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Abstract— This paper considers the problem of stabilizing a
discrete-time non-linear stochastic system over a finite capacity
noiseless channel. Our focus is on systems which decompose
into a stable and unstable component, and the stability notion
considered is asymptotic ergodicity of the R𝑁 -valued state
process. We establish a necessary lower bound on channel
capacity for the existence of a coding and control policy
which renders the closed-loop system stochastically stable. In
the literature, it has been established that under technical
assumptions, the channel capacity must not be smaller than
the logarithm of the determinant of the system linearization,
averaged over the noise and ergodic state measures. In this
paper, we establish that for systems with a stable component,
it suffices to consider only the unstable dimensions, providing
a refinement on the general channel capacity bound for a large
class of systems. The result is established using the notion of
stabilization entropy, a notion adapted from invariance entropy,
used in the study of noise-free systems under information
constraints.

I. INTRODUCTION
In the field of control under communication constraints, a

commonly studied problem is to characterize the minimum
amount of information required by a controller in order to
achieve a given control task. In this paper we consider the
above problem for discrete-time non-linear stochastic systems
with additive control. The control objective considered is to
render the state process stochastically stable for the stability
criterion of asymptotic ergodicity. More precisely, we con-
sider the system

𝑥𝑡+1 = 𝑓 (𝑥𝑡 ,𝑤𝑡 ) +𝐵𝑢𝑡 (1)

where 𝑥𝑡 ,𝑤𝑡 and 𝑢𝑡 are the state, noise, and control at
time 𝑡 respectively and 𝐵 is an appropriately sized matrix.
Additionally, we impose that the state information travel
through a finite capacity noiseless channel at each time
step before reaching the controller, as depicted in Figure 1.
We formalize the notion of a coding and control policy as
follows. First, let M B {1,2, .., 𝑀} denote the alphabet of
the channel, thus its capacity in bits is given by 𝐶 B log2 𝑀 .
At time 𝑡, the coder (also known as the encoder) generates a
channel input 𝑞𝑡 from past state realizations 𝑥0, .., 𝑥𝑡 . The
channel input 𝑞𝑡 ∈ M is therefore determined by a map
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𝛾𝑒𝑡 : (R𝑁 )𝑡+1 → {1,2, . . . , 𝑀}. The symbol 𝑞𝑡 is transmitted
over the channel, reaching the controller. The controller
generates 𝑢𝑡 based on channel outputs 𝑞0, .., 𝑞𝑡 according
to a map 𝛾𝑐𝑡 : M𝑡+1 → R𝑁 . A coding and control policy
is therefore a pair of maps (𝛾𝑒𝑡 )𝑡 ∈N and (𝛾𝑐𝑡 )𝑡 ∈N. Once we
fix a coding and control policy, (𝑥𝑡 )𝑡 ∈N is a well defined
autonomous stochastic process, with randomness coming
from the possibly random initial state 𝑥0, and the noise
process (𝑤𝑡 )𝑡 ∈N.

Fig. 1. System Controlled Over Communication Channel

In this paper, we establish a necessary lower bound on
channel capacity required for the existence of coding and
control policies which result in the state process (𝑥𝑡 )𝑡 ∈N
being asymptotically ergodic. The lower bound is related
to the asymptotic mean (defined in the next section), i.i.d.
noise law, and system dynamics function. We now discuss
the stability notion in detail, but first provide some notational
conventions.

A. Notation

Throughout this paper, Z denotes the integers, R the real
numbers, and N the non-negative integers. The Lebesgue
measure is denoted by 𝑚, where the dimension will be
clear from context. A discrete interval in the integers will
be denoted by [𝑎;𝑏] (i.e., [𝑎;𝑏] = {𝑎, 𝑎 +1, . . . , 𝑏−1, 𝑏} for
𝑎 ≤ 𝑏 in Z). Given a topological space X, B(X) denotes its
Borel 𝜎-algebra. For a function 𝑓 : R𝑛 → R𝑚, we denote
the Jacobian (matrix of partial derivatives) by 𝐷 𝑓 . We use
t to emphasize that a union in question is disjoint. When
applied to a set, | · | denotes cardinality. Given a sequence
𝑥 B (𝑥𝑛)𝑛∈N taking values in a given space, 𝜃 denotes the
left shift map, so that (𝜃𝑥)𝑛 = 𝑥𝑛+1 for every 𝑛 ∈N. Given a
topological space X, we let XN denote the set of sequences
indexed by N, taking values in X. We endow XN with the
product topology.
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B. Asymptotic Ergodicity

In this section we discuss the stochastic stability notion
considered in this paper. Let (Ω,F , 𝑃) denote the common
probability space on which all random variables are defined.
Note that fixing a coding and control policy and specifying
an initial state distribution for the system (1) results in an
autonomous state process (𝑥𝑡 )𝑡 ∈N which induces a process
measure on B((R𝑁 )N). Let us denote this measure by 𝜇.

Definition 1: Consider the process (𝑥𝑡 )𝑡 ∈N with process
measure 𝜇 as above. We say it is:

• stationary iff 𝜇(𝜃−1 (𝐴)) = 𝜇(𝐴) for all 𝐴 ∈ B((R𝑁 )N).
• asymptotically mean stationary (AMS) iff there exists a

probability measure 𝑄 (called the asymptotic mean of
the process) on B((R𝑁 )N) such that

lim
𝑇→∞

1
𝑇

𝑇 −1∑︁
𝑘=0

𝜇(𝜃−𝑘 (𝐴)) =𝑄(𝐴) for every 𝐴 ∈ B((R𝑁 )N).

• ergodic iff it is stationary, and for 𝐴 ∈ B((R𝑁 )N) we
have that 𝐴 = 𝜃−1 (𝐴) =⇒ 𝜇(𝐴) ∈ {0,1}.

• AMS ergodic iff it is AMS, and the asymptotic mean is
ergodic.

Note that if a process is AMS, then the asymptotic mean
is a stationary measure on the sequence space. Note also
that a stationary measure on B((R𝑁 )N) can unambiguously
be projected to a measure on B(R𝑁 ). By slight abuse of
notation, we do not distinguish between a stationary measure
on the sequence space and its projected coordinate measure,
as the measure in question will be clear from context. In
this paper, the stability notion that we will consider is AMS
ergodicity (or informally, asymptotic ergodicity). Ergodicity
allows us to take advantage of the following pointwise
ergodic theorem:

Theorem 1: (Pointwise Ergodic Theorem) Let
(Ω,F , 𝑃,𝑇) be an ergodic system. Then for any
𝑓 ∈ 𝐿1 (Ω,F , 𝑃) we have

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 ◦𝑇 𝑘 𝑎.𝑠−−−−−→
𝑁→∞

∫
𝑓 𝑑𝑃.

For a proof, see [1, Theorem 1.14].
Suppose that the stochastic process in Definition 1 is AMS

ergodic with process measure 𝜇 and asymptotic mean 𝑄. The
application of the pointwise ergodic theorem to the 𝐿1 map
1𝑥0∈𝐵 : (R𝑁 )N → {0,1} for 𝐵 ∈ B(R𝑁 ) yields

𝜇

({
𝑥 ∈ (R𝑁 )N : lim

𝑇→∞

1
𝑇

𝑇 −1∑︁
𝑘=0
1𝐵 (𝑥𝑘 ) =𝑄(𝐵)

})
= 1, (2)

In principle, the pointwise ergodic theorem tells us that the
above set has full measure with respect to 𝑄. From [2,
Lem. 7.5 and Eq. (7.22)] it turns out that 𝜇 and 𝑄 agree
on all 𝑄-trivial sets, thus allowing one to write (2). The
above equation which provides almost sure guarantees on
asymptotic sample path behavior will be crucial in the results
of this paper, for which we now provide some motivating
examples.

