that a random path chosen from P 4 contains e. = describes
the expected behavior of the randomized routing policy that determines routes for (o, d) requests
by drawing a path independently at random from P, 4. In particular, when using this policy to
serve demand A, by linearity of expectation, the expected number of requests from o to d whose
assigned path contains e is exactly A(o, d)xgo ) Furthermore, the average number of requests on
each edge will be 3, ey v Alo, d)z (0,d)

3.1 Minimum Total Travel Time Network Flow

In the minimum travel time network flow problem, the network operator wants to find a stationary
routing policy for each (o, d) pair that will lead to small total travel times for the requests. Due to
the equivalence between stationary (o, d) routing policies and unit (o, d) flows, the network operator
can instead search over the space of unit (o,d) flows.

The total travel time of a flow y through G is given by > . ¥e fe(ye). The total flow resulting
from a unit network flow x serving demand A is the sum of the flow contributions from each of
the (o,d) pairs. With Remark [5| in mind, the total amount of flow on an edge e € E when serving

A according to x is given by >, ey« Ao, d):ngo’d). We can thus define F(z, A), the total travel
time experienced by requests A when being routed by z, as follows:

F(z,A) = > Ao, d)zl> | f. > Ao, d)zlo? . (4)

ecE \ (0,d)eV XV (0,d)EV XV

With these definitions in place, the unit network flow that minimizes the total travel time when
serving the demand A can be found by solving the following optimization problem
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minimize F(x,A) (5)

T

subject to x = {w(o’d)} ,
(0,d)eV XV

20D ig a unit (0,d) flow for every(o,d) € V x V,

3.2 Network Flow with Stochastic Demand

In practice, demand may vary from day to day, and such variations can be modeled by A being
a random variable with distribution Q. If Q is known by the network operator, then rather than
solving , the operator is interested in minimizing expected total travel time through the following
stochastic optimization problem:

minimize Exo [F(z, A)] (6)
1 — (0,d)

subject to x {:c }(o,d)erV7

2% is a unit (o0, d) flow for every(o,d) € V x V,

We note that @ is a generalization of to the case when A is random.
In the more realistic case that Q is not known, the optimization problem @ can be approx-
imated from historical data. We study a situation where the network operator has demand data

A, A, AN i Q collected from operations of previous days. Using this data it can solve the
following empirical approximation to @:

N
o1
minimize Z F(z,Ag) (7)
k=1
subject to x = {x(o’d)} ,
(0,d)eV XV
2D is a unit (o,d) flow for every(o,d) € V x V,
The optimization problem in uses historical data to estimate @ In line with Assumption

we will assume that A;(o0,d) < Apax for all values of ¢, 0 and d.
In Section || we show how can be solved in a request-level differentially private way.

3.3 Assumptions on Travel Time functions

In this section we will introduce some assumptions that will help us establish our technical results.
We will make the following assumptions on the network demand:

Assumption 1 (Bounded Demand). We assume there exists a non-negative constant Amax so that
A(0,d) < Amax for every (o,d) € V- x V. In practice, this constant can be estimated from historical
data.

10
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The following are assumptions we make on the objective function F' (see (4])). These assumptions
are related to properties of the link latency functions { fc}..5. We present a typical model for link
latency functions in Section [3.4] that satisfies all of the following assumptions.

Assumption 2 (Bounded Variance Gradients). We assume there exists a non-negative constant K
so that for every x, the variance of VF(x,A) is upper bounded by K2, i.e., Epno |:||VF(.CU, A)Hg] <
K2

Assumption 3 (Twice Differentiability). We assume that F(-, A) is twice-differentiable for every
A so that the hessian H(x,\) : o F(x,\) is defined on the entire domain of x.

= 0a?
Assumption 4 (Strong Convexity). We assume that there exists « > 0 for which F(-,A) is a-
strongly convex for every A. This means that for every A, and any unit network flows x,z’ we
have

F(a!,A) > Fz,A) + Vo F(z, )T (2 — z) + % |2/ — ||

Assumption 5 (Smoothness). We assume that there exists B > « for which F(-,A) is 3-smooth
for every A. This means that for every A, and any unit network flows x, 2’ we have

F(z',A) < F(z,A) + V. F(x,A) " (2' — x) + g ||2" — = ‘; :

Assumption 6 (Bounded second order partial derivative). We assume that there exists C > 0 so
that || Da(o,q) [VaF] (a?,A)HOp < C forall x,A and (0,d) € V x V.

Remark 6 (Satisfying Assumption @ We can satisfy Assumption |§| for any positive C' by re-
scaling. In particular, letting 6 := max, As || Da(o,q) [V F] (2, A’)H2, then for any C' we can define
a re-scaled objective function

F(z,\) = %F(m,A).

By construction, F satisfies Assumption |§| with constant value C'. Note, however, that the smooth-
ness and strong convexity parameters for F' will be rescaled accordingly to % and § respectively.

3.4 Transportation Model satisfying assumptions from Section

In this section, we present a transportation network model that satisfies Assumptions and [6]
We study a network where the link latency functions are all affine where for each e € E, there are
non-negative constants g, ¢, so that fe(y) = gey + ce. Let @ € R™*™ be defined so that Qce = ge,
and let ¢ € R™ be the concatenation of all of the zero order coeflicients in the link latency functions.

