
Asynchronous Zeroth-Order Distributed Optimization
with Residual Feedback

Yi Shen, Yan Zhang, Scott Nivison, Zachary I. Bell and Michael M. Zavlanos

Abstract— We consider a zeroth-order distributed optimiza-
tion problem, where the global objective function is a black-box
function and, as such, its gradient information is inaccessible
to the local agents. Instead, the local agents can only use
the values of the objective function to estimate the gradient
and update their local decision variables. In this paper, we
also assume that these updates are done asynchronously. To
solve this problem, we propose an asynchronous zeroth-order
distributed optimization method that relies on a one-point
residual feedback to estimate the unknown gradient. We show
that this estimator is unbiased under asynchronous updating,
and theoretically analyze the convergence of the proposed
method. We also present numerical experiments that demon-
strate that our method outperforms two-point methods under
asynchronous updating. To the best of our knowledge, this
is the first asynchronous zeroth-order distributed optimization
method that is also supported by theoretical guarantees.

I. INTRODUCTION

Distributed optimization algorithms have been used to
solve decision making problems in a wide range of appli-
cation domains, including distributed machine learning [1],
[2], resource allocation [3] and robotics [4], to name a few.
In these problems, agents aim to find their local optimal
decisions so that a global cost function that depends on the
joint decisions is minimized. Existing algorithms, e.g., [5]–
[8] often assume that the gradients of the objective function
is known and available to the agents. However, this is not
always the case in practice. For example, complex systems
are often difficult to model explicitly [9], [10]. Similarly, in
applications such as online marketing [11] and multi-agent
games [12], the decisions of other agents cannot be observed
and, therefore, the gradient of the objective function cannot
be locally computed. Finally, many distributed optimization
algorithms assume that all agents update their local decisions
at the same time, which requires synchronization over the
whole network and can be expensive to implement.

In this paper, we consider distributed optimization prob-
lems where a group of agents collaboratively minimize a
common cost function that depends on their joint decisions.
Moreover, we assume that the agents can only observe
and update their local decision variables, and that the gra-
dient of the common objective function with respect to
each agent’s local decision is not accessible. To solve this

*This work is supported in part by AFOSR under award #FA9550-19-1-
0169 and by NSF under award CNS-1932011.

Yi Shen, Yan Zhang and Michael M. Zavlanos are with the Department of
Mechanical Engineering and Materials Science, Duke University, Durham,
NC, USA. Email: {yi.shen478, yan.zhang2, michael.zavlanos}@duke.edu

Scott Nivison and Zachary I. Bell are with the Air Force
Research Laboratory, Eglin AFB, FL, USA. Email: {scott.nivison,
zachary.bell.10}@us.af.mil.

problem, zeroth-order optimization methods [13]–[16] have
been proposed that estimate the gradient using the values
of the objective function. Existing zeroth-order gradient
estimators can be classified into two categories, namely, one-
point feedback [13], [16] and two-point feedback [14], [15]
estimators, depending on the number of decision points they
query at each iteration. The first one-point gradient estimator
is analyzed in [13] and has the form

Gµ(xk) =
f(xk + µuk)

µ
uk, (1)

where f is a cost function, xk is a decision variable at time
k, µ is a smoothing parameter, u is sampled from a normal
Gaussian distribution N (0, In) and In is an n dimensional
identity matrix. The estimator (1) requires to evaluate the
objective function at a single point xk + µuk at iteration
k but usually suffers large variance which slows down the
optimization process. To reduce the variance of the one-point
gradient estimator (1), the works in [14], [15] study the two-
point gradient estimators

Gµ(xk) =
f(xk + µuk)− f(xk)

µ
uk (2)

and Gµ(xk) =
f(xk + µuk)− f(xk − µuk)

2µ
uk, (3)

that evaluate the objective function at two distinct decision
points at iteration k. Recently, a new one-point gradient
estimator has been proposed in [16], called the residual-
feedback gradient estimator,

Gµ(xk) =
f(xk + µuk)− f(xk−1 + µuk−1)

µ
uk (4)

that enjoys the same variance reduction effect of the two-
point gradient estimators (2) and (3) but only requires to
evaluate the objective function at a single decision point at
each iteration. We note that verbatim application of the above
centralized gradient estimators to the distributed problem
considered in this paper requires synchronization across the
agents. This is because the perturbation is according to
the full decision vector and required to be implemented
simultaneously. To the best of our knowledge, asynchronous
zeroth-order distributed optimization methods have not been
studied in the literature. If the objective function gradient is
known, asynchronous distributed optimization methods with
a common objective function have been studied in [17]–[19].
However, these works can not be directly extended to solve
the black-box optimization problems considered here.

ar
X

iv
:2

10
9.

13
86

6v
1

 [
m

at
h.

O
C

]
 2

8
Se

p
20

21

In this paper, we consider a model for asynchrony where
a single agent is randomly activated at each time step to
query the objective function value at one decision point or
update its local decision variable. Then, we propose an asyn-
chronous zeroth-order distributed optimization algorithm that
relies on extending the centralized residual-feedback gradient
estimator (4) so that it can handle asynchronous queries
and updates. Specifically, we show that the proposed zeroth-
order gradient estimator provides an unbiased estimate of the
gradient with respect to each agent’s local decision. Also, we
provide bounds on the second moment of this estimator, the
first of their kind for any asynchronous zeroth-order gradient
of this type, which we then use to show convergence of the
proposed method. As expected, the variance of this estimator
is greater than he variance of the estimator in (4), since other
agents in the network can update their decision variables
between an agent’s two consecutive queries of the objective
function.

