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Abstract—Code size is critical for resource-constrained devices,
where memory and storage are limited. Compilers, therefore,
should offer optimizations aimed at code reduction. One such
optimization is loop rerolling, which transforms a partially
unrolled loop into a fully rolled one. However, existing techniques
are limited and rarely applicable to real-world programs. They
are incapable of handling partial rerolling or straight-line code.

In this paper, we propose RoLAG, a novel code-size opti-
mization that creates loops out of straight-line code. It identifies
isomorphic code by aligning SSA graphs in a bottom-up fashion.
The aligned code is later rolled into a loop. In addition, we
propose several optimizations that increase the amount of aligned
code by identifying specific patterns of code. Finally, an analysis
is used to estimate the profitability of the rolled loop before
deciding which version should be kept in the code.

Our evaluation of RoLAG on full programs from MiBench
and SPEC 2017 show absolute reductions of up to 88 KB while
LLVM’s technique is hardly distinguishable from the baseline
with no rerolling. Finally, our results show that RoLAG is highly
applicable to real-world code extracted from popular GitHub
repositories. RoLAG is triggered several orders of magnitude
more often than LLVM’s rerolling, resulting in meaningful
reductions on real-world functions.

Index Terms—Code-Size Reduction, Loop Optimization, Loop
Rerolling, LLVM, Compiler Optimization

I. INTRODUCTION

Code size is critical for programs targeting resource-

constrained systems. Within embedded systems, the memory

occupied by code is a significant issue. Small differences

translate directly to increases in cost, leading to lost profit

at large scales [1], [2]. The size of mobile applications is

important not only for the end-user experience but also for

vendors as download size can greatly impact their revenues [3].

In such scenarios, reducing the program footprint is a priority.

Compilers currently provide specific optimizations tailored

for code size reduction [2], [4], [5]. These include common

sub-expression elimination [6], partial redundancy elimina-

tion [7], constant propagation [8], dead and unreachable code

elimination [9]. Modern size optimizations have been more

ambitious, focusing on merging equivalent code to avoid du-

plicates. Function merging identifies functions with sufficient

similarity and merges them into a single function [2], [10]–

[12]. Function outlining is another such optimization that

works at the block level. It identifies equivalent basic blocks

across all the functions and extracts them into a function,

replacing all the copies by a function call [3].

Once we have all similar code merged, is there anything else

we can do to compress code size? One promising approach is

loop (re)rolling which works at the instruction level. It works

by transforming equivalent instructions from a single block

into a loop. However, existing loop rerolling is limited to

transforming partially unrolled loops into fully rolled loops.

It is incapable of rolling straight-line code into loops. This

highly restrictive approach is rarely applicable to real-world

code. Our insight is that the weak results of the existing loop

rerolling implementations are not due to the lack of duplicate

code but due to the rigid and overly restrictive algorithms they

use to find code duplicates.

In this paper, we propose RoLAG, a novel loop rolling

technique for straight-line code. We use the term loop rolling

to refer to our technique because we are not specifically

focused on reversing a prior unrolling transformation, since

code similarity can arise in different forms [2], [3], [10].

Our technique was inspired by the Superword Level Paral-

lelism (SLP), which is a vectorizer for straight-line code [13],

[14]. RoLAG identifies isomorphic code by aligning SSA

graphs in a bottom-up fashion. It starts by scanning the code,

collecting and grouping instructions that are likely to lead

into isomorphic code. Then we expand these groups of seed

instructions by following their use-def chains, aligning nodes

from their SSA graphs in a data-structure we call the alignment

graph. The alignment graph describes pieces of code that

are equivalent and therefore can be rolled into a loop. We

also propose several optimizations that tend to increase the

amount of aligned code by identifying specific patterns of

code. Finally, we use a profitability analysis to decide which

version should be kept.

Our evaluation on real-world functions extracted from popu-

lar GitHub repositories, namely, the AnghaBench suite, shows

that RoLAG is triggered several orders of magnitude more

often than LLVM’s rerolling, producing meaningful reduc-

tions. We have also evaluated on full programs from MiBench

and SPEC 2017 benchmark suites, where RoLAG is triggered

more often than the alternative. On full programs, reduction

is limited to only a few KBs and a relative reduction of

less than 3%. Finally, we provide a detailed analysis of both

techniques on the TSVC benchmark suite, where we expose

their limitations and suggest future improvements.
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iv0 = phi [0,pre],[ivn,loop]

loop:

idx0 = gep A, iv0
store m0, idx0 

 

m0 = mul factor, iv0

ivn = add iv0, 3

cmp = icmp lt ivn, SIZE

br cmp, loop, exit

pre

exit

iv1 = add iv0, 1

idx1 = gep A, iv1
store m1, idx1

m1 = mul factor, iv1

iv2 = add iv0, 2

idx2 = gep A, iv2
store m2, idx2

m2 = mul factor, iv2
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(a) Original loop.

iv0 = phi [0,pre],[ivn,loop]

loop:

idx0 = gep A, iv0
store m0, idx0 

 

m0 = mul factor, iv0

ivn = add iv0, 1

cmp = icmp lt ivn, SIZE

br cmp, loop, exit

pre

exit

(b) Loop after rerolling.