As mentioned in Remark we will represent x as a concatenation of {m(o’d)}(m DevxV: As

such, z € R™™. Let {(oi,di)}?zzl be the order in which the unit (o,d) flows are concatenated to
produce z so that

(o1,d1)

p(02,d2)

2(0,2,d,2)

11
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The total flow on the links in the network when serving demand A according to x can then be
written as:

Y= Z Ao, d)z>Y = Bpx
(0,d)eV xV

where Bp = vec(A) ® I,,,. Here vec(A) is a n? dimensional row vector whose ith entry is A(o;, d;),
and ® represents the Kronecker product. Then when A is being routed according to x, the travel
times on the links can be computed as

Qy+C:QBA.’I,'+C,

which means that the total travel time can be written as

F(z,A) = yefelye) =y (Qy+0)

ecE
=2 B} (@Baz +¢)
= 2" B{QBx + ¢ By (8)

If we add a bit of {5 regularization, we obtain
F(a, A) = Fa, )+ 3 |l
!
=2"BiQBxz + ¢ By + 5 [Ed1E
=z (BIQBA + %I) z+c' Bpz.
Recall that we use H (-, A) to denote the hessian of F'(-, A) with respect to its first argument. We
now make the following observations:

e The Hessian of F'(x,A) with respect to x is defined for all z and is equal to QBIQBA + al.
Hence Assumption [3is satisfied.

e Since @ is a diagonal matrix with non-negative entries, () = 0. This implies that BIQB = 0.
Hence H(xz,A) = al. This implies that F' is a-strongly convex, and hence Assumption [4| is
satisfied.

2 2 2
e Note that |[B[QBx + (a/2)1]|,, < 1Qll,y IBAlZ, + /2 < [1Qll,, l[vec(A) |31 Lnl2, + a/2.
Defining 8 := n? (max, g¢) A2, + /2, we see that ||H(x, A)

that F' is S-smooth, and thus Assumption [5 is satisfied.

Hop < p for all z € X, meaning

e By product rule,

_9
8A(Oi,di)
0

=2 ((ei ®I)Qy + BIQx("vd)) +e®c

Do) [VF] (2, A) = {2 (BXQBA + oJ) v+ BXC}

12
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where e; is the ith standard basis vector for R, By triangle inequality we can then conclude
that

Do [VF) (2 A)]|, < 211Qully +2|[BEQCD||+ el

< 2{|Qllop [1lly + 2[1Ballop Q110

d
2]+ lell,

(a)

< 2([Qllop [1Yllg + 20 Amax || Q] v + le]]

(®)

S 2)\maX ‘|Q’|opn2m+ 2>\maX ||Q‘|opn\/5+ HCHQ .

Here (a) is due to the fact that z(®% is a unit (o, d) flow, meaning Hx(‘”d)Hoo < 1 and thus

Hx(o’d)HQ < V/m. Also, By = vec(A) ® I, implies that [|By|,, < H]ITEHQ [ Zm|lop = M Amax-

(b) is due to ||y||, = HBA:E(O7d)H2 < [|Ballop |’m(°7d)}|2 < n?y/MAmax.
Hence Assumption |§| is satisfied with C' = 2Amax [|Q|l,, vVmn(n + 1) + [|c][5.

4 Differentially Private Network Routing Optimization

Given the setup from Section [3] our objective is to design a request-level differentially private
algorithm that returns a near optimal solution to @ Since the true distribution Q of demand is
unknown, we will design an algorithm for and show that under the assumptions described in
Section the algorithm’s solution is also near optimal for @

Computing a near-optimal solution to while maintaining differential privacy may seem like
a daunting task, but it turns out that a single modification to a well-known optimization algorithm
gives an accurate and differentially private solution.

We present a Private Projected Stochastic Gradient Descent algorithm, which is described in
Algorithm As the name suggests, Algorithm [1| is a modified version of stochastic gradient
descent. The algorithm conducts a single pass over the historical data, using each data point to
perform a noisy gradient step (see line 6). The key difference between Algorithm (1| and standard
stochastic gradient descent is in line 11, where instead of returning the final gradient descent iterate,
Algorithm [1| returns a noisy version of the last iterate. Algorithm [I] has the following privacy and
performance guarantees.

Theorem 2 (Privacy Guarantee for Algorithm. Algom'thm is (€, 9)-differentially private under
request level adjacency defined in Definition [9

Theorem 3 (Performance Guarantee for Algorithm . If Ay, ..., AN i Q, and z* is a solution
to @, then the output x4 of Algorithm satisfies:

5271_2 /327‘,2
E[Hx o ] . 1 KCexp(W) +n\/ﬁ Bexp(uaz) N C oln 1.25
alg 2l =N a N | amin(1,20)  eaT 0

1 1 1

13
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In particular, za, is (€, d)-differentially private and converges to z* as N — oo, meaning that
privacy and asymptotic optimality are simultaneously achieved.
See Appendix [B] and Appendix [C| for proofs of Theorem [2] and Theorem [3| respectively.

Algorithm 1: Private Projected Stochastic Gradient Descent

Input: Historical demand data A, ..., Ay, Desired privacy level (e, d);
Output: Unit network flow = € X;
Initialize ¢y € X arbitrarily ;

for 1 <k <N do
Ne—1 < Min (ﬁ, LH%’M));
xp < Iy (zp—1 + M1 Vo F(z-1, Ag));

C .. min(1,2a) 1 .
S < Tmln (T, OcW)’

(3 O N I VN

=]

~

©
N Q
L q
Z o
=M%
Sz
N~
-]

b
10 Tyig 11y (:L'N + Z);
11 Return z,4;

4.1 Discussion

Carefully adding noise to specific parts of existing algorithms is a principled approach for develop-
ing differentially private algorithms [DMNSO06, [FMTT18|, FKT20]. The main challenge in such an
approach is determining a) where and b) how much noise to add. Suppose the goal is to (approxi-
mately) compute a query function f(L) on a data set L in a differentially private way. The latter
question can be addressed by measuring the sensitivity of the desired query function.