C. Problem Motivation
Suppose that system (1) is controlled over a noiseless

channel of finite capacity 𝐶, and made to be asymptotically
ergodic with AMS mean 𝑄. Then under slightly different
technical assumptions, [3] and [4] establish that∫ ∫

log2 | det𝐷 𝑓𝑤 (𝑥) |𝑑𝑄(𝑥)𝑑𝜈(𝑤) ≤ 𝐶 (3)

where 𝜈 is the distribution of the i.i.d. noise and 𝑓𝑤 denotes
the map 𝑥 ↦→ 𝑓 (𝑥,𝑤) for some fixed 𝑤 ∈ W. This bound
however is in general not tight, as the following two examples
illustrate.

Example 1: Consider the two dimensional linear system
given by [

𝑥𝑡+1
𝑦𝑡+1

]
=

[
2 0
0 1/2

] [
𝑥𝑡
𝑦𝑡

]
+𝑤𝑡 +𝑢𝑡 (4)

where 𝑢𝑡 and 𝑤𝑡 take values in R2 and the noise is i.i.d
with zero mean. The LHS of (3) is easily seen to equal
zero for this system, thus providing a vacuous bound on
channel capacity. It is well known from the literature however
that a tight bound on linear systems is the log-sum of the
unstable eigenvalues. Note that by replacing 1/2 in the above
matrix with any number no smaller than one, the bound in (3)
recovers the tight linear bound. As we will see, the refinement
of the channel capacity bound in this paper will recover the
tight bound in the general linear case (thus, also with stable
eigenvalues). Consider now a second example:

Example 2: Consider the system (𝑥𝑡 , 𝑦𝑡 )𝑡 ∈N in R2 evolv-
ing with scalar-valued i.i.d. noise according to[

𝑥𝑡+1
𝑦𝑡+1

]
=

[
(𝑥3

𝑡 + 𝑥𝑡 ) (1+ 𝑦2
𝑡 )

1
2 𝑦𝑡 +𝑤𝑡

]
+𝑢𝑡 (5)

with 𝑥0 and 𝑦0 independent and admitting bounded densities.
We note that the 𝑦-component of the above system is stochas-
tically stable. Moreover, the presence of the 𝑦-term in the
dynamics of the 𝑥-component cannot be modeled as noise,
as the i.i.d. assumption required in data-rate theorems of non-
linear systems is not satisfied. Suppose the above system is
made asymptotically ergodic via a coding and control policy
with AMS mean 𝑄. We compute

𝐷 𝑓𝑤 (𝑥, 𝑦) =
[
(3𝑥2 +1) (1+ 𝑦2) (𝑥3 + 𝑥)2𝑦

0 1/2

]
(6)

and apply (3) to obtain∫
log2 |

(1+ 𝑦2)
2

(3𝑥2 +1) |𝑑𝑄(𝑥, 𝑦) ≤ 𝐶. (7)

Note that there is a factor of 1/2 coming from the stable
second component in the integrand. It seems sensible that
the bound should hold without this factor, as the coding and
control policy need not be concerned with the stochastically
stable component. Indeed, the result in this paper establishes
that the above bounds holds when removing the factor of 1/2
and is therefore a strict refinement for certain systems. We
now move on to a literature review, followed by our main
result and its proof.



II. Literature Review and Information Requirements
for Stochastic Stability

The presence of real-world control problems where per-
fect and instantaneous state information is not necessarily
available to a controller has motivated the field of control
under communication constraints. In this field, one wishes to
study if and how it is possible to accomplish a control task
under varying degrees of imperfect information. A ubiquitous
problem in the field is to characterize minimum data rates
required to stabilize a dynamical system. This problem
has been considered extensively for linear deterministic and
stochastic systems, for which one can usually characterize
the minimum data rate required for closed-loop stability as
the log-sum of the unstable open-loop eigenvalues.

Some related earlier papers considering the linear case
include [5], [6], [7], [8], [9], [10] and [11]. More recent
contributions include [12], [13], [14], [15], [16], [17], and
[18], [19], [20], [21], [22] where this latter group of papers
presented necessary and sufficient conditions for stability
criteria such as existence of invariant measures, positive
Harris recurrence and (asymptotic) ergodicity. There has
been a separate line of work for the special Gaussian channel
setup, which we do not review in this paper.

For non-linear systems, however, the majority of papers
have focused on deterministic systems. Some early works
include [23], where it was established that global asymp-
totic stabilization of a non-linear continuous time system is
feasible provided that data rates exceed a quantity related
to system dimension and a Lipschitz constant, and [24]
where non-linear feed-forward systems were considered. In
[25] the authors presented the first systematic approach for
determining minimal data rates for stabilization and intro-
duced the notion of topological feedback entropy, a notion
inspired by the classical open cover definition of topological
entropy in dynamical systems due to Adler et al. [26]. It was
established in [25] that a necessary and sufficient condition
for stabilization to a compact set is the condition that the
data rate in the control loop exceeds the topological feed-
back entropy. For the same stabilization problem, invariance
entropy was introduced in [27]. This notion serves as a
way to quantify the difficulty of a control task through the
minimum number of open loop control sequences required to
achieve it. The monograph [28] provides a detailed account
of the applications of invariance entropy in determining
minimum data rates, particularly for continuous time (non-
linear) systems. In [29], it was further established that under
a strong invariance condition, the notions of topological
feedback entropy and invariance entropy coincide in the
discrete time case. A recent related development was the
introduction of metric invariance entropy in [30]. Many more
interesting results have been obtained under a wealth of
setting, and we refer the reader to [31] and [32] for a more
detailed overview of the literature.

To the best of our knowledge, the first converse result
on channel capacity for non-linear stochastic systems was
established in [4] using information theoretic methods. The

paper provided lower bounds on channel capacity necessary
for stochastic stabilization of discrete time non-linear systems
over both noisy and noiseless channels for stability notions
of ergodicity and entropy growth conditions. With a funda-
mentally different approach via stochastic growth properties,
for the ergodic case a similar result was established in [3],
which relied instead on stabilization entropy. This notion,
introduced in [33], was a modification of invariance entropy
for the stochastic case and was first used to obtain lower
bounds on channel capacity required for AMS stability. The
paper at hand builds on the techniques involving stabilization
entropy, and provides a refinement for the lower bound in [3,
Theorem 4.1] and [4, Theorem 4.2] for the stability notion
of (asymptotic) ergodicity. In particular, the statement of the
result in this paper resembles [3, Theorem 4.1] and a similar
approach is used. Our main result is a strict refinement, and
the proof requires a modification of stabilization entropy.