Fig. 1. Example demonstrating LLVM’s loop rerolling technique on a partially
unrolled loop.

In this paper, we make the following contributions:

• We propose a novel loop rolling technique for straight-

line code based on a bottom-up graph alignment solution.

• We describe how we can identify and represent several

patterns of code in the rolled loop.

• We offer a powerful scheduling analysis that enables

our loop rolling to go beyond contiguous sequences of

repeating code, allowing instructions to be rearranged.

• We show the effectiveness of our technique on real-world

code.

II. BACKGROUND

In this section, we describe the existing loop rerolling

strategy implemented in LLVM. This implementation is under

development since 2013 and with contributions from a total of

39 different developers [15]. The aim of the pass is essentially

to revert previous partial unrolls of single-block loops.

For each single-block loop, LLVM first looks for a basic

induction variable of integer type. A basic induction variable

is a variable that is either incremented or decremented by the

same loop-invariant value at each iteration of the loop [16].

In the static single assignment (SSA) form, where names are

defined only once, the recursive aspect of a basic induction

variable is denoted using a phi-node. In the example from

Figure 1a, iv0 is an induction variable because it has an

incoming value of zero which defines its starting value at

the first iteration and another incoming value that defines its

recursive increment by 3 performed at each iteration.

Such induction variables serve as starting points for LLVM’s

loop rerolling strategy. Following definition-use chains, it

searches for the instructions representing unrolled increments

of the induction variable. If this basic block was indeed

generated through unrolling, the induction variable and the

increment instructions will define the start of all unrolled

iterations. So for each one of these root instructions, LLVM

collects all instructions in the graph following their definition-

use chains, except for instructions in the latch code. For the

example of Figure 1a, this process leads us to Figure 2 which

shows the induction variable with its two increment instruc-

tions and the three green blocks containing the instructions

collected for each root.

These sets of instructions must have equivalent instructions

representing each one of the unrolled iterations. For simplicity,

these instructions are collected and analyzed in the order

they appear in their basic block. Every one of these groups

must have the same number of instructions and corresponding

instructions must have the same opcode and data types.

The operands of two equivalent instructions are either the

same, representing loop-invariant values, or other equivalent

instructions that have been previously analyzed.

At the end of this process, all instructions in loop must have

been covered, i.e., the loop contains only the root instructions,

the equivalent pieces of code, and the latch code. If all these

constraints are satisfied, the loop is rerolled, as shown in

Figure 1b.

III. MOTIVATION

Even though this optimization has been part of LLVM for

more than eight years, more often than not it fails to produce

any noticeable code size reduction. Two such cases, both

extracted from the Linux kernel, are shown in Figures 3 and

4. All major compilers fail to optimize these two examples.

LLVM’s loop rerolling technique is unable to optimize them

since it is limited to loops that have only been partially

unrolled and contain simple data dependencies.

Figure 3a shows a function [17] consisting of five call

statements, all of them to the same function, vst1q_u8.

Although their operands are not completely identical, they

follow a regular pattern that can be reconstructed when rolled

into a loop, as shown in Figure 3b. The induction variable,

ranging from 0 to 4, is used to reconstruct the list of operands

of each call statement. The first operand for the first iteration

(state + 0*16) is not the same as in the original function

(state) from a naive programmatic point of view but they are

equivalent in terms of result. Manually rolling this code into

a loop reduces its size in the final object file from 143 bytes

down to only 115 bytes, a reduction of about 20%. However,
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iv0 = phi [0,pre],[ivn,loop]

iv2 = add iv0, 2iv1 = add iv0, 1

idx0 = gep A, iv0
store m0, idx0 

m0 = mul factor, iv0
idx1 = gep A, iv1
store m1, idx1

m1 = mul factor, iv1
idx2 = gep A, iv2
store m2, idx2

m2 = mul factor, iv2

Roots

Fig. 2. Data structure created by the existing technique to identify loop rerolling opportunities.

static void aegis128_save_state_neon(

 struct aegis128_state st, void *state) {

 vst1q_u8( state     , st.v[0] );

 vst1q_u8( state + 16, st.v[1] );

 vst1q_u8( state + 32, st.v[2] );

 vst1q_u8( state + 48, st.v[3] );

 vst1q_u8( state + 64, st.v[4] );

}

(a) Original function found in the Linux code base.

static void aegis128_save_state_neon(

 struct aegis128_state st, void *state) {

 for (int i = 0; i<=4; i++)

   vst1q_u8(state + i*16, st.v[i]);

}

(b) Manually optimized version of the function.