Definition 12 ({; sensitivity). Consider a function f : £ — R? which maps data sets to real
vectors. For a given adjacency relation Adj, the /5 sensitivity of f, denoted saqj(f), is the largest
achievable difference in function value between adjacent data sets. Namely,

sadj(f) = max  [[f(L1) — f(L2)ll,-

Ly,Loel
Adj(L1,L2)=1

Once the sensitivity of the query function is known, the required noise distribution can be
determined using the Gaussian mechanism as described in Theorem [4]

Theorem 4 (From [DR14)). Suppose f : D — RP maps datasets to real vectors. If saqj is the lo
sensitivity of f, then f(D) := f(D)+ Z where Z ~ N <O,2S?2d] In (%) Ip> is (€, 0)-differentially

private with respect to the adjacency relation Adj.

Calculating the sensitivity of the simple query functions (e.g., counting, voting, selecting the
maximum value) is relatively easy, making the Gaussian mechanism straightforward to apply. How-
ever, for more complicated functions, noise calibration becomes more involved.

Algorithm [I]is an application of the Gaussian mechanism. Moreover, Theorem [3|shows that the

suboptimality of Algorithm |1|is O (ﬁ) The asymptotic optimality of Algorithm (1| comes from

14



Private Convex Optimization for Network Routing Tsao, Gopalakrishnan, Yang, Pavone

the fact that the ¢y sensitivity of the final gradient descent iterate is actually converging to zero
as N approaches infinity. This fact enables us to add less noise as N — oco. Indeed, the Gaussian
noise added to the final gradient descent iterate in Algorithm [I] has standard deviation which is
0(%).

In the remainder of this section, we sketch some of the mathematical ideas behind the perhaps
non-intuitive result that the sensitivity of gradient descent converges to zero as the number of
data points increases. For simplicity of exposition we will a) use scalar notation in place of vector
notation for the sake of readability, and b) consider the simpler case of unconstrained gradient
descent, which removes the need to perform projections. As a reminder, the full proof can be found
in Appendix

Given a mobility data set, we use 2;(L) to denote the ¢-th iterate of Algorithm [I] when using

data set L. It is sufficient to show that the max; ‘ ‘fl A ‘ converges to zero for every ¢. This is because
the sensitivity is obtained by integrating the derivative:

Lo d
/ doen o
L, dL
Because L1, Lo are adjacent, the distance between them is finite, and thus the above integral will

converge to zero if its integrand converges to zero.
With this in mind, by chain rule, we can write

lew (L) — an(La)ll, = \

dey _ dawy depp doyyy dzy
dAt N dAt d$t dxt+1".dajN,1'

dxt+1

Next, by using properties of smooth and strongly convex functions, we show that <1-86

for some positive constant 8. This result implies

d.’Et
T |dA,

dry|

A, (1—6)N-

Next, recalling that z; = x4—1 — n:VF(x¢—1,A¢), note that x4_1 is computed from the first ¢t — 1
gradient steps, which only depend on the first ¢t — 1 data points A1, ..., A;_1. Hence the d‘rt L =0.
From this we see that

dae _ d
dh,  dA,

d
= —ntEVF(It_l, At)

By using Assumption [6] we have the following inequality:

day | _
dAy

Putting everything together, we have

- 77tVF(SCt—1, At))

d
7VF(.’I}15_1, At>

< .
A, <m0

dl’N

TN _ \N—t
dAt C’I’]t(l 9) .

The choice of stepsize in Algorithm (1| ensures three things: a) n; < 2 for every ¢, b) 7 is non-

dzpn

dA¢

increasing, and ¢) n; — 0 as t — oo. Given these facts, there are two cases to consider for
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Case 1: t < N/2. In this case, we can upper bound 7; < 2 and (1—6)™/2. Hence
Since 1 — 6 < 1, this converges to zero as N — oo.

fjfTN‘ < 20(1-6)N/2.

Case 2: t > N/2. In this case, we simply upper bound (1 — )=t < 1 and n; < nn/2 Which gives

C?T]‘tf‘ < Oy which converges to zero as N — oo.

Finally, this shows that

dx N
dA;

max
t

< max (Cmv/z, 2C(1 - H)N) )

=0.

and since both terms in the maximum are converging to zero, we have limy_ oo ‘?Tf\t’

5 Experiments

Differentially private mechanisms add noise to provide a principled privacy guarantee for individual
level user data. One immediate question is the degree to which the added noise degrades the
quality of the obtained solution. In the previous section, we addressed this question theoretically
in Theorem [3] by showing that Algorithm [I]is both differentially private and asymptotic optimal.
In this section, we present empirical studies on privacy-performance trade-offs by comparing our
algorithm’s performance to that of a non-private network routing approach. To this end, we simulate
a transportation network to evaluate the performance of our algorithm and the non-private optimal
solution to the network flow problem @

We describe the dataset used for the experiments in Section Next, the algorithms used in
the experiments are described in Section In Section [5.3] we evaluate the practical performance
of our algorithm for different values of N. In particular, we study the effect of the number of
samples, and quantify the loss in system performance we may experience due to the introduction of
our privacy-preserving algorithm. Finally, in Section [5.4] we study the sensitivity of our algorithms
to the simulation parameters. In particular, we study the convergence of the routing policy with in-
creasing data for different demands, edge latency function, and the magnitude of the regularization
loss introduced to convexify the edge latency function.