III. Result

Consider a subset 𝑝 ⊆ {1, .., 𝑁} of indices listed in increas-
ing order as 𝑝1 < 𝑝2 < · · · < 𝑝 |𝑝 | . Let 𝑧1 < · · · < 𝑧𝑁−|𝑝 | denote
the elements in {1, .., 𝑁} \ 𝑝. We define the permutation
𝜓𝑝 :R𝑁 →R𝑁 by

𝜓𝑝 (𝑥1, ..., 𝑥𝑁 )𝑖 =
{
𝑥𝑝𝑖 𝑖 ≤ |𝑝 |
𝑥𝑧𝑖−|𝑝 | 𝑖 > |𝑝 |

for 𝑖 ∈ {1, .., 𝑁}. Also, let 𝜋𝑝 :R𝑁 →R |𝑝 | denote the natural
projection of coordinates 𝑝1, .., 𝑝 |𝑝 | . For a map 𝑓 : R𝑁 →
R𝑁 , a set 𝑝 as above, and a fixed vector (𝑦1, .., 𝑦𝑁−|𝑝 |) we
define the map 𝑓 𝑝 (·, 𝑦1, .., 𝑦𝑁−|𝑝 |) :R |𝑝 | →R |𝑝 | by

𝑓 𝑝 (𝑥, 𝑦1, .., 𝑦𝑁−|𝑝 |) B 𝜋𝑝 ( 𝑓 (𝜓−1
𝑝 (𝑥, 𝑦1, .., 𝑦𝑁−|𝑝 |))) (8)

where 𝑥 ∈R |𝑝 | . As an example, consider 𝑁 = 4, 𝑝 = {2,4}, a
fixed vector (𝑦1, 𝑦2), and a function 𝑓 :R4 →R4 written as
𝑓 = ( 𝑓1, 𝑓2, 𝑓3, 𝑓4) for maps 𝑓𝑖 :R4 → 𝑅. Then

𝑓 𝑝 (𝑥1, 𝑥2, 𝑦1, 𝑦2) = ( 𝑓2 (𝑦1, 𝑥1, 𝑦2, 𝑥2), 𝑓4 (𝑦1, 𝑥1, 𝑦2, 𝑥2)).

This notation allows us to precisely state our main result.
Consider the system

𝑥𝑡+1 = 𝑓 (𝑥𝑡 ,𝑤𝑡 ) +𝐵𝑢𝑡 (9)

where 𝑥𝑡 is R𝑁 -valued for some 𝑁 ∈ N, 𝐵 ∈ R𝑁×𝑁 ′ , 𝑢𝑡 is
R𝑁 ′-valued, and 𝑤𝑡 takes values in a standard probability
space W. For a fixed 𝑤 ∈ W, let us denote the map 𝑥 ↦→
𝑓 (𝑥,𝑤) by 𝑓𝑤 . Suppose that the following holds:
(i) The state evolution map 𝑓 is Borel measurable.
(ii) The noise process (𝑤𝑡 )𝑡 ∈N is i.i.d. By abuse of notation,

𝜈 denotes both the i.i.d. measure on B(W) and the
noise process measure on B(WN).

(iii) The map 𝑓𝑤 (·) :R𝑁 →R𝑁 is 𝐶1 and injective for any
𝑤 ∈W.

(iv) The initial state 𝑥0 ∈ R𝑁 is random and independent
of the noise process, and its law 𝜋0 admits a bounded
density.



(v) The set Γ =

{
𝑝 ⊆ {1, .., 𝑁} : ∃𝑐𝑝 >

0 such that | det𝐷 𝑓
𝑝
𝑤 (𝑥𝑝1 , .., 𝑥𝑝|𝑝 | , 𝑥𝑧1 , .., 𝑥𝑧𝑁−|𝑝 | ) | >

𝑐𝑝 ,∀𝑥 ∈ R𝑁 ,𝑤 ∈W
}

is non-empty.

(vi) Let {𝑡1, .., 𝑡𝑠} ∈ Γ be arbitrary and write the random
initial state as 𝑥0 = (𝑥1

0, .., 𝑥
𝑁
0 ). Then there exists a set

𝑆 consisting of possible realizations of the initial state
components not indexed by Γ such that the event that
these non-indexed initial states take a realization in 𝑆 has
non-zero probability, and the law of (𝑥𝑡10 , .., 𝑥

𝑡𝑠
0 ) admits

a bounded density when conditioned on the event that
the non-indexed initial states take on a realization 𝑥, for
any 𝑥 ∈ 𝑆.

Theorem 2: Consider system (9) satisfying assumptions
(i)–(vi), controlled over a noiseless channel with finite alpha-
bet M and capacity 𝐶 B log2 |M|. if there exists a coding
and control policy which renders the state process (𝑥𝑡 )𝑡 ∈N
AMS ergodic (asymptotically ergodic) with asymptotic mean
𝑄, then we must have that

max
𝑝∈Γ

∫ ∫
log | det𝐷 𝑓

𝑝
𝑤 (𝑥𝑝1 , .., 𝑥𝑝|𝑝 | , 𝑥𝑧1 , .., 𝑥𝑧𝑁−|𝑝 | ) | (10)

𝑑𝑄(𝑥1, .., 𝑥𝑁 )𝑑𝜈(𝑤) ≤ 𝐶.

where the Jacobian above is the |𝑝 | × |𝑝 | matrix of
partial derivatives of 𝑓

𝑝
𝑤 (·, 𝑥𝑧1 , .., 𝑥𝑧𝑁−|𝑝 | ) evaluated at

(𝑥𝑝1 , .., 𝑥𝑝|𝑝 | ) ∈ R |𝑝 | .
Remark 1: Observe that by taking 𝑝 = {1, .., 𝑀} (if

{1, .., 𝑀} ∈ Γ), we recover the bound (3) established previ-
ously in [3] and [4]. For a large class of systems however,
it is clear that Theorem 2 is a strict refinement, as can be
seen by noting that in Example 2, taking 𝑝 = {1} recovers
the sharper bound∫

log2 | (1+ 𝑦2) (3𝑥2 +1) |𝑑𝑄(𝑥, 𝑦) ≤ 𝐶. (11)

It is clear that for linear system, the new bound recovers the
tight linear bound such as in Example 1.

Remark 2: Note also that the technical assumption (vi) is
satisfied if the initial state has independent components each
admitting a bounded density. Suppose now that for a given
system, the assumptions (i)-(v) of Theorem 2 are satisfied,
but (vi) only hold for certain subsets of Γ. Then the theorem
will still hold, however the max in (10) should be taken only
over subsets of Γ for which the assumption (vi) holds. This
last observation will become clear from the proof.

Remark 3: Noting that the Jacobian determinant is invari-
ant under a linear change of coordinates, we note that the
bound in (2) is invariant under a linear change of coordi-
nates. Note however that assumption (v) is not coordinate
independent; it is not hard to see that for certain systems, the
choice of coordinates may result in a different (or empty) set
Γ. Under a non-linear coordinate change, it is not clear if the
above bound is invariant (or if control even remains additive),
thus a possible future research direction is to consider the
problem of optimizing the coordinate system chosen in order
to maximize the bound.