We note that, almost concurrently with this work [20]
proposed an asynchronous zeroth-order optimization algo-
rithm that relies on the two-point gradient estimator (3).
Unlike the method proposed here, [20] assumes that while a
single agent queries the values of the objective function at
decision points xk + µuk and xk (or xk − µuk), the other
agents do not update their decision variables, even if any
of them are activated. This assumption limits the number of
updates the agents can make during a fixed period of time
and affects the performance of the asynchronous system.
Related is also work on distributed zeroth-order methods
for the optimization of functions that are the sum of local
objective functions, see [21]–[24]. However, these methods
assume synchronous updates.

The rest of this paper is organized as follows. In Section II,
we formulate the problem under consideration and present
preliminary results on zeroth-order gradient estimators. In
Section III, we present the proposed asynchronous zeroth-
order distributed optimization algorithm with residual feed-
back gradient estimation, and analyze its convergence. In
Section IV, we numerically validate the proposed algorithm
and in Section V we conclude the paper.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a multi-agent system consisting of N agents that
collaboratively solve the unconstrained optimization problem

min
x

f(x), (5)

where the cost function f is non-convex and smooth, x :=
(x1, . . . , xN) ∈ Rn is the joint decision vector, and xi ∈ Rni

is the local decision vector of agent i ∈ {1, . . . , N}. We first
make the following assumptions on the cost function f .

Assumption 1. The cost function f(x) : Rn → R is bounded
below by f∗. It is L0-Lipschitz and L1-smooth, i.e.,

|f(x)− f(y)| ≤ L0 ‖x− y‖ ,
‖∇f(x)−∇f(y)‖ ≤ L1 ‖x− y‖ ,

for all x, y ∈ Rn.

As shown in [14], L1-smoothness is equivalent to the
condition;

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ 1

2
L1 ‖x− y‖2 , (6)

for all x, y ∈ Rn. For each agent i, define the local smoothing
function:

fµi
(x) =

1

κi

∫
f(x+ µiui)e

− 1
2‖ui‖2duii, (7)

where κi =
∫
e−

1
2‖ui‖2duii. The random sampling vector

ui = {u1
i , . . . , u

N
i } ∈ Rn is a vector of all zeros except for

the entry uii that is sampled from N (0, Ini
).1 Note that fµi

preserves all the Lipschitz conditions of f as proved in [14].
Specifically, we have the following lemma.

Lemma 1. Under Assumption 1, we have that , for all agents
i, fµi

(x) : Rn → R is L0-Lipschitz and L1-smooth.

As a result, (6) also holds for fµi
, which allows us

to bound the approximation errors of fµi
and ∇ifµi

with
respect to (w.r.t.) to f and ∇if, as shown in Lemma 2 below
that is adopted from [14]. In Lemma 2 and the following
analysis, we denote by ∇f(x) ∈ Rn the gradient of f(x).
Moreover, we define by ∇if(x) ∈ Rn the projection of
∇f(x) onto the index i by setting the entries of ∇f(x) not
equal to i to be 0.

Lemma 2. Under Assumption 1, the cost function f and
its corresponding smoothed function fµi

satisfy ∀i ∈
{1, . . . , N}

|fµi(x)− f(x)| ≤ µ2
i

2
L1ni, (8)

‖∇ifµi
(x)−∇if(x)‖ ≤ µi

2
L1(ni + 3)3/2. (9)

Next, we define the model that the agents use to asyn-
chronously update their decision variables.

Definition 1 (Asynchrony Model). At each time step, one
agent is independently and randomly selected according to
a fixed distribution P = [p1, . . . , pN]. The selected agent i
can query the value of the cost function2 once and update
its local decision variable, while the decisions of the other
agents {xj}j 6=i are fixed. The agents only communicate with
a central entity that has access to the global cost function
but not with each other.

Remark 1. Definition 1 can be satisfied when all agents
make queries and update their decisions according to their
local clock without any central coordination. Specifically, let
the time interval between each agent’s consecutive queries
be called a waiting time. Then, if each local waiting time is
random and subject to an exponential distribution, according
to Chapter 2.1 in [25], Definition 1 will be satisfied.

1In the following analysis, we drop the agent index i in ui for simplicity.
2Here, we assume that each agent receives noiseless feedback f(x). The

proposed method can be extended to noisy feedback with bounded variance.

III. ALGORITHM DESIGN AND ANALYSIS

In this section, we present the proposed asynchronous
zeroth-order distributed optimization algorithm and analyze
its convergence rate. To do so, we first propose an asyn-
chronous zeroth-order gradient estimator based on the cen-
tralized residual feedback estimator (4). For every agent i,
at time step k, this estimator takes the form

Gµi
(xk) =

f(xk + µiuk)− f(xk−M + µiuk−M)

µi
uk, (10)

where k−M is a random index denoting the iteration when
agent i conducted its most recent update. This index takes
values on a global time scale. The random sampling vector
uk is as defined in (7). Note that Gµi is different from the
centralized zeroth-order gradient estimator (4), where uk is
a perturbation along the full decision vector x. Here, Gµi

estimates the gradient by perturbing the function f along
a random direction restricted to agent i’s block of the full
decision vector x and uses the previous query to reduce the
variance. Indeed, Gµi provides an unbiased gradient estimate
of the corresponding smoothed function fµi restricted to
agent i’s block, as shown in the following lemma.