5.1 Data Set

We use data for the Sioux Fall network, which is available in the Transportation Network Test
Problem (TNTP) dataset [Tral6]. This network has 24 nodes, 76 edges, and 528 OD pairs (see
Figure (1| for an overview of the network topology). The distribution of mean hourly demand across
different OD pairs is shown in Figure The mean OD demand is 682 vehicles/ hour. Furthermore,
for more context on the scale of the network, the travel time on edges ranges from 2 to 10 minutes.
Trip data is generated each hour, i.e., T = 60, from a Poisson distribution with a mean value that
is given by the data. Our objective is to learn a routing policy for these trips that minimizes the
total travel costs for all users. To model congestion, we use the link latency model described in
Section In particular, for each e € E, we estimate the free flow latency as c. directly from the
data set. The sensitivity of the latency function to the traffic volume on the link, denoted by g, is
chosen such that the travel time on the link is doubled when the link flow equals the link capacity.
In later experiments, we will change this factor to study the sensitivity of our algorithm.
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Figure 1: Description of the Sioux Falls dataset

5.2 Algorithms

Throughout Sections [5.3 and [5.4) we compare the performance of two different algorithms: a Base-
line algorithm and Algorithm 1, which we describe below.

Baseline: This algorithm computes the minimum travel time solution to @ for the Sioux Fall
model described in Section Recall that in the Section model, describes the travel time
incurred when serving demand A with a routing policy . Given a data set A1, ..., Ay, it computes
the solution to the following minimization problem: min,¢cy % Zfi 1 xTBLQBAix + cTBAix.

Algorithm 1: The travel time function described in is not strongly convex because BIQBA is
rank deficient. In order to satisfy Assumption[d] we introduce an {5 regularization. Namely, given a
data set A1, ..., Ay, we apply Algorithm 1| to the following minimization problem: min,cy « ||z |§ +

N
% Zi:l xTBLQBAiaj + CTBAix'

For the Sioux Falls network, the parameters for implementing Algorithm [I] are set as follows.
The smoothness parameter 8 is set to be the largest eigenvalue of BXQBA, which is equal to
2.08 x 107. We set C = 3, and the regularizer parameter a = 10%. It is easy to check that these
values satisfy the assumptions described in Section Note that several different values of «
could have been used to convexify the latency function. However, our choice is governed by two
factors. A small value of o will ensure that the regularized objective is a good estimate to the true
objective, which is desirable. However, smaller values of o will lead to a larger condition number
(which is #/a), resulting in slower convergence and necessitating more data for achieving a similar
performance. Thus, the particular value of o = 10* balances both these factors for our problem
instance. In section we present a sensitivity analysis with different values of a.

5.3 Performance of Algorithm

In this subsection, we study the convergence of the routing policy with each step of the gradient
descent performed by our algorithm. Since the impact of a routing policy is directly reflected
in the total travel time, we plot the travel cost induced by a the learned routing policy as a
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Figure 2: Convergence dynamics for different values of N

function of the iterates. Recall that the number of iterations for a data set with N data points
is N according to Algorithm In our experiments we evaluate the cost of a routing policy z as
F(z, & 25\;1 A;) instead of using the sample average + Zf\il F(x,A;). This approximation is done
solely for improving the run-time of our experiment (by up to 50X) and introduces less than 10~4%
error in the evaluation of the system costs. Similarly, the optimal solution is also computed by
minimizing the objective function F(x, % Zi\il A;) instead of the term described in Equation [7] to
achieve a computational speed up of 30X. Evaluating the cost of this solution using the average-
demand approximation results in errors less than 1077% error. Thus, in these experiments, we
define the optimal costs as the approximate costs obtained through this procedure. Further details
justifying these approximation are presented in Appendix

For our first set of experiments, we compare the objective values obtained by Algorithm (1] and
the Baseline as a function of sample size N. In Figure [2] we plot the ratio of Algorithm [I]s cost to
Baseline’s cost over the course of iterations for different values of N. For this set of experiments,
we set the privacy parameters to e = 0.1 and § = 0.1. Note that Baseline’s cost is fixed for a given
N and is computed offline to serve as a benchmark. For a given N, we only have N iterations since
each data point is only used once in Algorithm [I] to maintain privacy. For all three experiments
(N =10, N = 25, N = 50), the cost decreases monotonically with additional iterations. It is
therefore not surprising that the final costs for the N = 50 case is the lowest, as we expect the
routing policy learned with 50 data points to be better than the routing policy learned from 10 data
points. It is however very interesting that even with a random routing policy initialization, our
algorithm finds solutions that are just around 2% away from the optimal policy. We suspect that
this 2% gap is due to the fact that the two algorithms have slightly different objective functions.
Indeed, Algorithm [I] has an f2 regularizer in the objective, but Baseline does not. Our results
therefore show that although the convergence is guaranteed only in the limit N — oo, we can
obtain practically useful solutions with a relatively small number of data points.

In the next set of experiments, we study the effect of different privacy parameters on total
travel time. To this end, we compare the costs of the pre-noise and post-noise solutions zxn Talg
from Algorithm |1} We conduct this comparison for ¢ € {0.01,0.1,0.5} and § € {0.1,0.5}. Table
presents the percentage increase in total travel time due to the addition of privacy noise. The results
in indicate that the price of privacy, i.e., the increase in total travel time due to the introduction
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€ 0 | Cost (% increase)
0.01 | 0.1 7.83 x 1072
0.01 | 0.5 3.97 x 1073
0.1 | 0.1 9.06 x 1073
0.1 |05 5.96 x 1073
0.5 | 0.1 2.44 x 1073
0.5 | 0.5 2.05 x 1073

Table 1: Change in routing costs due to incorporating privacy.
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Figure 3: Sensitivity of the performance of Algorithm 1

of differential privacy noise is less than 7.8 x 1072% in the worst case. In fact, for more commonly
used privacy parameters of € = 0.1 and § = 0.1, the cost of privacy is even smaller. One reason
for this low cost of privacy is the high demand in the traffic network. From Figure we observe
that every OD pair typically has a few hundred trips. With over 500 OD pairs, it is thus clear that
there are tens of thousands of vehicles in the network contributing to trip information with every
data point. Thus, with such a large number of vehicles, the noise required to protect the identity
of one vehicle is not too high.