Fig. 3. Example of a function with a sequence of calls that could be rolled
into a loop, reducing code size by about 20%.

existing compilers fail to optimize this code, keeping it in its

straight-line form with five replicas of the same function call1.

Figure 4a shows a more complex example [18]. This func-

tion contains a chain of six function calls where each value

returned from one call is passed as argument to the next one.

While this complicates the analysis, it is still possible to roll

this into a loop as shown in Figure 4b. We first transform

the chained pattern into a loop-carried dependence [19] and

then we treat the elements from the data structure named

hdmi_audio_format as an array of integers that are

accessed in reverse in consecutive iterations. In the final object

file, the original version of this function takes a total of 317

bytes while the rerolled version takes only 274 bytes, resulting

in a reduction of about 13.6%.

These examples show that existing compilers fail to identify

significant opportunities for code size reduction. Existing loop

rerolling techniques only work for partially unrolled loops

that can be perfectly rerolled into a loop and cannot handle

straight-line code. In this paper, we propose a novel solution

which removes such superfluous constraints and is capable of

transforming arbitrary pieces of equivalent code into a loop,

as long as this is profitable.

1https://godbolt.org/z/vqaoKo4rT

u32 r = hdmi_read_reg(wp->base,
        HDMI_AUDIO_CFG);
r = FLD_MOD(r, fmt->en_sig_blk,    5, 5);
r = FLD_MOD(r, fmt->type,          4, 4);
r = FLD_MOD(r, fmt->justification, 3, 3);
r = FLD_MOD(r, fmt->sample_order,  2, 2);
r = FLD_MOD(r, fmt->samples_word,  1, 1);
r = FLD_MOD(r, fmt->sample_size,   0, 0);

struct hdmi_audio_format {
  int sample_size; int samples_word;
  int sample_order; int justification;
  int type; int en_sig_blk; ... } ;

(a) Original function found in the Linux code base.

u32 r = hdmi_read_reg(wp->base,
        HDMI_AUDIO_CFG);
int *ptr = &(aud_fmt->sample_size);
for (int i = 5; i>=0; i--)
  r = FLD_MOD(r, ptr[i], i, i);

(b) Manually optimized version of the function.

Fig. 4. Example extracted from the Linux repository. The sequence of chained
function calls could be rolled into a loop.

IV. LOOP ROLLING

In this paper, we propose RoLAG, a novel loop rolling

technique based on graph alignment that works on straight-

line code. Our technique works in a bottom-up fashion and

consists of five major stages: seed collection, graph alignment,

scheduling analysis, code generation, and profitability analysis.

Figure 5 shows the main procedure responsible for processing

each basic block.

First, RoLAG scans all instructions in a basic block, iden-

tifying groups of instructions which are likely to lead to

isomorphic code. These instructions, which we call seeds, are

usually stores, function calls, or instructions that may form

reduction trees. Starting from each group of seed instructions,

we follow their use-def chains in order to identify similarities

in their SSA graphs. As a result of this bottom-up traversal, we

construct an alignment graph. The alignment graph represents

a correspondence relation among the input SSA graphs, distin-

guishing between matching and mismatching nodes. Matching

nodes correspond to either isomorphic instructions or identical

values while mismatching nodes represent where the input

SSA graphs differ. We improve upon these two types of nodes

with special nodes that represent higher-order code patterns.
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RollLoop(BB):

SG = collectSeedGroups(BB)

while not SG.empty():

S = SG.pop()

SB = S.getBlock()

AG = AlignmentGraph(S)

valid = analyzeScheduling(SB, AG)

if valid:

L = generateLoop(SB, AG)

if size(L) < size(SB):

replace(SB,L)

else:

delete(L)

Fig. 5. Pseudo code of the main procedure in RoLAG. This procedure repeats
for each basic block in the program.

Once the alignment graph is built, the scheduling analysis

verifies whether or not the instructions from the alignment

graph can be rearranged as loop iterations while still preserv-

ing its original semantics. If successful, RoLAG generates

the rolled loop from the alignment graph. The number of

input SSA graphs used to build the alignment graph represents

the number of iterations of the rolled loop. Matching nodes

can be immediately represented inside the rolled loop while

mismatching nodes must be handled externally and used as

input values to the rolled loop. Since there are code size

overheads for handling mismatching nodes and external uses,

loop rolling may also lead to code size increase. Therefore,

we need a profitability analysis to identify when loop rolling

can reduce code size. We estimate the size of both the original

code and the rolled loop with a cost model that estimates the

size of individual IR instructions when lowered to the target

binary. The version with the smallest size is kept.