Lemma 3. For each agent i, we have that

E [Gµi(xk)] = ∇ifµi(xk).

Proof. Taking the expectation of both sides of (10), we
obtain that

E [Gµi(xk)] = E
[
f(xk + µiuk)− f(xk−M + µiuk−M)

µi
uk

]
= E

[
f(x+ µiuk)

µi
uk

]
= ∇ifµi

(xk),

where the second equality follows from the fact that xk−M
and uk−M are independent from uk and the expectation of
uk is 0 . The last equality follows from the definitions of
fµi

and ∇ifµi
.

Remark 2. Note that both Gµi
(xk) and ∇ifµi

are vectors
in Rn with entries equal to zero at blocks other than i.

Using the local gradient estimate Gµi(xk), we can define
the update rule for every agent i as

xk+1 = xk − αiGµi
(xk), (11)

where αi is the step size. The proposed asynchronous
zeroth-order distributed optimization algorithm with residual
feedback is described in Algorithm 13.

Without loss of generality, we assume that decision vari-
ables xi ∈ Rn̄ of all agents i have the same dimensions, and
that the step sizes and smoothing parameters of all agents
are also the same, i.e., αi = α and µi = µ. To analyze
the convergence of Algorithm 1, we need to bound the

3Note that, we can also extend (2) for asynchronous problems and design
the algorithm thereof. The lemmas and theorems proved in this paper can be
easily adapted to this case as well. In Section IV, we will compare these two
gradient estimators empirically. However, the extension of (3) is non-trivial.
It can be verified that Lemma 3 does not hold for the extension of (3). We
leave it as future work.

Algorithm 1 Asynchronous Zeroth-Order Residual Feedback

Require: sampling rate pi with
∑N
i=1 pi = 1, decision

variable xi0, smoothing parameter µi and step size αi
for all agents i. Set the iteration counter t = 0 and let
T be the maximum number of iterations.

1: for t ≤ T do
2: sample an index it according to P(it = i) = pi
3: sample ui ∼ N (0, Ini

)
4: query the function value f(x+ µiu)
5: compute Gµi

according to (10)
6: update local decision xi ← xi − αiGµi(x

i)
7: update the time step counter t← t+ 1
8: end for

second moment of the proposed gradient estimator Gµi
(xk).

However, under the asynchronous framework considered in
this paper, there can be a random number of agents updating
their local decision variables between the two queries made
by agent i at time steps k and k − M in (10). These
updates by other agents introduce additional variance into
the estimator (10) compared to the variance of the centralized
estimator analyzed in [16]. Next, we analyze the effect of the
asynchronous updates on the second moment of the zeroth-
order gradient estimator. To the best of our knowledge, this
is the first time that a bound on the second moment of a
zeroth-order gradient estimator is provided for asynchronous
problems. An additional contribution of this work, is that the
proof technique presented below can be extended to obtain
similar results for the two-point gradient estimator (2).

Lemma 4. Let Assumptions 1 hold under the Asynchrony
Model, and define by E[‖Gµ̃(xk)‖2] := Eik [Eu[k],i[k−1]

[‖Gµi
(xk)‖2 |ik = i]], where u[k] = (u1, . . . , uk) and i[k] =

(i1, . . . , ik), Then, running the asynchronous Algorithm 1,
we have that E[‖Gµ̃(xk)‖2] satisfies

E
[
‖Gµ̃(xk)‖2

]
≤2n̄L2

0α
2k

µ2

k−1∑
m=0

(1− pmin)mE
[
‖Gµ̃(xk−m−1)‖2

]
+ 4L2

0

(
(4 + n̄)2 + n̄2

)
,

(12)

where pmin = mini pi, and the expectations are taken w.r.t.
the sequence of random exploration directions {uk} and the
sequence of random indices of activated agents {ik}.

Proof. Suppose that at time step k, agent i is selected. Taking
the second moment of Gµi

and using equation (10), we we
have4

Eu[k],i[k−1]

[
‖Gµi(xk)‖2 |ik = i

]
≤

E

[
(f(xk + µiuk)− f(xk−M + µiuk−M))

2 ‖uk‖2

µ2
i

]
(13)

4To simplify the notation, when it is clear from the context, we
drop the subscript of the expectation and the conditional event, e.g.,
E[‖Gµi (xk)‖

2] := Eu[k],i[k−1]
[‖Gµi (xk)|ik = i‖2].

Notice that

(f(xk + µiuk)− f(xk−M + µiuk−M))
2

≤ 2 (f(xk + µiuk)− f(xk−M + µiuk))
2︸ ︷︷ ︸

a

+ 2 (f(xk−M + µiuk)− f(xk−M + µiuk−M))
2︸ ︷︷ ︸

b

.