5.4 Sensitivity

We now study the sensitivity of our algorithm to input parameters. For these experiments, we fix
the number of data points to N = 50, since prior results suggest that most of the cost benefits
are obtained with 50 data points. First, we study the effect of the regularizer term by setting
a € {10%2,10%,10*} and plot the convergence of the normalized costs in Figure We see that
for larger values of «, the costs decrease faster. This makes sense because larger « results in a
lower condition number g, which leads to faster convergence. We also note that the cost ratio
does not go to 1 because Algorithm [1| is minimizing a regularized objective, while Baseline has no
regularization.

In Figure we compare three scenarios with varying slope for the latency function ¢.. Recall
that our previous experiments set the slope g. on each edge such that the travel time on the link
doubles when the traffic is equal to the link capacity. This setting corresponds to a sensitivity
factor of 2. We consider two more cases where where the travel time at capacity flow is 1.5 times
and 5 times the free flow latency. Note that changing the latency sensitivity factor changes the
matrix (). Thus, for each of these experiments, we recompute the value of § and C' and set it to
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be equal to the largest eigenvalue of the appropriate BXQBA. The optimal cost also varies for
all the three cases and is recomputed. The value of « is fixed at 10*. We observe that when the
latency function is steeper, i.e., the sensitivity factor is higher, the algorithm takes more iterations
to reduce the costs, but eventually ends up with the lowest costs. This is because a larger 8 leads
to larger condition number g, which makes convergence slow. However, a larger 8 means that the
£y regularizer is a smaller proportion of the total cost, meaning that the objectives of Algorithm
and Baseline become more similar, which is what we believe causes the cost ratio to improve as the
latency function becomes steeper.

Finally, we present the sensitivity of our algorithm to varying traffic demand in Figure
Elaborating further, in these experiments, we compare the nominal setting, where the demand is
the mean demand with a scale factor of 1 to two cases. In the first case, we use a lower demand,
where the mean traffic is 0.5 times the nominal traffic, and in the second case, the mean traffic
is 1.5 times the nominal traffic. Again, as the demand changes, the matrix B changes, and we
recompute 8 and C as before. We observe that for the same value of «, higher demand leads
to better convergence and lower costs. This is because higher demand increases the travel time,
making the /5 regularizer a smaller proportion of Algorithm [Ifs objective. The objective functions
becoming more similar leads to the cost ratio being closer to 1.

6 Conclusions

In this paper, we study the problem of learning network routing policies from sensitive user data.
In particular, we consider the setting of a transportation network, where we want to learn and
share a routing policy such that it does not reveal too much information about individual trips
that may have contributed to learning this policy. Our paper presented a new approach to learn
privacy-preserving routing policies by solving a reformulated network flow problem using a differ-
entially private variant of the stochastic gradient descent algorithm. We prove that our algorithm
is asymptotically optimal, meaning that the cost of the routing policy produced by our algorithm
converges to the optimal non-private cost as the number of data points goes to infinity. Finally,
our simulations on a Sioux Falls road network suggests that for realistic travel demands, we can
learn differentially private routing policies that result in only a 2% suboptimality in terms of total
travel time.

There are several interesting directions for future work. First, because differentially private
algorithms are not allowed to be sensitive to single data points, they are naturally robust, and can
be useful for tracking non-stationary demand distributions, as opposed to the stationary demand
models we studied in this paper. In this paper, we studied request-level differential privacy where
the goal is to occlude the influence of a single trip on the algorithm’s output. Another practical
and important notion is user-level differential privacy where the goal is to occlude the influence
of all trips belonging to the same person on the algorithm’s output. User-level privacy is harder
to achieve, but is important in practice. Finally, generalizing the results to non-smooth objective
functions would expand the domain of models that this technique can be applied to.
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A Notation

The terms and concepts defined and used throughout the paper are all described here for the sake
of convenience.

Notation | Definition

Graph representation of the network. (Definition

The vertex set of the network G. (Definition

The edge set of the network G. (Definition (1)

The number of vertices in G, i.e., n = |V|. (Definition

The number of edges in G, i.e., m = |E|. (Definition

Operation period T = [tstart, tend] Which represents the time of day that the network
operator is trying to optimize its decisions in. (Definition

Number of minutes in the operation period. (Definition

Demand matrix. A(o,d) specifies the rate at which requests from o € V tod € V
appear in the network. (Definition [3)

Q The distribution of A. (Defined in Section

L Dataset L := (A1, ..., An) containing N days of historical request data for the oper-
ation period 7. (Defined in Section

z() Unit (o,d) flow. A flow that routes exactly 1 unit of flow from o to d through the
network. (Definition [10)

N3 (3| =<Q

=~

x Unit network flow. Specifies a unit (o,d) flow for all pairs of vertices (o,d) in the
network. (Definition [11)

X The set of all unit network flows. It is also the feasible set for optimization prob-
lems (5),(6) and (7). (Definition [11]

Tk A unit network flow and the kth gradient descent iterate from Algorithm (1} zj(L)

is used to show explicit dependence of x on the historical training data L. (Algo-

rithm

fe Link latency function for the edge e € E. If x is the total flow on e, then f(x) will
be the average travel time through the edge. (Definition [Z[)
F Total travel time function. F'(x, A) is the total travel time of requests in A experience
when they are routed according to x. (Defined in (4]))
(€,0) Differential privacy parameters. As e¢ and ¢ get smaller, the privacy guarantees

offered by differential privacy get stronger. (Definition [§[)

K Upper bound on the standard deviation of the gradient of F. (Assumption

H Hessian of F' with respect to xz. Concretely, H(z, A) is the hessian of F' with respect
to = evaluated at (z, A).