A. Seed Collection

RoLAG scans each basic block collecting seed instructions,

which consists mainly of store instructions, function calls,

and instructions that may lead to reduction trees. These seed

instructions are then grouped based on some similarity aspects.

The store instructions are grouped based on their data type

and base address. The function calls are grouped based on

their callee. These groups of seed instructions will serve as

the starting point for our graph alignment strategy. Instructions

that may lead to reduction trees are processed separately, as

discussed in Section IV-C5.

B. Aligning Isomorphic Code

RoLAG constructs an alignment graph for each group of

seed instructions. Figure 7 shows an alignment graph con-

structed out of three input SSA graphs. Each node in the

alignment graph represents a group of instructions or values

from the input SSA graphs. In the simplest case, nodes are

either classified as matching or mismatching. A matching node

contains a group of equivalent instructions or identical values

that can be merged using a common representation inside the

rolled loop. Mismatching nodes have groups of instructions or

values that cannot be merged into the rolled loop.

AlignmentGraph::build(GV):

N = createNode(GV)

add(N)

for i in range(N.numOperands()):

GO = N.getOperandGroup(i)

N.addChild(i, build(GO))

return N

Fig. 6. Pseudo code of the main procedure used for building an alignment
graph. It starts with the group of seed instructions, growing recursively towards
the operands.

Instructions are equivalent if: (1) they have the same

opcode; (2) they have equivalent types; and (3) their corre-

sponding operands have equivalent types. Similarly, types are

equivalent if they can be bitcast in a lossless way from one

to the other. Type equivalence for function calls means that

they have identical function types, i.e. identical return types

and identical list of parameters.

The alignment graph is built by following the SSA graph in

a bottom-up fashion, i.e., following the use-def chains, starting

from the seed instructions and growing towards their operands.

Once a node is created from a group of instructions, their cor-

responding operands are grouped and the algorithm proceeds

recursively with each one of these groups. This bottom-up

expansion stops at nodes that contain only constants, function

parameters, or mismatching values.

Figure 7b shows a simple alignment graph built out of

the SSA graphs shown in Figure 7a. This simple alignment

graph contains only the matching and mismatching nodes

described above. Even though this approach is capable of

identifying and aligning isomorphic subgraphs, in practice this

is still very limited. We can reduce the number of mismatching

nodes by identifying specific patterns of code. For example,

in Figure 7b, although the second operand of the gep node

is a mismatching node, since all its values are different, it is

clear that they follow a simple pattern.

C. Abstracting Special Code Patterns

In this subsection, we explore several patterns of code that

can be leveraged to increase the amount of aligned code.

1) Monotonic Integer Sequences: While building an align-

ment graph, we often encounter nodes containing only integer

constants. The most trivial case is when all constants in

the sequence are identical. Representing such a sequence of

identical constants in each iteration of the rolled loop is trivial

since we can directly use the constant itself. However, we can

go beyond sequences of only identical constants.

Figure 8 shows a monotonically increasing sequence. This

sequence follows a regular pattern because the difference from

one number to the next is always the same. Hence, we can

represent this sequence as a function of the main induction

variable of the rolled loop.

We can formally describe such a sequence as follows: Given

a sequence of integer constants (S0, S1, . . . , Sn), with n ∈ N ,

if Si − Si−1 equals S1 − S0 for all 0 < i ≤ n, then Si =
S0 + i · (S1 − S0). In other words, we can represent the i-

th element of the given sequence as a linear function of i.
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store

gep

ptr 1

store

gep

ptr 2

01

store

gep

ptr 0

5

(a) Input SSA graphs.

store

gep

ptr

mismatch

5 1 0 mismatch

0 1 2

(b) Simple alignment graph.

store

gep

0..2,1ptr

mismatch

5 1 0

(c) Improved alignment graph.

Fig. 7. The alignment graph built bottom-up from the seed instructions. We
highlight exact matches in green and mismatches in red. Special nodes are
highlighted in yellow.

0 16 32 48 64

16 16 16 16

0..64,16

Fig. 8. Example of a monotonically increasing sequence that grows by a
fixed value.

Note that the sequence can be either monotonically increasing

or decreasing. In this paper, we denote these sequences by

S0 .. Sn,(S1 − S0), as shown in Figure 8.

Figure 7 shows a particular case where we have a sequence

of integers that differ by one. We can use the rule discussed

above to improve the alignment, as shown in Figure 7c.

2) Neutral Pointer Operations: Figure 9a shows two out

of the five SSA graphs from the example in Figure 3. For

this example, we can build the alignment graph shown in

Figure 9b. However, we cannot directly match the subgraphs

highlighted in Figure 9a.