(14)

Substituting (14) into (13), we obtain that

Eu[k],i[k−1]

[
‖Gµi

(xk)‖2 |ik = i
]

≤ E
[

2a+ 2b

µ2
i

‖uk‖2
]

≤ E

[
2L2

0 ‖xk − xk−M‖
2

µ2
i

‖uk‖2
]

+ E
[

2b

µ2
i

‖uk‖2
]

≤ 2L2
0n̄

µ2
i

E
[
‖xk − xk−M‖2

]
+ E

[
2b

µ2
i

‖uk‖2
]
,

(15)

where the second inequality holds due to Lipschitzness of f
and the last inequality holds since xk−xk−M is independent
from uk and E[‖uk‖2] = n̄. We first bound the second term
in the right-hand-side of (15). Specifically, we have that

E
[

2b

µ2
i

‖uk‖2
]
≤ E

[
2L2

0 ‖uk − uk−M‖
2 ‖uk‖2

]
≤ E

[
4L2

0

(
‖uk‖2 + ‖uk−M‖2

)
‖uk‖2

]
≤ E

[
4L2

0 ‖uk‖
4
]

+ E
[
4L2

0 ‖uk−M‖
2
]
E
[
‖uk‖2

]
≤ 4L2

0

(
(4 + n̄)2 + n̄2

)
,

(16)

where the first inequality holds due to Lipschitzness of f ,
the third inequality holds since uk−M is independent from
uk and the last inequality follows from Lemma 1 in [14].

Next, we bound the first term in the right-hand-side of (15)
containing the second moment of xk − xk−M . Given that
agent i updates at time step k, we can partition the sequence
of all past updates into k events Aim = {M = m}, where Aim
represents all sequences of updates such that the most recent
update by agent i is at global time step k−m. In particular,
Aik indicates that agent i has not been updated before and
k is the first time that this agent gets updated. It is easy
to see that the sets {Aim}km=1 are disjoint and contain all
possible sequences of updates by the team of agents. Using
the definition of these events, we can rewrite the conditional
expectation of ‖xk − xk−M‖2 as

Yi := Eu[k],i[k−1]

[
‖xk − xk−M‖2 |ik = i

]
=

k∑
m=1

Eu[k]

[
‖xk − xk−m‖2 |Aim, ik = i

]
P(Aim).

(17)

Equation (17) can be rewritten as

Yi =

k∑
m=1

E
[
‖xk − xk−m‖2 |Aim

]
P(Aim)

=

k∑
m=1

E

∥∥∥∥∥
m−1∑
l=0

(xk−l − xk−l−1)

∥∥∥∥∥
2

|Aim

P(Aim)

≤
k∑

m=1

E

[
m

m−1∑
l=0

‖(xk−l − xk−l−1)‖2 |Aim

]
P(Aim),

where the last inequality holds due to the fact that(∑k
m=1 am

)2

≤ k
∑k
m=1 a

2
m. We first collect all the

terms containing ‖xk − xk−1‖2, which we denote by {Yi :
‖xk − xk−1‖2}. Then, we have that

{Yi : ‖xk − xk−1‖2} =

k∑
m=1

mE
[
‖xk − xk−1‖2 |Aim

]
P(Aim)

≤ k
k∑

m=1

E
[
‖xk − xk−1‖2 |Aim

]
P(Aim)

= kE
[
‖xk − xk−1‖2

]
, (18)

where the last equation holds by the definition of condi-
tional expectation. Next we collect all the terms containing
‖xk−s − xk−s−1‖2 for all s ∈ {1, . . . , k − 1}. Specifically,
we have that

{Yi : ‖xk−s − xk−s−1‖2}

=

k∑
m=s+1

mE
[
‖xk−s − xk−s−1‖2 |Aim

]
P(Aim)

≤ k
k∑

m=s+1

E
[
‖xk−s − xk−s−1‖2 |Aim

]
P(Aim).

(19)

We claim that the right hand side of (19) satisfies the
following equation

k
k∑

m=s+1

E
[
‖xk−s − xk−s−1‖2 |Aim

]
P(Aim)

= kP(Aic1:s)E
[
‖xk−s − xk−s−1‖2

]
,

(20)

where Aic1:s = ∪km=s+1A
i
m. To see this, we first observe that

E
[
‖xk−s − xk−s−1‖2

]
=

k∑
m=1

E
[
‖xk−s − xk−s−1‖2 |Aim

]
P(Aim)

=E
[
‖xk−s − xk−s−1‖2 |Ai1:s

]
P(Ai1:s)

+ E
[
‖xk−s − xk−s−1‖2 |Aic1:s

]
P(Aic1:s),

(21)

where Ai1:s = ∪sm=1A
i
m and Aic1:s is the complement

of Ai1:s. The second equality follows from the property
of conditional expectation of disjoints events. Note that

E[‖xk−s − xk−s−1‖2 |Ai1:s] and E[‖xk−s − xk−s−1‖2 |Aic1:s]
are equal. Specifically, event Ai1:s and event Aic1:s only differ
after time step k − s, where Ai1:s contains all sequences of
updates where i update after k − s and Aic1:s contains all
sequences of updates where i does not updates after k − s.
Since both events Ai1:s and Aic1:s do not affect the agents’
updates before time step k − s, we have that

E
[
‖xk−s − xk−s−1‖2

]
= E

[
‖xk−s − xk−s−1‖2 |Aic1:s

]
.