« Strong convexity parameter. (Assumption [71[)

I} Smoothness parameter. (Assumption[gl

C Upper bound on ||Da [VF] (z, A)|l,. (Assumption [6)
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B Privacy Analysis (Proof of Theorem

Recall the privacy guarantee for the Gaussian Mechanism from Theorem [ To show that Algo-
rithm (1] is (¢, d)-differentially private, it suffices to show the following Lemma:

Lemma 1. For every 1 <t < N, any value of L := (A1,...,An), and any (o,d) € V x V we have

HDAtOd N ]( H <min<0m1+(1,2a)’%).

Lemma [1] is sufficient to prove privacy, because it implies that the fo sensitivity of xy is at
most O[LN To see why this is true, let L1 = (Ay,...,A},....,Ay) and Ly = (A1, ...,A}, ..., Ay) be
request-level-adjacent data sets that differ only on the tth day. Furthermore, let (o',d’) be the
request for which A} and A} differ. Let xx(L1) and zx(L2) be the final iterates of gradient descent

obtained by using the data sets L1 and Lo respectively. By the fundamental theorem of calculus,

Lo
:L’N(LQ) — a:N(Ll) = DAt [IL’N](L) dL
Ly
AY
= DAt[xN](Ala"'7At—17A7At+17'“7AN) dA
A

= [Jo" = 7], =

AY
/ DAt[xN](Ah'“7At—17AaAt+17"~7AN) dA
At

2

i
t

AY
S / |’DAt [.’L’N](Al, ceey At—la A, At+1, ceny AN) dAH2

A{(o.d")
2/ Dy orany [en] (A ooy A1, Ay Ay, s An) dA(, )|,

Aj(o,d")
A//(O d/)
</ HDAt(O’,d’)['rN](Ala"'aAt—17A>At+17' X HQdAO d,)
Aj(o,d")
(@ A i
§ /;t min(Cmmﬁ(l,Qa)’aC]'V> Ao )
. (Cmin(1,2a) C
< min (B ozN) |AY (o, d") = Ay (o, d')|
(®) i
2 min len(1,2a)’ C '
6T ol N

Here (a) due to Lemma (b) is because |A}(o,d) — A}(o,d)| < T~ is a consequence of Ly, Lo
being request-level-adjacent.
Thus to establish (¢, §)-differential privacy of Algorithm |1} all that remains is to prove Lemma

Proof of Lemma[l]. Define L := (Aq,...,An). By Assumptions,and the functions F'(-, A1), ...,
are all twice differentiable, a-strongly convex and -smooth. For each ¢t < N, and any (0,d) € V xV
by chain rule we have

N-1

Dpyoaylon](L) = ( I P [$k+ﬂ(L)> Dy (o.d)[@e+1] (L)

k=t+1
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Since x4 = v — M Vo F(xk, Ag), differentiating both sides with respect to zj gives

Dy [zk41](L) = I — npH (g, Ak)

where H (-, A) is the Hessian of F'(-, A;). Since F'(-, Ay) is a-strongly convex, we know H (xy, Ag) >
al. By B-smoothness of F(-,A;), we also know that H(zy, Ay) =< BI. Therefore if n, < L, we see
that || Dy, [xk+1](L)]],, < 1 — nro. From this we can conclude that

op —
N-1

1Das o NI, < Pyl (D],, [T 1Pa[zea) (D),
k=t+1
N-—1

< ||Pas(o,a) [$t+1](L)Hop H (1 — k)
k=t41
N-1

< “DAt(o,d)[xt+1](L)“op H exp (—1nk)
k=t+1

N-1
= [[Das(o.0) [2e1](L) ], exp <— > nka) 9)
k=t+1

Finally, note that x only depends on ¢ and Ay, ..., Ax_1, and in particular it does not depend
on Ay. Therefore differentiating both sides of z11 = x — N Vo F (2, Ax) with respect to Ag(o,d)
gives

D, (o,a)[Tt+1](L) = =Dy, 0,0) [V F] (21, Ar)
(a)
= ||Da,(0,0) [l’t+1](L)Hop =t ||Dayo,0) [V F (22, Ay)| ‘Op < Cn, (10)
where (a) is due to Assumption@ Combining inequalities @D and gives
N-1
“DAt(ovd)[$N](L)‘|op < Crnsexp (— Z 77ka> ) (11)
k=t+1
1, 0) note that

L .
B oD if t >ty
e = % otherwise.