The highlighted pattern often arise when performing pointer

operations. The getelementptr instruction (shortened as

gep), offsets the input pointer returning another pointer. The

offset of a pointer by zero is equivalent to the pointer itself.

Therefore, we can leverage this equivalence to make the two

highlighted subgraphs isomorphic.

While building a node in the alignment graph, RoLAG iden-

tifies this pattern by scanning though the group of instructions

and values. If all getelementptr instructions in this group

have the same pointer operand and all the remaining values

in the group are equal to this pointer, then we can use the

equivalence rule. Figure 9 shows how this equivalence rule is

applied in a real example.

st.v

state

call call

loadgep

state 16

load

gep

st.v 1

(a) Two of the SSA graphs from the
original code.

call

loadgep

state gep

0..4,1

0..64,16

st.v

(b) The alignment graph.

Fig. 9. Loop rolling of the example in Figure 3a. This example illustrates
how neutral pointer operations can be exploited to improve graph alignment.

3) Algebraic Properties of Binary Operations: In this pa-

per, we also exploit algebraic properties of binary operations

in order to improve the graph alignment strategy.

First, we exploit the neutral element of binary operations.

For example, the neutral element of the addition is zero, i.e.,

the operation a+ 0 equals to a. We can leverage this identity

in a similar way to what has been described for neutral pointer

operations. Given a sequence of instructions and values,

RoLAG identifies the most frequent binary operation in the

sequence. If a binary operator was found and this operator

has a neutral element, then RoLAG uses the identity on the

mismatching values in the sequence. The mismatching values

can be anything, even another binary operation, as long as they

have different opcodes to the main binary operation.

Second, we exploit the commutativity property of certain

binary operations. While grouping the operands from com-

mutativity operations, instead of simply grouping them based

on their position, we can group them by maximizing their

similarity, uncovering more profitable alignment.

4) Chained Dependences: Figure 10a shows three out of

the six SSA graphs from the example in Figure 4. Note how

these SSA graphs are chained together with one call instruction

being the input for the next. For this particular example, we

can build the alignment graph shown in Figure 10b.

The construction of the alignment graph starts with the func-

tion calls, which are the seed instructions. Let (I0, I1, . . . , I5)
be the seed instructions. Once the matching node is created for

the seed instructions, we proceed towards their operands. The

group of the first operand of each call is (r0, I0, I1, . . . , I4).
This chained dependence in the SSA graph translates to a

cyclic pattern in the alignment graph, where we create a special

node that recursively feeds into itself.

In the rolled loop, the recurrence node is lowered directly to

a phi-node. For this example, the initial value of the phi-node

is r0 and the call is the recurrence value of the phi-node.
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call

r0 load

gep

fmt 5

5

call

load

gep

fmt 4

4

call

load

gep

fmt 3

3

(a) Two of the SSA graphs from the
original code.

call

recurrence

load

gep

fmt 5..0,-1

r0

(b) The alignment
graph.

Fig. 10. Loop rolling of the example in Figure 4. The recurrence node is
used to represent the chained sequence of calls.

5) Reduction Trees: A reduction tree is a tree where

all its internal nodes perform the same associative binary

operation [20]–[23]. The associative property allows us to

rearrange the reduction tree in different ways while preserving

its semantics. Therefore, we can leverage this property to roll

the reduction tree into a loop. Similar to other optimizations,

re-association of floating-point instructions must be explicitly

enabled, e.g., via the compiler’s fast-math flag.

Figure 11 shows an example that contains a reduction tree.

Unlike the other cases, in the presence of a reduction tree, the

alignment graph grows out of a single seed instruction. RoLAG

starts by collecting all the internal nodes of the reduction

tree, as highlighted in Figure 11b. Then, a single special node

is created in the alignment graph in order to represent the

whole reduction tree. This special node becomes the root

of the alignment graph. Afterwards, all the incoming nodes

become a new group of seeds, as highlighted in Figure 11b.

The construction of the alignment graph continues with this

group of seeds following the standard procedure previously

described. The final alignment graph is shown in Figure 11c.

In the rolled loop, the reduction node is lowered to a

single instance of the binary operation followed by a phi-node.

The phi-node acts as an accumulator and its initial value is

the neutral element of the binary operation involved in the

reduction. This implementation follows from the associativity

property and is the idiomatic representation of loop-based

reductions in the SSA form [21], [24].