IV. Proofs

We first fix an integer 𝑚 ≤ 𝑀 and view the map 𝑓𝑤
as a function of two vectors, i.e. we decompose the state
into a pair (𝑥, 𝑦) where 𝑥 ∈ R𝑚 and 𝑦 ∈ R𝑁−𝑚. Consider
the control system in Theorem 2 and note that for a fixed
sequence of controls 𝑢 B (𝑢𝑡 )𝑡 ∈N, a fixed sequence of noise
symbols 𝑤 B (𝑤𝑡 )𝑡 ∈N, and a fixed initial state 𝑥0 ∈R𝑁 , the
state process (𝑥𝑡 )𝑡 ∈N is deterministic. Let us introduce the
notation 𝜑(𝑡, 𝑥0, 𝑢,𝑤) B 𝑥𝑡 for every 𝑡 ∈ N. Letting 𝜋𝑚 and
𝜋𝑁−𝑚 denote the natural projection of R𝑁 on to the first
𝑚 and last 𝑁 −𝑚 coordinates respectively, we further define
𝜑𝑚 (𝑡, 𝑥0, 𝑢,𝑤) B 𝜋𝑚 (𝑥𝑡 ) and 𝜑𝑁−𝑚 (𝑡, 𝑥0, 𝑢,𝑤) B 𝜋𝑁−𝑚 (𝑥𝑡 )
so that

𝜑(𝑡, 𝑥0, 𝑢,𝑤) = (𝜑𝑚 (𝑡, 𝑥0, 𝑢,𝑤), 𝜑𝑁−𝑚 (𝑡, 𝑥0, 𝑢,𝑤)) for every 𝑡 ∈N.

We now provide a sketch of the proof, which relies on the
notion of stabilization entropy and an associated lemma re-
lating it to channel capacity. Compared to [3], we consider a
version of stabilization entropy with an additional collection
of sets since we are decomposing the state space into two
components. The definition follows:

A. Stabilization Entropy

Definition 2: Let (𝐷 𝑗 ) 𝑗=𝑑𝑗=1 ⊆ B(R𝑚), (𝐸𝑘 )𝑘=𝑒𝑘=1 ∈
B(R𝑁−𝑚) and (𝐹𝑙) 𝑓𝑙=1 ∈ B(W) be finite disjoint unions of
Borel sets and define

𝐷 B
𝑑⊔
𝑗=1

𝐷 𝑗 𝐸 B
𝑒⊔

𝑘=1
𝐸𝑘 𝐹 B

𝑓⊔
𝑙=1

𝐹𝑙 .

Let also 𝑅 denote a collection of numbers 𝑟 𝑗 ,𝑘,𝑙 ∈ [0,1] for
𝑗 ∈ {1, . . . , 𝑑}, 𝑘 ∈ {1, . . . , 𝑒} and 𝑙 ∈ {1, . . . , 𝑓 } satisfying

1− 𝑟 :=
𝑑∑︁
𝑗=1

𝑒∑︁
𝑘=1

𝑓∑︁
𝑙=1

(1− 𝑟 𝑗 ,𝑘,𝑙) ∈ [0,1]

and fix 𝑇 ∈ N and 𝜌 ∈ (0,1). A set 𝑆 ⊆ (R𝑁 )𝑇 of control
sequences of length 𝑇 is called (𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅)-spanning iff
there exists Ω̃ ∈ F such that the following conditions:

• 𝑃(Ω̃) ≥ 1− 𝜌.
• For each 𝜔 ∈ Ω̃, there exists a control sequence 𝑢 ∈ 𝑆

such that
1
𝑇
|{𝑡 ∈ [0;𝑇 −1] : (𝜑𝑚 (𝑡, 𝑥0 (𝜔), 𝑢,𝑤(𝜔)), 𝜑𝑁−𝑚 (𝑡, 𝑥0 (𝜔), 𝑢,

𝑤(𝜔)),𝑤𝑡 (𝜔)) ∈ 𝐷 𝑗 ×𝐸𝑘 ×𝐹𝑙}| ≥ 1− 𝑟 𝑗 ,𝑘,𝑙

for all 𝑗 , 𝑘 and 𝑙.
both hold.

We slightly abuse notation writing (𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅)-
spanning instead of
(𝑇, (𝐷 𝑗 )𝑑𝑗=1, (𝐸𝑘 )𝑒𝑘=1, (𝐹𝑙)

𝑓

𝑙=1, 𝜌, 𝑅)-spanning. Whenever we
do this however, the specific sequences of sets making up
the disjoint unions will be clear from context. We will use
the size of spanning sets to quantify the difficulty of a control
task. This leads to:



Definition 3: (Stabilization Entropy) For the system (9),
and sequences of sets as in Definition 2, we define the
(𝐷,𝐸,𝐹, 𝜌, 𝑅)-stabilization entropy by

ℎ(𝐷,𝐸,𝐹, 𝜌, 𝑅) := limsup
𝑇→∞

1
𝑇

log 𝑠(𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅),

where 𝑠(𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅) denotes the smallest cardinality of
a (𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅)-spanning set. We define this quantity to
be ∞ if no finite spanning set exists.

Finite (𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅)-spanning sets need not exist in
general but as we will shortly see, they exist in desired
scenarios. The following lemma relates stabilization entropy
with channel capacity.

Lemma 1: Consider system (9) with the assumptions of
Theorem 2 (i.e., a coding and control policy exists over
a noiseless channel of capacity 𝐶 = log2 |M| which makes
the state process AMS ergodic with asymptotic mean 𝑄).
Let 𝐷,𝐸 and 𝐹 be as in Definition 2 and let 𝜌 ∈ (0,1) be
arbitrary. Let 𝜖 > 0 and define the collection of numbers
𝑅𝜖 B (𝑟 𝑗 ,𝑘,𝑙)1≤ 𝑗≤𝑑,1≤𝑘≤𝑒,1≤𝑙≤ 𝑓 , where

𝑟 𝑗 ,𝑘,𝑙 :=


(1+ 𝜖) (1−𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙)) if 𝜅 𝑗 ,𝑘,𝑙 ∈ (0,1)
1 if 𝜅 𝑗 ,𝑘,𝑙 = 0
𝜖 if 𝜅 𝑗 ,𝑘,𝑙 = 1

where we use the shorthand 𝜅 𝑗 ,𝑘,𝑙 B 𝑄(𝐷 𝑗 × 𝐸𝑘 )𝜈(𝐹𝑙).
Although the 𝑟 𝑗 ,𝑘,𝑙’s are 𝜖-dependent, we suppress this from
the notation. The claim of the lemma is that for all sufficiently
small 𝜖 > 0, the stabilization entropy is well defined and
satisfies

ℎ(𝐷,𝐸,𝐹, 𝜌, 𝑅𝜖 ) ≤ 𝐶. (12)
Proof: We note that for 𝜖 > 0 sufficiently enough, the

conditions
(i) 1− 𝑟 B

∑
𝑗 ,𝑘,𝑙 (1− 𝑟 𝑗 ,𝑘,𝑙) ∈ [0,1],

(ii) 1 − (1 + 𝜖) (1 −𝑄(𝐷 𝑗 , 𝐸𝑘 )𝜈(𝐹𝑙)) ∈ (0,1) for all 𝑗 , 𝑘, 𝑙

with 𝑄(𝐷 𝑗 , 𝐸𝑘 )𝜈(𝐹𝑙) ∈ (0,1),
are both satisfied, thus ensuring that for such a small 𝜖

the stabilization entropy ℎ(𝐷,𝐸,𝐹, 𝜌, 𝑅𝜖 ) is well defined.
Consider system (9) evolving according to the fixed coding
and control policy which renders the state process (𝑥𝑡 )𝑡 ∈N
AMS ergodic with AMS mean 𝑄. To prove that inequality
we consider three cases:

Case 1: We first consider the case where 𝑄(𝐷 𝑗 ×
𝐸𝑘 )𝜈(𝐹𝑙) ∈ (0,1) for all 𝑗 , 𝑘, 𝑙. Let 𝜖 > 0 be small enough
such that 𝜖 < 𝜌 as well as conditions (i) and (ii) are satisfied.
We will show that for any such 𝜖 the claim holds. Let
us denote the process measure by 𝜇, which is AMS by
assumption. Now, for any 𝑉 ∈ B(W), it is clear by the
i.i.d. property that

𝑃

({
𝜔 ∈ Ω : lim

𝑇→∞

1
𝑇

𝑇 −1∑︁
𝑡=0
1𝑉 (𝑤𝑡 (𝜔)) = 𝜈(𝑉)

})
= 1.