Letting tp := max (

B
amin(1,2a)

If t > tg, then n, = —~— for all k > ¢, and we see that
a(k+1)

N—-1
| DA, (0,0) [!EN](L)HOP < Cnexp ( > 77ka>

k=t+1

C =
o+ P <_O‘ > a(k + 1))

k=t+1
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¢ ep( a/N 1d>
<0 [ — il
alt+1) Hlayy

= a(ti D exp (—InN +1In(t + 1))

C t+1  C
at+1) N aN

IN

On the other hand, if t < tg, then 7 =

% and we see that

N-1
[ Dasoaylzn](D)]],, < Cneexp (— > nka)

k=t-+1
_ Cmin(1,2a) ( >
_ oxp (o 3
2 k=11 " k+ 1
N-1
C' min(1, 2a) 1
<—exp | —a Z —_
b k=l[to]+1 a(k‘ * 1)

C min(1, 2a) ( /N 1 )
< ———exp | —« —dy
B to+1 Y

< Cmin(1,2a) tg+1

< 3 N
~ Cmin(1,2q) J5; _
B 6] amin(1,2a)N  aN’
Thus in either case we have HDAt(o,d) [:L'N](L)Hop < %

. o in(1,2 .
Finally, note that implies HDAt(Oﬂd)I:xN](L)Hop < Cn < CW' Combining these two
bounds gives the desired result:

Do (D), < min (20200 C).
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C Performance Analysis (Proof of Theorem (3))

Let 2* be a solution to @ Note that

2
[|zker — 275
2

11 @ =V F (g, Ag)) — 2
X

2

(a)

11 @x = mVF(ar, M) = [[ (@ — mVEAwo [F(a*, A)])
pY Py

2

()

< ||zx — i VF(zk, Ak) — (2" — g VEA~0 [F(ﬂf*’A)DHg

= [|ag — 2" — mk (VEFg(2g, Ag) — VEano [F(a*, A)])]|2

= |log — 2*||3 + 0Z [|[VF (21, Ay) — VEAQF (z*, A)||3 — 2, (VF(zx, Ag,) — VEpwoF(2*, M) (zx — z7)

Taking expectation of both sides conditioned on xj, we see that

E [ g1 — o113 24

S E H.’L‘k - .1‘*H§ + 77;% HVF({L‘k,Ak) - VEANQF(:B*,A)Hg _277k (VF(:Uk, Ak) - VEANQF(.%'*,A>)T (.%'k — x*) Tk

Term 2 Term 2

To show that x4 1 is closer to z* than xj is, we will provide bounds for both Term 2 and Term

C.1 Bounding Term 2

To upper bound Term 2, noting that Ey, [V fx(x)] = Vf(x) for all z € X, we have

WE [V (2, Ak) = VEavo [F(*, M]3 2]
2
= mE | [|VF(2x, Ay) — VEr~o [F(zg, A)] + VEAwo [F (2, A)] = VEAg [F(a*, A)]|| | 24

~~

A B 2
— iiE [||AI3 + B3 + 247 B| 2] (12)

By Assumption[6|and the dominated convergence theorem, we have VEr g [F(zg, A)] = Ea~g [VF (zk, A)].
Hence we see that

E[A] vg] = Epyng [F(@k, Ak)| k] — Eacg [F (21, A)| 2] = 0.

From this observation we have the three following remarks:
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1. Since A is a zero mean random vector, E [HA[ \g‘ xk] is the variance of VF'(z, A) given zj. By

Assumption Ex~o [HVF(JU, A)H%} < K? for any z, which implies that E [HAH%

$k1| < KQ.

2. By Assumption 5, F(-,A) is S-smooth for every A. [-smoothness of F'(-, A) implies that
VF(-,A) is f-lipschitz. Thus we have

E[|1BI3] 2] = E[IIBave [VF(er A) = VF" A3 2]

(a)
<E [EANQ [|VF (g, A) — VF(z*, A)IH%\ wk]

(b) 5 w112
<E [EAer 8% |lzg — |H2‘xk:|
= B2 ||z, — 2|l
where (a) is due to Jensen’s inequality and (b) is due to VF'(-, A) being /-Lipschitz.

3. Conditioned on zj, A is zero mean and B is constant, meaning that AT B is a zero mean
random vector. Therefore E[AT B|z;] = 0.

Applying these three remarks to the inequality we see that
WRE [V (2, Ar) = VExno [F(a", M| 2] < (K2 + 82Nl —2*13) . (13)

C.2 Bounding Term 3

By linearity of expectation, Term 3 is equal to

—opE [(vp(xk, Ap) = VEawo [F(z*, )T (x5 — 2*) xk]
= — 2 (B[V f 2k, Ai)| 2x] — VEavo [F(z*, A]) " (2 — 2%)
(

= =2, (Bamo [VF (25, A) — VE(2*, M) (2 — 2*).

Define f(x) := Ex~go[F(z,A)]. We can re-write the above equation as
—2niE | (VF (2, Ax) — VEa~g [F(2*, A)]) T (zx — 3:*)’ xk} < =2 (V(e) = V)T (2 — 27)

Since F(-, A) is a-strongly convex for every A, we can conclude that f is also a-strongly convex.
To upper bound Term 3, we use a-strong convexity of f to conclude that

* * * « *
Flow) > £+ V) =) + 5 o — 2|
and
* * « *
F@) = flan) + Vi) @ = 2) + 5 llog -2 -
Adding these inequalities together gives

flag) + f(a) = flan) + f(@*) = (V) = V@) (@ —2%) + alla, - 2"]]3
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— —allz,—2*F > — (Vi) - Vi) (@ - ).