6) Joining Alignment Graphs: We may often find a piece

of code that contains a sequence of alternating patterns. In

this case, we need to be able to roll these patterns of code

into a single loop. For example, Figure 12a shows a sequence

with two alternating patterns of code. The first one has store

instructions as its seeds and the second has a group of function

calls as its seeds. Rolling these two patterns of code into a

int DotProduct( const int *a, const int *b ){

 return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];

}

(a) Straight-line source code.

add

muladd

load

gep

a 2

load

gep

b 2

mul

load

gep

a 1

load

gep

b 1

mul

load

a

load

b

ret

reduction

new
seeds

tree

(b) The SSA graph from the source code.

mul

load

gep

load

gep

0..2,1

a b

reduction: +

ret

(c) The alignment graph.

Fig. 11. Example of a reduction tree. The whole reduction tree is represented
by a special node in the alignment graph.

single loop is not only preferable, with respect to code size,

but also necessary. As we explain in Section IV-D, because

these instructions write to memory or may have side effects,

we cannot rearrange them as two separate loops. By rolling

them into a single loop, we preserve its alternating aspect.

Given a group of seed instructions and their position in the

basic block, we search for other groups of seed instructions

that alternate in position with the seeds from the first group.

All groups must have the same number of seed instructions

in order to be joined together. Once the joint node has been

created, the alignment-graph construction algorithm proceeds

towards each group of seeds involved in the creation of the

joint node. Unlike the other special nodes, the joint node

generates no code, it only specifies the order the joined aligned

graphs must appear inside the rolled loop.

D. Scheduling Analysis

Once it builds the alignment graph, RoLAG analyzes

whether it can rearrange the instructions inside the basic block,

contiguously grouping the instructions from the alignment

graph, while preserving the program semantics. The goal is

to prove the instructions can be statically rearranged in the

order they would be executed if they were rolled into a loop.
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Fig. 12. Example of two groups of seed instructions combined in a single
alignment graph by a joint node.
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Fig. 13. Scheduling analysis guarantees correctness.

Figure 13 depicts the reordering requirements imposed by

the loop rolling transformation. In summary, all instructions

from mismatching nodes (labeled MM-#), as well as their

dependences, must precede the instructions from the matching

nodes (labeled M-#). All instructions outside of the alignment

graph (labeled I-#) must be placed either before or after those

from the matching nodes. Instructions independent from the

alignment graph (I2, I-3, and I-5) are placed after those from

the matching nodes while instructions that are depended on

by the alignment graph (I-1 and I-4) are placed before them.

Finally, it must be possible to order the instructions from the

matching nodes (labeled M-#) following the execution order

of each iteration of the loop.

These rearrangements are prohibited if two instructions with

potential side effects, including instructions that access mem-

ory, need to switch their execution order. Simple instructions,

such as casting or binary operations, are allowed to cross any

iv0 = phi [0,pre],[ivn,loop]

loop:

 

ivn = add iv0, 1

cmp = icmp lt ivn, SIZE

br cmp, loop, exit

pre:

 br loop

exit:
 

mismatching
nodes

& special
nodes

matching

uses
external

preceding
code

succeeding
code

st
or
e

load

s
t
o
r
e

load

Fig. 14. Diagram of the code generation.

other instruction as long as there is no dependence between

them. The loop rolling transformation allows for instructions

inside the alignment graph to depend on instructions outside

it, e.g., the mismatching nodes and their operands. The trans-

formation also allows for instructions outside the alignment

graph to depend on instructions inside it, where arrays are

used to store the output values, as explained in Section IV-E.

Finally, it also allows for circular dependences inside the

alignment graph, as explained in Section IV-C4. However, it

prohibits circular dependences that cross the boundaries of

the alignment graph since one of the dependences would be

broken by placing the external instructions either before or

after the loop.

E. Code Generation

The code generator takes the alignment graph as input.

Figure 14 illustrates how the rolled loop is generated from

the alignment graph. First it generates the basic blocks and

the control instructions of the loop. The loop count is the

number of seed instructions (or SSA graphs) used to build

the alignment graph. In the presence of a reduction tree, the

loop count is the number of seed instructions created after the

reduction node.

The basic blocks generated are: (1) The pre-header, which

precedes the loop. It also contains the code necessary for

handling the mismatching nodes. (2) The single block of the

rolled loop itself. (3) The exit block, which succeeds the loop.

If there are values computed inside the loop with external uses,

the exit block also contains the code for extracting those values

from the loop. Meanwhile, the control instructions comprise

of an induction variable that ranges from zero up to the loop

count, a conditional check for the loop count, and branches

for entering and exiting the loop.
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Finally, the code from the alignment graph is created in

post-order, recursively constructing the def-use chains. Match-

ing nodes are simply copied into the loop. Mismatching nodes

have all their values stored in arrays which are then extracted

using a single load instruction inside the loop. If all the

mismatching values are constants, we simply create a global

array of constants. Otherwise, we use a stack array and store

instructions are created in the pre-header block for each one of

the values from the mismatching node. For nodes with external

use, i.e., nodes with instructions that are depended on by other

instructions outside of the alignment graph, their values are

stored into an array at each iteration. External uses need a

single store instruction inside the loop block and the used

values are extracted with load instructions in the exit block.