Combining the above equality with (19), we have that

k

k∑
m=s+1

E
[
‖xk−s − xk−s−1‖2 |Aim

]
P(Aim)

= kP(Aic1:s)E
[
‖xk−s − xk−s−1‖2 |Aic1:s

]
= kP(Aic1:s)E

[
‖xk−s − xk−s−1‖2

]
,

which completes the proof of (20). Then, we can bound Yi
in (17) by combining (18) and (20) and have that

E
[
‖xk − xk−M‖2

]
≤ kE

[
‖xk − xk−1‖2

]
+ k

k−1∑
m=1

P(Aic1:m)E
[
‖xk−m − xk−m−1‖2

]
. (22)

By definition, we have P(Aim) = pi(1 − pi)
m−1 for 1 ≤

m < k, and P(Aik) = (1− pi)k for m = k, where pi is the
probability of agent i being sampled at each time step. As a
result, P(Aic1:m) = (1−pi)m. Substituting these probabilities
into (22), we have that

E
[
‖xk − xk−M‖2

]
≤ k

k−1∑
m=0

(1− pmin)mE
[
‖xk−m − xk−m−1‖2

]
,

(23)

where pmin = mini pi. Substituting (23) and (16) into (15),
we get that

E
[
‖Gµi

(xk)‖2
]

≤ 2L2
0n̄k

µ2
i

k−1∑
m=0

(1− pmin)mE
[
‖xk−m − xk−m−1‖2

]
+ 4L2

0

(
(4 + n̄)2 + n̄2

)
.

(24)

Recall that all expectations from the beginning of the proof
are taken conditioned on the event {ik = i}. Now, taking the
expectation w.r.t. ik on both sides of (24), and substituting
the step size α and smoothing parameter µ into (24), we get
that

E
[
‖Gµ̃(xk)‖2

]
≤ 2n̄L2

0α
2k

µ2

k−1∑
m=0

(1− pmin)mE
[
‖Gµ̃(xk−m−1)‖2

]
+ 4L2

0

(
(4 + n̄)2 + n̄2

)
,

where E[‖xk−m − xk−m−1‖2] = α2E[‖Gµ̃(xk−m−1)‖2] ac-
cording to the update rule (11) and the definition of E[‖Gµ̃‖2]
as in Lemma 4. The proof is complete.

Lemma 4 indicates that the second moment of the zeroth-
order gradient estimate at time step k is related to the second
moments of all previous gradient estimates. Specifically, the
effect of the second moment of the past gradient estimates
on the current estimate diminishes geometrically over time.
Next, using Lemma 4, we present a bound on the accu-
mulated second moments of the residual-feedback gradient
estimates from k = 0 to T − 1, which we will later use to
prove our main theorem.

Lemma 5. Let Assumptions 1 hold under the Asynchrony
Model. Then, running the asynchronous updates Algorithm 1,
we have that

T−1∑
k=0

E
[
‖Gµ̃(xk)‖2

]
≤ 1− β

1− (γ + β)
E
[
‖Gµ̃(x0)‖2

]
+ (T − 1)

1− β
1− (γ + β)

M − γ

(1− (γ + β))
2M,

where γ =
2n̄L2

0α
2(T−1)
µ2 , β = 1 − pmin, M =

4L2
0

(
(4 + n̄)2 + n̄2

)
and provided with 0 < γ + β < 1.

The proof follows from Lemma 6 in the Appendix.

Theorem 1. Let Assumptions 1 hold under the Asynchrony
Model. Moreover, run the asynchronous algorithm Algo-
rithm 1 for T iterations and let x̃ be uniformly randomly
selected from T iterations. Then, selecting the step size
α =

√
pmin

T
2
3

and the smoothing parameter µ = 2L0

√
n̄

T
1
6

, we

have E
[
‖∇f(x̃)‖2

]
≤ O(n̄3T−

1
3).

Proof. Substituting xk+1 and xk in the version of (6) for the
smoothed function fµi , we obtain that

fµi(xk+1)

≤ fµi(xk) + 〈∇fµi(xk), xk+1 − xk〉+
L1

2
‖xk+1 − xk‖2

= fµi(xk)− α〈∇ifµi(xk),∆i,k〉 − α ‖∇ifµi(xk)‖2

+
L1α

2

2
‖Gµi

(xk)‖2 , (25)

where ∆i,k := Gµi
(xk) − ∇ifµi

(xk). The first equality
follows by (11) and the fact that 〈∇fµi

(xk), xk+1 − xk〉 =
〈∇ifµi

(xk), xk+1−xk〉, which holds since xk+1 and xk only
differ at block i. Taking expectation w.r.t. u[k] and i[k−1] on
both sides of (25) conditioned on the event {ik = i}, we get
that

E
[
‖∇ifµi

(xk)‖2
]
≤ E [fµi

(xk)]− E [fµi
(xk+1)]

α

+
L1α

2
E
[
‖Gµi

(xk)‖2
]
,

(26)

where the inner-product term 〈∇ifµi(xk),∆i,k〉 disappears
since E[∆i,k] = 0 due to Lemma 3. According to Lemma 2
and using the fact that (a+ b)2 ≤ 2a2 + 2b2, we have

‖∇if(x)‖2 ≤ 2 ‖∇ifµi(x)‖2 + µ2
iL1

2(ni + 3)3. (27)

Combining (26) and (27) and, we obtain that

1

2
E
[
‖∇if(xk)‖2

]
≤ E [fµi

(xk)]− E [fµi
(xk+1)]