This inequality implies the following bound on Term 3:

—2mE [(VF(xk,Ak) — VEao [F(a*, M) (1, — x*)’ xk} < —2amy ||zx — 2*|5. (14)
C.3 Putting everything together
Applying the bounds and on Term 2 and Term 3 respectively, we see that
E|llznss = o* 1] x| < o — 2115 + n2K2 + 820 lla, — 2”13 — 20me 2 — 7|3
= (1 2am, + B%n}) Iy — 2*|J5 + nf K. (15)
By the tower property of expectation, we can write
(16)

E [||mN . x*||§} —F [ E [E [HxN - x*||§‘ xN_l} ‘ mN_z] ‘ mo} .
Combining the recursive relation from with we see that

N—-1 N—-1 N—-1
10 1—2am+52n3) FREY ( 10 1—zank+52nz>
t=0

t=0 k=t+1

N-1 N-1 N-1
Z —2am; + ﬁ277t2> + K Z n? exp ( Z —2amy + ﬁQU,%) :
t=0

Elley — 23] < lleo — 2713 (

< llao — 2* |12 exp (
k=t+1

t=0

Since we chose 7, := min (ﬁ, %), we have 1, < ﬁ This means that Yo 77 < Y00, ﬁ -
2.2

B ), we have

%. Thus defining C,, 3 := exp (W
N-1 N_1 N1
Z —20477t> + KQCa,g Z n? exp ( Z _20477k>
t=0

k=t+1

E [Jlan - 27|12 sca,m\xo—m*réexp<
t=0

(a) , N-1 N1 o2
< Cullen = Bewp [ 3 —20m ) + K2 Y- ()

t=0 t=0
N-1
. K2C%*C
=Capllro — H%exp (Z —2ant> + Wm
t=0

where (a) is because in Appendixwe showed that 7, exp <Z,]€V:;i_1 —ank) < % forall0 <t < N.
= min(l20) iherwise. We

NeXt, let tO = max (ﬁ(lm - 1,0) so that N = é if ¢ > tO and N = 3
then have
N-1 212
K-C*C
*1)2 *(12 .8
E [H:L"N -z Hz} < CapllTo — x*||5 exp <; —20677t) =
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to N-1 2 9
. K-C=C,
=Capllzo—z ||§exp ( E —2007,5) exp < E —20”71‘,) 4 Waﬁ

t=0 t=to+1

N-1
. K2CC
< Copllro—2 |I§ exp (2a E 77t> 4o vaf

a?N
t=to+1
N 22
1 K2C2C,
< Cagllzo — 2*|[y exp <—2a/ dy) p— h
" ? to+1 QY a?N
to+1\2 K2C%C
2 [ to 3
= Cosllzo =l < N ) TN

Cusllo ~ 2|3 | K3C2Cuy
(avmin(1,2a))? N2 a?N

Finally, we have

E [H»’Ualg - x*HQ] =

Capllzo —a*|[3 8% | K2C?Cap 202 1.25
< d ) 2 1
- \/(amin(l 200))? N2 TN T\ "Maern s

- VCapllro—a’lly8  KC\Cap  Cnym |, (125)

(amin(1,2a)) N * avV/' N eaTN 5

® /Cagn*mp +KC«/ 0,3 cn\ﬁ ol (125)

(amin(1,2a)) N aV' N eaTN )

where (a) is due to Jensen’s inequality and (b) is due to the fact that ||z’ — 2”||, < ny/m for any
pair of unit network flows 2/, z”.
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Error #1 Error #2 Error #3

N | Fald A -Fa@d (A) | (Fa(zabi))—(Fa(@a M) | Fazo(za.Ai))~(Fa=o(za=0.Ai))
(Fa (el A4)) (Fa (il As)) {(Fa=o(za=0,Ai))

10 8.97 x 1077 < 10710 8.17 x 1073

25 1.02 x 1076 < 10710 8.16 x 1073

50 9.84 x 1077 < 10710 8.17 x 1073

Table 2: Approximation errors.

D Computational approximations

In our experiments, we make several approximations for computational tractability. In this section,
we provide empirical evidence that these approximations are reasonable and do not introduce
significant errors. For ease of discussion, we define the following notations.

e 2%7": Solution obtained by solving the optimization problem (7) with regularizer o

e z,: Solution obtained by solving the optimization problem with the average demand and a
regularizer o

o F,(z,A;): Evaluating the routing policy = on demand A; with a regularizer o

o (Fy(z,A;)): Evaluating the average cost of the routing policy = on the set of demands
{A1...,An} with a regularizer . More precisely, (Fo(z,A;)) = & SN Fa(z, Ay)

o F,(z,(A;)): Evaluating the cost of the routing policy x on the average demands (A;) =
+ Z,fil A; with a regularizer o

Table [2 presents errors from three different approximations. Our first approximation is to com-
pute the system costs for a given policy by using the average demand instead of averaging the
costs over every observed demand. The first column (denoted as Error #) lists the fractional error
introduced by this approximation for different values of N when using the optimal routing policy.
We note that the error is less than 1075, and we we observe a 30-50X improvement in computa-
tional time when evaluating the costs using he average flow. This justifies the use of the average
demand for estimating costs. Our second approximation is in solving an easier optimization prob-
lem to compute the optimal routing policy. In this case, the exact approach would be to solve the
optimization problem described in Equation However, the size of this problem grows rapidly
with the number of data points N. Our approximation involves solving the easier optimization
problem of maximizing F,(z, (A;)) to obtain the routing policy z, instead of solving the original
optimization problem to obtain o’ . The second column of the table (titled Error #2) presents
the error introduced due to this approximation on the travel costs. The small errors indicate that
this assumption is reasonable, and helps us obtain upto a 30X speedup in solving the optimization
problem. Finally, we show through numerical evaluations that the addition of the o = 10% regular-
izer does not change the travel costs significantly (third column, denoted as Error #3), and results
in less than a 0.01% error in the total travel cost.
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