F. Profitability Analysis

The costs for handling the mismatching nodes and external

uses may often outweigh the benefits of merging code into a

loop. The final decision is based on estimates of the code-size

costs for both the rolled loop and the original straight-line

code. The version with the smallest estimated code size is

chosen.

The profitability is measured with the help of the compiler’s

target-specific cost model. The cost of each instruction comes

from querying this compiler’s built-in cost model, which

provides a cost estimation that approximates the size of

an IR instruction when lowered to the target machine. We

use the code-size cost model provided by LLVM’s target-

transformation interface (TTI), which is used in the decision

making of most optimizations [11], [25].

V. EVALUATION

In this section, we evaluate our approach in terms of

code size reduction. We compare RoLAG with LLVM’s

loop rerolling technique described in Section II. We eval-

uate both techniques on four different benchmark suites:

AnghaBench [26], MiBench [27], SPEC 2017 [28], and

TSVC [29].

We build the benchmark suites with Clang/LLVM using

-Os for size optimization, with loop unrolling disabled, except

for the experiments on the TSVC suite where we manually

unroll all inner loops. The baseline in all cases has no

loop (re)rolling enabled. We target the Intel x86 architecture,

performing all experiments on a quad-core Intel Xeon CPU

E5-2650 with 64 GiB of RAM, running Ubuntu 18.04.3 LTS.

A. Code-Size Reduction on Real Code

First, we evaluate the effectiveness of both RoLAG and

LLVM’s loop rerolling technique on real-world code. For

this evaluation, we use the AnghaBench suite [26], which

provides one million compilable functions. All these functions

were extracted from the most popular GitHub repositories that

contain C source files, including well-known repositories such

as: PostgreSQL, numpy, Linux, FFmpeg, etc. Our results on

AnghaBench show that RoLAG can find a significant number
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Fig. 15. Code size reduction on the AnghaBench suite. RoLAG achieves an
average reduction of 9.12% on the final object file.

Fig. 16. Breakdown of the different types of node used in profitable alignment
graphs across the AnghaBench suite.

of optimization opportunities in real-world programs, which

include the two examples from Section III.

Figure 15 shows the code size reduction achieved by Ro-

LAG on AnghaBench. For simplicity, we are only considering

functions that were visibly affected by either technique, which

is only around 3500 out of the whole AnghaBench. Although

this represents a small percentage, RoLAG was still triggered

several orders of magnitude more often than LLVM’s rerolling.

For this reason, this figure omits the results from the LLVM’s

rerolling because it has a negligible effect on this benchmark

suite, affecting less than 50 functions.

The function with the best percentage reduction was ex-

tracted from the Linux kernel-based virtual machine [30].

It receives two objects of two different structures, copying

several fields from one object to the other. Similar to what we

saw in Figure 4, the loop rolling transformation can treat the

two objects as arrays and use the induction variable to index

the necessary fields from both arrays. RoLAG only needs to

make sure that all fields have data types with the same bit

size and that they can be properly indexed starting from a

base address in the object. Finally, RoLAG converts all the

72 memory copy operations into a single loop-based memory

copy operation, reducing the text size of the function by almost

90%, in the final binary.
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We also observe a code-size increase in some of the

functions, which results from false positives caused by the

profitability analysis. These false positives happen for two

main reasons: (1) Rolling a straight-line code into a loop

may prevent future optimizations and such costs cannot be

estimated by a cost model. It is well known that changing

the order of the optimization passes can have a huge impact

in the final binary. Therefore, choosing at which point in

the compilation pipeline loop rolling can be most effective

is also an important research topic. (2) Cost models can be

inaccurate as they estimate at the IR level the size of individual

instructions when lowered to the target architecture. However,

this is not a direct mapping and instruction scheduling, register

allocation, as well as other optimizations, play a significant

role lowering the bitcode to the target binary.

Figure 16 shows a breakdown of the types of nodes from

profitable alignment graphs found in AnghaBench. As ex-

pected, nodes with matching instructions or identical values

are the most common in profitable alignment graphs. However,

there are also profitable alignment graphs with mismatching

nodes. Moreover, all the special nodes discussed in Sec-

tion IV-C also contribute to our final result.

B. Code Size Reduction on Full Programs

Table I shows the code size reductions achieved by Ro-

LAG on full programs from the MiBench and SPEC 2017

benchmark suites. LLVM’s loop rerolling technique is never

successfully triggered on these programs. Since we have loop

unrolling disabled and these programs have very few loops

partially unrolled by hand, LLVM is very ineffective.