α

+
L1α

2
E
[
‖Gµi

(xk)‖2
]

+
1

2
µ2L1

2(n̄+ 3)3,

(28)

where the last term follows by substituting the common
smoothing parameter µ and agents’ dimension n̄. Taking
expectation on both sides of (28) w.r.t. ik, we have that

1

2
Eik

[
Eu[k],i[k−1]

[
‖∇if(xk)‖2 |ik = i

]]
≤ E [fµ̃(xk)]− E [fµ̃(xk+1)]

α

+
L1α

2
E
[
‖Gµ̃(xk)‖2

]
+

1

2
µ2L1

2(n̄+ 3)3,

(29)

where E[fµ̃(xk)] := Eik [Eu[k],i[k−1]
[fµik

(xk)|ik = i]]
and E[fµ̃(xk+1)] := Eik [Eu[k],i[k−1]

[fµik
(xk+1)|ik = i]].

E[‖Gµ̃(xk)‖2] follows from the definition in Lemma 4. Next,
we show that the left hand side of (29) satisfies

Eik [Eu[k],i[k−1]
[‖∇ikf(xk)‖2 |ik = i]]

≥ pminEu[k],i[k]
‖∇f(xk)‖2 . (30)

To see this, by definitions of the projected gradient as in
Section II, since ∇if(xk) is only nonzero at block i, we
have ‖∇f(xk)‖2 =

∑N
i=1 ‖∇if(xk)‖2. Therefore, we can

further get that

Eu[k],i[k]
‖∇f(xk)‖2 =

N∑
i=1

Eu[k],i[k]
‖∇if(xk)‖2

=

N∑
i=1

Eu[k],i[k−1]
[‖∇if(xk)‖2 |ik = i], (31)

where the second equality holds since xk is independent from
ik. Therefore, according to (31), to show the inequality (30),
it is sufficient to show Eik [Eu[k],i[k−1]

[‖∇ikf(xk)‖2 |ik =

i]] ≥ pmin

∑N
i=1 Eu[k],i[k−1]

[‖∇if(xk)‖2 |ik = i]. This is
simple to prove because Eik [Eu[k],i[k−1]

[‖∇ikf(xk)‖2 |ik =

i]] =
∑
i piEu[k],i[k−1]

[‖∇if(xk)‖2 |ik = i]. Therefore,
inequality (30) is true. Substituting (30) into (29) and then
summing (29) from k = 0 to T − 1, we have that

pmin

2

T−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤ E [fµ̃(x0)]− E [fµ̃(xT)]

α

+

T−1∑
k=0

L1α

2
E
[
‖Gµ̃(xk)‖2

]
+
µ2

2
L1

2(n̄+ 3)3T. (32)

Applying Lemma 5 to (32), we get that

pmin

2

T−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤

E [fµ̃(x0)]− E [fµ̃(xT)]

α
+
L1α

2
(T − 1)

1− β
1− (γ + β)

M

+
L1α

2

1− β
1− (γ + β)

E
[
‖Gµ̃(x0)‖2

]
+
µ2

2
L1

2(n̄+ 3)3T

− L1α

2

γ

(1− (γ + β))
2M, (33)

where γ, β and M are as defined in Lemma 5. Selecting
µ = 2L0

T
1
6

and α =
√
pmin
√
n̄T

2
3

, we have γ ≤ pmin

2 and 1 − (γ +

β) ≥ pmin

2 . Substituting these values into (33) and omitting
the negative term, we obtain that

pmin

2

T−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤

E [fµ̃(x0)]− f∗µ̃√
pmin

√
n̄T

2
3

+ L1

√
pmin√
n̄T

2
3

E
[
‖Gµ̃(x0)‖2

]
+ L1

√
pmin√
n̄

T
1
3M

+ 2L2
0µ

2L1
2(n̄+ 3)3T

2
3 ,

(34)

where f∗µ̃ is a lower bound on E[fµ̃(x)]. The existance of
such lower bound is due to (8), the definition of E[fµ̃(x)] and
Assumption 1. The result in Theorem 1 follows by dividing
both sides of the above inequality by T .

The convergence rate shown above has the same order as
that of applying the residual-feedback gradient estimator (4)
to optimize a stochastic objective function as shown in [16].
This is because of this asynchronous scenario, the updates
conducted by the other agents between two queries of a given
agent introduce noise in the function evaluations from the
perspective of this given agent. Furthermore, the bound on
the non-stationarity of the solution in (34) increases as pmin

becomes smaller. In practice, it means that the convergence
of Algorithm 1 slows down if one of the agents is activated
less frequently than others.

IV. SIMULATIONS

In this section, we demonstrate the effectiveness of the
proposed asynchronous distributed zeroth-order optimization
algorithm on a distributed feature learning example common
in Internet of Things (IoT) applications. All the experi-
ments are conducted using Python 3.8.5 on a 2017 iMac
with 4.2GHz Quad-Core Intel Core i7 and 32GB 2400MHz
DDR4.