Noting that 𝑥𝑡 and 𝑤𝑡 are independent at each time step 𝑡,
(𝑤𝑡 )𝑡 ∈𝑁 is i.i.d, and recalling equation (2), it follows that

𝑃(Ω̂) = 1 where

Ω̂B {𝜔 ∈ Ω : lim
𝑇→∞

1
𝑇

𝑇 −1∑︁
𝑡=0
1𝐷 𝑗

(𝜋𝑚 (𝑥𝑡 (𝜔)))· (13)

1𝐸𝑘
(𝜋𝑁−𝑚 (𝑥𝑡 (𝜔))) ·1𝐹𝑙

(𝑤𝑡 (𝜔)) =𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙), ∀ 𝑗 , 𝑘, 𝑙
}

where we note that the above set can be written as the
intersection of a finite number of full measure sets. We
continue by defining the events

𝐸 𝐽
𝐼 B

{
𝜔 ∈ Ω :

��� 1
𝑇

𝑇 −1∑︁
𝑡=0
1𝐷 𝑗

(𝜋𝑚 (𝑥𝑡 (𝜔)))1𝐸𝑘
(𝜋𝑁−𝑚 (𝑥𝑡 (𝜔)))

1𝐹𝑙
(𝑤𝑡 (𝜔)) −𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙)

��� < 1
𝐼
∀ 𝑗 , 𝑘, 𝑙 whenever 𝑇 ≥ 𝐽

}
and note that for any 𝐼 ∈ N, it is clear that Ω̂ ⊆ ⋃∞

𝐽=1 𝐸
𝐽
𝐼

therefore 𝑃

(⋃∞
𝐽=1 𝐸

𝐽
𝐼

)
= 1. Let now 𝐼0 be large enough such

that
1
𝐼0

≤ 𝜖 (1−𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙)) for all 𝑗 , 𝑘, 𝑙

and observe that 𝐸1
𝐼0
⊆ 𝐸2

𝐼0
⊆ 𝐸3

𝐼0
⊆ · · · . By continuity of

probability, we have

lim
𝐽→∞

𝑃(𝐸 𝐽
𝐼0
) = 𝑃

( ∞⋃
𝐽=1

𝐸 𝐽
𝐼0

)
= 1,

and thus there exists 𝐽0 ∈N such that 𝑃(𝐸 𝐽
𝐼0
) ≥ 1− 𝜖 for all

𝐽 ≥ 𝐽0. For an arbitrary 𝑇 ≥ 𝐽0, we define the set of control
sequences

𝑆𝑇 := {𝑢 [0;𝑇 −1] (𝜔) : 𝜔 ∈ 𝐸𝑇
𝐼0
}.

We claim that this set is (𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅𝜖 )-spanning. We
use the set Ω̃𝑇 := 𝐸𝑇

𝐼0
∈ F to show this, where we note that

𝑃(Ω̃𝑇 ) ≥ 1− 𝜖 > 1− 𝜌, satisfying the first requirement of the
spanning set definition (Definition 2). To check the second
condition, observe that for every 𝜔 ∈ Ω̃𝑇 and every triple
𝑗 , 𝑘, 𝑙, the control sequence 𝑢 [0;𝑇 −1] (𝜔) ∈ 𝑆𝑇 results in the
joint state-noise process satisfying��� 1
𝑇

𝑇 −1∑︁
𝑡=0
1𝐷 𝑗

(𝜋𝑚 (𝑥𝑡 (𝜔)))1𝐸𝑘
((𝜋𝑁−𝑚 (𝑥𝑡 (𝜔)))1𝐹𝑙

(𝑤𝑡 (𝜔))−

𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙)
��� < 1

𝐼0
≤ 𝜖 (1−𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙)).

which implies that
1
𝑇
|{𝑡 ∈ [0;𝑇 −1] : (𝜑(𝑡, 𝑥0 (𝜔), 𝑢 [0;𝑇 −1] (𝜔),𝑤(𝜔)),𝑤𝑡 (𝜔)) ∈

𝐷 𝑗 ×𝐸𝑘 ×𝐹𝑙}| ≥ 1− (1+ 𝜖) (1−𝑄(𝐷 𝑗 , 𝐸𝑘 )𝜈(𝐹𝑙)) = 1− 𝑟 𝑗 ,𝑘,𝑙

which establishes the second condition, since the triple
𝑗 , 𝑘, 𝑙 was arbitrary. We have thus established that 𝑆𝑇 is
(𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅𝜖 )-spanning. Since the fixed causal coding
and control policy can generate at most |M|𝑇 distinct
control sequences by time 𝑇 , it follows that |𝑆𝑇 | ≤ |M|𝑇 ,
therefore 𝑠(𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅𝜖 ) ≤ |M|𝑇 . Recalling that 𝑇 ≥ 𝐽0
was arbitrary, we find that

log 𝑠(𝑇, 𝐵,𝐷, 𝜌, 𝑅𝜖 ) ≤ 𝑇 log2 |M| = 𝑇𝐶 for all 𝑇 ≥ 𝐽0,



and therefore dividing by 𝑇 and letting 𝑇 → ∞ yields the
desired capacity bound (12), completing the proof for Case
1.

Case 2: We now consider the case where every triple of
sets (𝐷 𝑗 , 𝐸𝑘 , 𝐹𝑙) satisfies 𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙) ∈ [0,1). Suppose
that 𝑗 , 𝑘, 𝑙, is such that 𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙) = 0. Then 1−𝑟 𝑗 ,𝑘,𝑙 =
0 and the second condition in Definition 2 is vacuously
satisfied. Combining this with Case 1, the result follows.

Case 3: Finally, we consider the case where for some
indices 𝑗 , 𝑘, 𝑙, 𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙) = 1. Because each collection
of sets is disjoint, 𝑄(𝐷 𝑗′×𝐸𝑘′)𝜈(𝐹𝑙′) = 0 whenever ( 𝑗 , 𝑘, 𝑙) ≠
( 𝑗 ′, 𝑘 ′, 𝑙 ′). The analysis reduces to establishing the second
condition in Definition 2 for the single set 𝐷 𝑗 ×𝐸𝑘 ×𝐹𝑙 with
𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙) = 1. Using an almost identical argument as
in Case 1, the result follows. Alternatively, the analysis of a
single set can be found in [33], where AMS was considered
instead of AMS ergodicity as the control objective. Since
AMS ergodicity implies AMS, and ℎ(𝐷,𝐸,𝐹, 𝜌, 𝑅) reduces
to the stabilization entropy notion used in [33] in case of a
single set, the desired inequality follows.

B. Proof of Theorem 2
To prove Theorem 2, we will approximate the integral in

equation (10) form below using simple functions. We will
prove that each of these approximations is upper bounded by
the stabilization entropy, which in turn is no larger than the
channel capacity. Taking a limit will yield the result. First, a
few simplifications are in order.