Specifically, we consider the biomarker learning example
described in [26], where a network of health monitoring edge
devices collect heterogeneous raw input data {Di,j}i=1:N ,
e.g., different types of biosignals. Then, each device encodes
its local raw data Di,j into a biomarker di,j via a feature
extraction function φ(Di,j ;xi), e.g., a neural network with
weights xi, and sends it to a third-party entity that uses the
collected biomarkers as predictors to learn a disease diagno-
sis for user j. The goal of the edge device i is to learn a better
feature extraction function φ(·;xi) to help the third-party

entity to make better predictions. In practice, the prediction
process at the third-party entity can be complicated and hard
to model using an explicit function. Moreover, it may need
to remain confidential. As a result, the edge device cannot
obtain gradient information from this third-party entity. In the
meantime, it is unreasonable to expect that the edge devices
can update their feature extraction models synchronously or
that they know the other edge devices’ feature extraction
models and parameters. Therefore, this problem presents
an ideal case for the asynchronous distributed zeroth-order
method proposed in this paper.

For simulation proposes, in this section, we assume that
the third-party entity uses the logistic regression model

P (yj ; dj) = 1/
(
1 + exp (−yiWT dj)

)
, (35)

where j represents the data point index, yj = {1,−1} and
dj denote the label and predictors for data point j, and
WT is a fixed classifier parameter. Specifically, let dj =
[d1,j , . . . , dN,j]

T represent the concatenated biomarker vec-
tor. The agents aim to collaboratively minimize the following
loss function

f({xi}i=1:N) = − 1

J

J∑
j=1

log
(
P (yj ; dj(·; {xi}i=1:N)

)
,

(36)

where J is the total number of data points.
Next, we apply the proposed Algorithm 1 to this dis-

tributed feature learning problem and compare its perfor-
mance to an asynchronous extension of the centralized two-
point gradient estimate (2) defined by

Gµi(xk) =
f(xk + µiuk)− f(xk−M)

µi
uk, (37)

where xk−M is the most recent decision point agent i queries
at iteration k −M .

Note that the convergence of the stochastic gradient de-
scent update (11) using the asynchronous two-point estima-
tor (37) has not been studied yet. We compare our proposed
algorithm to the one with (37) simply to demonstrate the
efficacy of our proposed approach. Specifically, we consider
a network of 5 agents who collaboratively deal with J = 20
data samples. The feature extraction model φ(·;xi) at agent
i is a single layer neural network with the input Di,j ∈ R10

and a single output di,j ∈ R. The activation function of
the neural network is the sigmoid function. The weight of
the neural network at agent i is denoted as xi, which is
initialized by sampling from a standard Gaussian distribution.
We apply both the asynchronous residual-feedback gradient
estimator (10) and the asynchronous two-point gradient es-
timator (37) to solve this problem.

Specifically, for both gradient estimators, we run 10 trials.
In addition, the smoothing parameter is µ = 0.1, and the
stepsizes α for gradient estimators (10) and (37) are selected
as 0.5 and 0.5, respectively, so that they both achieve their
fastest convergence speed during 10 trials of experiments.
At each iteration, each agent has equal probability to be
activated.

0 1000 2000 3000 4000 5000
Query Complexity

0.55

0.60

0.65

0.70

0.75

0.80

0.85

f(x
k)

Two-point method
Residual-feedback method

Fig. 1. Convergence results of the distributed feature learning problem.
The red curve is obtained by applying the asynchronous two-point gradient
estimator (37) and the blue curve is by the asynchronous residual-feedback
estimator (10). The y axis denotes the value of the loss function (36) and
the x axis represents the number of queries made in total by the team of
agents. The shaded area around each curve represents the standard deviation
of the function values over 10 trials.

The comparative performance results of using the two
zeroth-order gradient estimators (10) and (37) are presented
in Figure 1. We observe that during 10 trials, asynchronous
learning with the residual-feedback gradient estimator (10)
converges faster than asynchronous learning with the two-
point gradient estimator (37). This is because the asyn-
chronous residual-feedback gradient estimator (10) is subject
to almost the same level of variance as the two-point gradient
estimator (37), but can make twice the number of updates
compared to the two-point gradient estimator (37) for the
same number of queries. Note that we compare the two
algorithms in terms of the number of queries rather than
the number of updates, because the number of queries
corresponds to the length of the global wall time required
to run the algorithm.

V. CONCLUSIONS
In this paper, we proposed an asynchronous residual-

feedback gradient estimator for distributed zeroth-order op-
timization, which estimates the gradient of the global cost
function by querying the value of the function once at each
time step. More importantly, only the local decision vector
is needed for estimating the gradient and no communication
among agents is required. We showed that the convergence
rate of the proposed method matches the results for central-
ized residual-feedback methods when the function evaluation
has noise. Numerical experiments on a distributed logistic
regression problem are presented to show the effectiveness
of the proposed method.

APPENDIX
Lemma 6. Consider a sequence of non-negative real num-
bers {Vk} with the following relations for all 1 ≤ k ≤ T−1,
provided with 0 < γ + β < 1,

Vk ≤ γ
(
Vk−1 + βVk−2 + · · ·+ βk−1V0

)
+M,

where M is a contant, then we have

Vk ≤ γ(γ + β)k−1V0 +
1− β − γ(γ + β)k−1

1− (γ + β)
M.

In addition,
T−1∑
k=0

Vk ≤
1− β

1− (γ + β)
V0 + (T − 1)

1− β
1− (γ + β)

M

− γ

(1− (γ + β))
2M.

Proof. Fix some k = K. We have

VK ≤γ
(
VK−1 + βVK−2 + · · ·+ βK−1V0

)
+M

≤γ(γ + β)
(
VK−2 + · · ·+ βK−2V0

)
+ γM +M

Repeat the above process, we obtain that

VK ≤γ(γ + β)K−2 (γV0 +M + βV0)

+ γ
K−2∑
k=0

(γ + β)kM +M

=γ(γ + β)K−1V0 +
1− β − γ(γ + β)K−1

1− (γ + β)
M,

which completes the first part of the proof. Summing Vk
from 0 to T − 1, we obtain that
T−1∑
k=0

Vk =

T−1∑
k=1

(
γ(γ + β)k−1V0 +

1− β − γ(γ + β)k−1

1− (γ + β)
M

)
+ V0

=
1− β

1− (γ + β)
V0 + (T − 1)

1− β
1− (γ + β)

M

− γ

(1− (γ + β))
2M,

which complete the proof of the lemma.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[2] Y. Zhang and M. M. Zavlanos, “Distributed off-policy actor-critic
reinforcement learning with policy consensus,” in 2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE, 2019, pp. 4674–
4679.

[3] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick,
“Distributed resource allocation schemes,” IEEE Signal Processing
Magazine, vol. 26, no. 5, pp. 53–63, 2009.

[4] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization
for cooperative agents: Application to formation flight,” in 2004 43rd
IEEE Conference on Decision and Control (CDC)(IEEE Cat. No.
04CH37601), vol. 3. IEEE, 2004, pp. 2453–2459.

[5] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[6] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[7] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos, “An aug-
mented lagrangian method for distributed optimization,” Mathematical
Programming, vol. 152, no. 1, pp. 405–434, 2015.

[8] Y. Zhang and M. M. Zavlanos, “A consensus-based distributed aug-
mented lagrangian method,” in 2018 IEEE Conference on Decision
and Control (CDC). IEEE, 2018, pp. 1763–1768.

[9] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization.” Journal of machine learning research, vol. 13, no. 2,
2012.

[10] C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and
S.-M. Cheng, “Autozoom: Autoencoder-based zeroth order optimiza-
tion method for attacking black-box neural networks,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 742–749.

[11] D. Bertsimas and A. J. Mersereau, “A learning approach for interactive
marketing to a customer segment,” Operations Research, vol. 55, no. 6,
pp. 1120–1135, 2007.

[12] P. Mertikopoulos and Z. Zhou, “Learning in games with continuous
action sets and unknown payoff functions,” Mathematical Program-
ming, vol. 173, no. 1, pp. 465–507, 2019.

[13] A. D. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex
optimization in the bandit setting: gradient descent without a gradient,”
arXiv preprint cs/0408007, 2004.

[14] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization
of convex functions,” Foundations of Computational Mathematics,
vol. 17, no. 2, pp. 527–566, 2017.

[15] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono,
“Optimal rates for zero-order convex optimization: The power of
two function evaluations,” IEEE Transactions on Information Theory,
vol. 61, no. 5, pp. 2788–2806, 2015.

[16] Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, “Improving the
convergence rate of one-point zeroth-order optimization using residual
feedback,” arXiv preprint arXiv:2006.10820, 2020.

[17] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[18] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimiza-
tion,” in 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC). IEEE, 2012, pp. 5451–5452.

[19] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimiza-
tion with minimal communication,” in 2008 47th IEEE Conference on
Decision and Control. IEEE, 2008, pp. 363–368.

[20] H. Cai, Y. Lou, D. McKenzie, and W. Yin, “A zeroth-order block
coordinate descent algorithm for huge-scale black-box optimization,”
arXiv preprint arXiv:2102.10707, 2021.

[21] D. Hajinezhad, M. Hong, and A. Garcia, “Zeroth order non-
convex multi-agent optimization over networks,” arXiv preprint
arXiv:1710.09997, 2017.

[22] D. Hajinezhad and M. M. Zavlanos, “Gradient-free multi-agent non-
convex nonsmooth optimization,” in 2018 IEEE Conference on Deci-
sion and Control (CDC). IEEE, 2018, pp. 4939–4944.

[23] Y. Zhang and M. M. Zavlanos, “Cooperative multi-agent reinforcement
learning with partial observations,” arXiv preprint arXiv:2006.10822,
2020.

[24] Y. Tang, Z. Ren, and N. Li, “Zeroth-order feedback optimization for
cooperative multi-agent systems,” in 2020 59th IEEE Conference on
Decision and Control (CDC). IEEE, 2020, pp. 3649–3656.

[25] R. Durrett, Essentials of stochastic processes. Springer, 1999, vol. 1.
[26] B. Bent, K. Wang, E. Grzesiak, C. Jiang, Y. Qi, Y. Jiang, P. Cho,

K. Zingler, F. I. Ogbeide, A. Zhao et al., “The digital biomarker
discovery pipeline: An open-source software platform for the develop-
ment of digital biomarkers using mhealth and wearables data,” Journal
of Clinical and Translational Science, pp. 1–8, 2020.

	I INTRODUCTION
	II PROBLEM FORMULATION AND PRELIMINARIES
	III ALGORITHM DESIGN AND ANALYSIS
	IV SIMULATIONS
	V CONCLUSIONS
	References