Proof:
Recalling that we fixed an integer 𝑚 ≤ 𝑁 , we define 𝑝 B

{1, ..,𝑚}. WLOG, it suffices to establish∫ ∫
log2 | det𝐷 𝑓

𝑝
𝑤 (𝑥𝑝1 , ..., 𝑥𝑝𝑚 , 𝑥𝑧1 , ..., 𝑥𝑧𝑁−𝑚 ) |

𝑑𝑄(𝑥1, ..., 𝑥𝑁 )𝑑𝜈(𝑤) ≤ 𝐶 (14)

since by a relabeling of coordinates, any other set 𝑝′ ∈ Γ can
be written in the form {1,2,3, .., |𝑝′ |}.

Recall now that by assumption (vi) in Theorem 2, there
exists a set 𝑆 ⊆ R𝑁−𝑚 with positive probability in the sense
that

𝑃({𝜔 ∈ Ω : (𝑥𝑚+1
0 (𝜔), 𝑥𝑚+2

0 (𝜔), ..., 𝑥𝑁0 (𝜔)) ∈ 𝑆}) > 0.

Moreover, the set 𝑆 has the property that for any 𝑥 ∈ 𝑆,
conditioning on the event {𝜔 ∈ Ω : (𝑥𝑚+1

0 , .., 𝑥𝑁−𝑚
0 ) (𝜔) = 𝑥}

results in the law of the random vector (𝑥1
0, .., 𝑥

𝑚
0 ) admitting a

bounded density. Let 𝜋′
0 denote this conditional law. We now

establish inequality (14) under slightly different assumptions
than those of Theorem 2. More specifically, we impose that

• The last 𝑁 − 𝑚 components of the initial state are
deterministic, taking the value 𝑥 for some arbitrary 𝑥 ∈ 𝑆.

• The initial 𝑚 components of 𝑥0 are distributed according
to the law 𝜋′

0.
We claim that if we can establish (14) under these modified
assumptions, the inequality will also hold under the assump-
tions of Theorem 2. To see this, suppose otherwise. Then a
coding and control policy exists which stabilizes the system

in Theorem 2 over a channel of capacity strictly less than
the LHS of (14). Since the stabilizing scheme works almost
surely, this coding and control policy would also stabilize
the system under the modified assumptions above for at least
one 𝑥 ∈ 𝑆 (since 𝑆 has non-zero measure), resulting in a
contradiction since we are assuming that (14) holds for the
modified system and for every 𝑥 ∈ 𝑆. We now proceed under
the modified assumptions, and redefine 𝜋0 B 𝜋′

0 to refer to
the conditional law of 𝜋𝑚 (𝑥0).

Let 𝑐 ∈ (0,1) be such that 𝑐 < | det𝐷 𝑓
𝑝
𝑤 (𝑥, 𝑦) | for all

(𝑥, 𝑦) ∈ R𝑚 ×R𝑁−𝑚 and 𝑤 ∈ W. Let also 𝛿 > 0 (think of
this as small) and 𝜌 ∈ (0,1) (think of this as close to 1)
be arbitrary. Next, fix Borel sets 𝐷 ⊂ R𝑚 and 𝐸 ⊂ R𝑁−𝑚

satisfying that 𝐷 × 𝐸 have finite 𝑁-dimensional Lebesgue
measure and that

𝑄(𝐷 ×𝐸) > 1− 𝛿

2| log𝑐 |
holds (such sets can easily be found due to continuity of
probability). Put also 𝐹 =W and let (𝐷 𝑗 )𝑑𝑗=1, (𝐸𝑘 )𝑒𝑘=1 and
(𝐹𝑙) 𝑓𝑙=1 be (disjoint) partitions of 𝐷, 𝐸 and 𝐹 respectively.
Let now 𝜖 > 0 be small enough so that Lemma 1 holds,
resulting in

ℎ(𝐷,𝐸,𝐹, 𝜌, 𝑅𝜖 ) ≤ 𝐶,

where 𝑅𝜖 is the associated collection of 𝑟 𝑗 ,𝑘,𝑙’s as defined
in Lemma 1. Let also 1− 𝑟 B

∑(1− 𝑟 𝑗 ,𝑘,𝑙). Expanding out,
it is easy to see (recalling that 𝜈(𝐹) = 1) that 𝑟 = 1− (1 +
𝜖)𝑄(𝐷×𝐸) +𝑑𝑒 𝑓 𝜖 (or 𝑟 = 𝜖 if one of the 𝐷 𝑗 ×𝐸𝑘 ×𝐹𝑙’s has
full 𝑄 × 𝜈-measure) thus we see that for every sufficiently
small 𝜖 ,

2𝑟 <
𝛿

| log𝑐 | . (15)

Now fix a sufficiently large 𝑇 ∈ N and let 𝑆𝑇 be a finite
(𝑇,𝐷,𝐸, 𝐹, 𝜌, 𝑅𝜖 )-spanning set (whose existence is guaran-
teed by the proof of Lemma 1) with Ω̃𝑇 ∈ F , 𝑃(Ω̃) ≥ 1− 𝜌,
the associated subset of Ω. Letting 𝑥𝑚0 denote the vector
consisting of the first 𝑚 components of 𝑥0, we proceed by
defining

𝐴 B {(𝑤(𝜔), 𝑥𝑚0 (𝜔)) : 𝜔 ∈ Ω̃},
𝐴(𝑢) B {(𝑤,𝑥) ∈WN×R𝑚 : ∀ 𝑗 , 𝑘, 𝑙,

1
𝑇

𝑇 −1∑︁
𝑡=0
1𝐷 𝑗×𝐸𝑘×𝐹𝑙

(𝜑(𝑡, (𝑥, 𝑥), 𝑢,𝑤),𝑤𝑡 ) ≥ 1− 𝑟 𝑗 ,𝑘,𝑙}.

𝐴(𝑢,𝑤) B {𝑥 ∈ R𝑚 : (𝑤,𝑥) ∈ 𝐴(𝑢)}.

Letting 𝑚 denote the 𝑚-dimensional Lebesgue measure, we
see that

𝐴 ⊆
⋃
𝑢∈𝑆𝑇

𝐴(𝑢), (𝜈×𝑚) (𝐴(𝑢)) =
∫

𝑚(𝐴(𝑢,𝑤))𝑑𝜈(𝑤),

(16)

where the equality follows from the Fubini-Tonelli theorem
(and the containment by definition of the sets). Letting 𝑀 > 0
be an upper bound for the density of 𝜋0, we have that

1− 𝜌 ≤ (𝜈× 𝜋0) (𝐴) ≤ 𝑀 · (𝜈×𝑚) (𝐴). (17)



Combining (16) and (17), we obtain the key inequality:

1
𝑀

(1− 𝜌) ≤ (𝜈×𝑚) (𝐴) ≤ |𝑆𝑇 | max
𝑢∈𝑆𝑇

(𝜈×𝑚) (𝐴(𝑢))

= |𝑆𝑇 | max
𝑢∈𝑆𝑇

∫
𝑚(𝐴(𝑢,𝑤))𝑑𝜈(𝑤). (18)

The next step in the proof is to obtain upper bounds for the
volume 𝑚(𝐴(𝑢,𝑤)). We proceed by defining a set consisting
of disjoint collections of subsets of {0, . . . ,𝑇 −1}:

AB {Λ = {Λ 𝑗 ,𝑘,𝑙} 𝑗 ,𝑘,𝑙 :
𝑑⊔
𝑗=1

𝑒⊔
𝑘=1

𝑓⊔
𝑙=1

Λ 𝑗 ,𝑘,𝑙 ⊆ {0, . . . ,𝑇 −1},

|Λ 𝑗 ,𝑘,𝑙 | ≥ (1− 𝑟 𝑗 ,𝑘,𝑙)𝑇,∀ 𝑗 = 1, .., 𝑑, 𝑘 = 1, .., 𝑒, 𝑙 = 1, .., 𝑓 }

and note that as a consequence of the definition,
|⊔𝑑

𝑗=1
⊔𝑒

𝑘=1
⊔ 𝑓

𝑙=1Λ 𝑗 ,𝑘,𝑙 | ≥ (1− 𝑟)𝑇 for all Λ ∈ A. We note
that such sets can only be found for 𝑇 sufficiently large,
however as we will be taking a limit as 𝑇 →∞, this is not
a problem. For Λ ∈A, define the set

𝐴(𝑢,𝑤,Λ) := {𝑥 ∈ R𝑚 : (𝜑(𝑡, (𝑥, 𝑥), 𝑢,𝑤),𝑤𝑡 ) ∈ 𝐷 𝑗 ×𝐸𝑘 ×𝐹𝑙 ⇔
𝑡 ∈ Λ 𝑗 ,𝑘,𝑙 for all 𝑗 , 𝑘, 𝑙}.

It is not hard to see that 𝐴(𝑢,𝑤) = ⊔
Λ∈A 𝐴(𝑢,𝑤,Λ) is a

disjoint union, thus (18) becomes

1
𝑀

(1− 𝜌) ≤ |𝑆𝑇 | max
𝑢∈𝑆𝑇

∫ ∑︁
Λ∈A

𝑚(𝐴(𝑢,𝑤,Λ))𝑑𝜈(𝑤). (19)

Our next step is to bound the volumes of the form
𝑚(𝐴(𝑢,𝑤,Λ)). Writing 𝜑𝑡 ,𝑢,𝑤 (·) := 𝜑(𝑡, (·, 𝑥), 𝑢,𝑤) we define

𝐴𝑡 (𝑢,𝑤,Λ) := 𝜑𝑡 ,𝑢,𝑤 (𝐴(𝑢,𝑤,Λ)), 𝑡 = 0,1, . . . ,𝑇 −1,

and observe that

𝐴𝑡 (𝑢,𝑤,Λ) ⊆ 𝐷 𝑗 whenever 𝑡 ∈ Λ 𝑗 ,𝑘,𝑙 ∀ 𝑗 , 𝑘, 𝑙.

Next, we define the following numbers:

𝑐 𝑗 ,𝑘,𝑙 B inf
(𝑥,𝑦,𝑤) ∈𝐷 𝑗×𝐸𝑘×𝐹𝑙

| det𝐷 𝑓
𝑝
𝑤 (𝑥, 𝑦) |.

Recalling that by assumption 𝑓
𝑝
𝑤 (·, 𝑦) is injective and 𝐶1, it

follows that for all ( 𝑗 , 𝑘, 𝑙) we have that

𝑚(𝐴𝑡+1 (𝑢,𝑤,Λ)) ≥ 𝑐 𝑗 ,𝑘,𝑙 ·𝑚(𝐴𝑡 (𝑢,𝑤,Λ)) whenever 𝑡 ∈ Λ 𝑗 ,𝑘,𝑙 ,

𝑚(𝐴𝑡+1 (𝑢,𝑤,Λ)) ≥ 𝑐 ·𝑚(𝐴𝑡 (𝑢,𝑤,Λ)) whenever 𝑡 ∉
⊔

Λ 𝑗 ,𝑘,𝑙 .

Letting 𝑡∗ (Λ 𝑗 ,𝑘,𝑙) B maxΛ 𝑗 ,𝑘,𝑙 , 𝑡∗ (Λ) B max 𝑗 ,𝑘,𝑙 𝑡
∗ (Λ 𝑗 ,𝑘,𝑙),

applying the above inequalities repeatedly, and recalling that
𝑐 ≤ 𝑐 𝑗 ,𝑘,𝑙 , it is not hard to see that

𝑚(𝐴(𝑢,𝑤,Λ))
( 𝑑∏
𝑗=1

𝑒∏
𝑘=1

𝑓∏
𝑙=1

𝑐
|Λ 𝑗,𝑘,𝑙 |−1
𝑗 ,𝑘,𝑙

)
𝑐𝑟𝑇 +𝑑𝑒 𝑓

≤ 𝑚(𝐴𝑡∗ (Λ) (𝑢,𝑤,Λ)).

where in principle, all the exponents of the 𝑐 𝑗 ,𝑘,𝑙’s should be
|Λ 𝑗 ,𝑘,𝑙 |, except for possibly one which should be |Λ 𝑗 ,𝑘,𝑙 | −1.

We do not know which one though, so we write the weaker
inequality as above. Combining this with (19), we obtain

1
𝑀

(1− 𝜌) ≤ |𝑆 | max
𝑢∈𝑆𝑇

∑︁
Λ∈A

∫
𝑚(𝐴𝑡∗ (Λ) (𝑢,𝑤,Λ))𝑐−(𝑟𝑇 +𝑑𝑒 𝑓 )

𝑑∏
𝑗=1

𝑒∏
𝑘=1

𝑓∏
𝑙=1

𝑐
−( |Λ 𝑗,𝑘,𝑙 |−1)
𝑗 ,𝑘,𝑙

𝑑𝜈(𝑤),

and note that the right hand side of the above can be written
as

= |𝑆 | · 𝑐−(𝑟𝑇 +𝑑𝑒 𝑓 ) max
𝑢∈𝑆𝑇

𝑇∑︁
𝑡1,1,1=(1−𝑟1,1,1)𝑇

· · ·
𝑇∑︁

𝑡𝑑,𝑒, 𝑓 =(1−𝑟𝑑,𝑒, 𝑓 )𝑇∫ ∑︁
Λ∈A: 𝑡∗ (Λ 𝑗,𝑘,𝑙)=𝑡 𝑗,𝑘,𝑙∀ 𝑗 ,𝑘,𝑙

𝑚(𝐴𝑡∗ (Λ) (𝑢,𝑤,Λ))

𝑑∏
𝑗=1

𝑒∏
𝑘=1

𝑓∏
𝑙=1

𝑐
−( |Λ 𝑗,𝑘,𝑙 |−1)
𝑗 ,𝑘,𝑙

𝑑𝜈(𝑤)

≤ |𝑆 | · 𝑐−(2𝑟𝑇 +𝑑𝑒 𝑓 ) max
𝑢∈𝑆𝑇

𝑇∑︁
𝑡1,1,1=(1−𝑟1,1,1)𝑇

· · ·
𝑇∑︁

𝑡𝑑,𝑒, 𝑓 =(1−𝑟𝑑,𝑒, 𝑓 )𝑇∫ ∑︁
Λ∈A: 𝑡∗ (Λ 𝑗,𝑘,𝑙)=𝑡 𝑗,𝑘,𝑙∀ 𝑗 ,𝑘,𝑙

𝑚(𝐴𝑡∗ (Λ) (𝑢,𝑤,Λ))

𝑑∏
𝑗=1

𝑒∏
𝑘=1

𝑓∏
𝑙=1

𝑐
−( (1−𝑟 𝑗,𝑘,𝑙)𝑇 −1)
𝑗 ,𝑘,𝑙

𝑑𝜈(𝑤).

where the last inequality follows by noting that

𝑐𝑟𝑇 +𝑑𝑒 𝑓
∏
𝑗 ,𝑘,𝑙

𝑐
|Λ 𝑗,𝑘,𝑙 |−1
𝑗 ,𝑘,𝑙

= 𝑐𝑟𝑇 +∑ 𝑗,𝑘,𝑙 |Λ 𝑗,𝑘,𝑙 |
∏
𝑗 ,𝑘,𝑙

( 𝑐 𝑗 ,𝑘,𝑙

𝑐

) |Λ 𝑗,𝑘,𝑙 |−1

≥ 𝑐𝑟𝑇 +∑ 𝑗,𝑘,𝑙 |Λ 𝑗,𝑘,𝑙 |
∏
𝑗 ,𝑘,𝑙

( 𝑐 𝑗 ,𝑘,𝑙

𝑐

) (1−𝑟 𝑗,𝑘,𝑙)𝑇 −1

= 𝑐𝑟𝑇 +∑ 𝑗,𝑘,𝑙 |Λ 𝑗,𝑘,𝑙 |−(1−𝑟 )𝑇 +𝑑𝑒 𝑓
∏
𝑗 ,𝑘,𝑙

𝑐
(1−𝑟 𝑗,𝑘,𝑙)𝑇 −1
𝑗 ,𝑘,𝑙

≥ 𝑐2𝑟𝑇 +𝑑𝑒 𝑓
∏
𝑗 ,𝑘,𝑙

𝑐
(1−𝑟 𝑗,𝑘,𝑙)𝑇 −1
𝑗 ,𝑘,𝑙

.

Observe that the sets 𝐴𝑡∗ (Λ) (𝑢,𝑤,Λ) with Λ ∈ A, 𝑡∗ (Λ)
fixed, are pairwise disjoint, since they are the images of
the corresponding sets 𝐴(𝑢,𝑤,Λ) under the injective map
𝜑𝑡∗ (Λ) ,𝑢,𝑤 . Moreover, all of these sets are contained in 𝐷,
hence ∑︁

Λ∈A:𝑡∗ (Λ 𝑗,𝑘,𝑙)=𝑡 𝑗,𝑘,𝑙∀ 𝑗 ,𝑘,𝑙
𝑚(𝐴𝑡∗ (Λ) (𝑢,𝑤,Λ)) ≤ 𝑚(𝐷).

Together with the above chain of inequalities, this implies

1
𝑀

(1− 𝜌) ≤ |𝑆𝑇 | ·𝑚(𝐷) · 𝑐−(2𝑟𝑇 +𝑑𝑒 𝑓 ) ·
𝑑∏
𝑗=1

𝑒∏
𝑘=1

𝑓∏
𝑙=1

𝑐
−( (1−𝑟 𝑗,𝑘,𝑙)𝑇 −1)
𝑗 ,𝑘,𝑙

𝑑∏
𝑗=1

𝑒∏
𝑘=1

𝑓∏
𝑙=1

(𝑟 𝑗 ,𝑘,𝑙𝑇 +1).

Since this inequality holds for every 𝑇 sufficiently large, we
can take logarithms on both sides, divide by 𝑇 and let 𝑇 →∞.



This results in

0 ≤ ℎ(𝐷,𝐸,𝐹, 𝜌, 𝑅𝜖 )−2𝑟 log𝑐−
𝑑∑︁
𝑗=1

𝑒∑︁
𝑘=1

𝑓∑︁
𝑙=1

(1−𝑟 𝑗 ,𝑘,𝑙) log𝑐 𝑗 ,𝑘,𝑙 .

Recalling the definition of 𝑟 𝑗 ,𝑘,𝑙 , the fact that 𝜖 can be chosen
arbitrarily small and (15), this leads to the estimate

𝐶 + 𝛿 ≥
𝑑∑︁
𝑗=1

𝑒∑︁
𝑘=1

𝑓∑︁
𝑙=1

𝑄(𝐷 𝑗 ×𝐸𝑘 )𝜈(𝐹𝑙)

inf
(𝑥,𝑦,𝑤) ∈𝐷 𝑗×𝐸𝑘×𝐹𝑙

log | det𝐷 𝑓
𝑝
𝑤 (𝑥, 𝑦) |.

Considering the supremum of the right-hand side over all
finite measurable partitions of 𝐷,𝐸 and 𝐹 =W leads to

𝐶 + 𝛿 ≥
∫ ∫

1𝐷×𝐸 (𝑥1, .., 𝑥𝑁 ) log | det𝐷 𝑓
𝑝
𝑤 (𝑥1, .., 𝑥𝑁 ) |

𝑑𝑄(𝑥1, .., 𝑥𝑁 )𝑑𝜈(𝑤),

where we use that the integrand is uniformly bounded
below by log𝑐 (and hence, we can assume that it is non-
negative). Considering now an increasing sequence of sets
𝐷𝑘 × 𝐸𝑘 ⊂ R𝑁 whose union is R𝑁 , we can invoke the
theorem of monotone convergence to obtain the desired
estimate, observing that 𝛿 can be made arbitrarily small as
𝐷𝑘 ×𝐸𝑘 becomes arbitrarily large. This completes the proof.

V. CONCLUSIONS
In conclusion we have - for a certain class of non-linear

systems - established a sharper bound on channel capacity
required for ergodic stabilization. The techniques involved
in the proof are stabilization entropy, a volume growth
argument, and the property that almost surely, system sample
paths visit regions of the state space at a frequency given
by an ergodic measure. There are three possible avenues of
further investigation. First, it would be interesting to enlarge
the class of noise processes for which the bounds in this
paper hold. We have considered only i.i.d. noise, however it
is possible that an ergodic-like property (i.e. that equation
(13) holds) for the joint state-noise process will hold for less
restrictive classes of noise. Secondly, it seems possible to
attempt the generalization of this result for the noisy channel
case. Using stabilization entropy techniques, [3] established
the bound (3) for scalar systems controlled over Discrete
Memoryless Channels. Given that sharper bounds can be
established for multi-dimensional systems, it seems worth-
while to attempt to generalize the one dimensional noisy-
channel result to many dimensions, and combine it with the
arguments in this paper to sharpen the bound. At a first
glance, there appear to be no significant technical challenges
to overcome. Finally, we note that using the current method,
it is not possible to establish the bound for the most general
class of systems of the form 𝑥𝑡+1 = 𝑓 (𝑥𝑡 ,𝑤𝑡 , 𝑢𝑡 ). The reason
for this is that the proof in this paper relies heavily on
the fact that with additive control, volume growth of the
map 𝑥 ↦→ 𝑓 (𝑥,𝑤) + 𝑢 does not depend on the choice of 𝑢.
A future direction of investigation is to consider the most

general class of systems, and impose restrictions on the type
of causal coding and control policies in such a way so as
to ensure that the control process has ergodic properties.
We conclude by noting that we were unable to obtain the
sharper bound established in this paper using information
theoretic methods, with the main impediment being the fact
that when splitting the state and conditioning on a past state
realization, the unstable and stable state components may not
be independent random variables, which is required for the
information theoretic methods to apply.
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