RoLAG, on the other hand, is able to find several opti-

mization opportunities. Due to the size of these full programs,

RoLAG’s impact on code size reduction becomes noticeable

when several loops are successfully rolled in the same pro-

gram. For the largest program, 526.blender_r, RoLAG

performs 2580 successful loop rolling operations, reducing the

final binary by almost 88 KB. However, the highest percentage

reduction was around 2.7%, achieved on the 511.povray_r

program, where 480 loop rolling operations were successfully

performed.

C. Testing the Limits with the TSVC Suite

Our previous experiments have shown that the LLVM’s loop

rerolling technique is ineffective in most real-world code. In

this section, we provide a detailed analysis of both techniques

on small kernels from the TSVC suite containing partially

unrolled loops. The ideal scenario for LLVM’s rerolling tech-

nique is represented by such partially unrolled loops that can

be perfectly rerolled. Moreover, the TSVC suite provides a

variety of code patterns that we use to expose limitations on

both techniques. For our evaluation on TSVC, we have forced

all its inner loops to unroll by a factor of 8.

Figure 17 shows the reduction, in text size, obtained by each

technique. In this figure, we are only showing the benchmarks

affected by either one of the techniques, except for the average

which is computed across all 151 kernels in TSVC. Even

TABLE I
CODE REDUCTIONS ACHIEVED BY ROLAG ON PROGRAMS FROM

BOTH THE MIBENCH AND SPEC 2017 BENCHMARK SUITES.

Suite Program
Binary Size Reduction Rolled

LoopsKB KB %

MiBench

typeset 534.4 -0.7 -0.1 8
sha 3.3 -0.03 -0.8 3
pgp 179.2 0.02 ∼0 5
gsm 48.6 0.05 0.1 1
jpeg d 116.7 0.15 0.1 12
jpeg c 121.1 0.23 0.2 12
ghostscript 908.8 0.66 0.1 68
tiff2bw 240.1 3.11 1.3 25
tiff2dither 239.5 3.3 1.4 24
tiff2median 239.6 3.3 1.4 25
tiff2rgba 243.8 3.4 1.4 27

SPEC’17

657.xz s 158.2 -0.4 -0.2 8
620.omnetpp s 1512.2 -0.07 ∼0 20
605.mcf s 17.8 -0.02 -0.1 1
644.nab s 149.9 -0.01 ∼0 15
631.deepsjeng s 68.8 0.09 0.1 7
619.lbm s 15.4 0.14 0.9 3
625.x264 s 392.2 0.27 0.1 86
638.imagick s 1574.9 0.95 0.1 73
511.povray r 790.8 21.05 2.7 480
526.blender r 8508.5 87.91 1.1 2580

though this setup favors LLVM’s loop rerolling technique,

since it was designed specifically for partially unrolled loops,

it was limited to only 38 kernels while RoLAG was able

to profitably reroll 84 loops. LLVM achieves an average

reduction of 13.69% across all kernels and RoLAG an average

of 23.4%. For partially unrolled loops that both techniques

are able to reroll, LLVM tends to have a slightly better

result as it reuses the same loop for rerolling while RoLAG

currently creates a new inner loop. This could be improved by

either running a loop flattening pass [31]–[33] after RoLAG

or simply making it loop aware. However, it is important to

highlight that RoLAG is applied to all basic blocks in the

program, while LLVM is limited to partially unrolled loops.

LLVM’s loop rerolling is only able to handle loops perform-

ing simple array operations, such as array initialization and

element-wise addition, loops with reduction trees, and some

loops with indirect memory access. Unlike vectorization [23],

loop rolling can still be applied in the presence of indirect

memory accesses since it is guaranteed to preserve the order of

all memory accesses, as discussed in Section IV-D. However,

it is well-known that loop unrolling tends to enable other

optimizations [23], [34], such as common sub-expression

elimination, limiting LLVM’s ability to reroll the loop.

For the TSVC suite, we can also compare our result with an

oracle since we have the original version of the source code

prior to the partial unrolling. Figure 18 shows this comparison

for all the kernels, sorted by the RoLAG’s numbers, similar

to Figure 17. The oracle shows that there is still room for

improvement, even though RoLAG represents a significant

improvement over prior techniques. By examining each one

of these kernels, we can identify which features contribute the

most for RoLAG and which ones are still missing.
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Fig. 17. Code size reduction on the TSVC benchmark suite. RoLAG reduces the final binary by an average of 23.4%.
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Fig. 18. Comparison of the reduction achieved by an oracle and RoLAG
across the whole TSVC suite.

Fig. 19. Breakdown of the different types of node used in profitable alignment
graphs across the TSVC suite.

Figure 19 shows a breakdown of the types of nodes from

profitable alignment graphs found in the TSVC suite. This

breakdown follows a similar pattern to that from the Ang-

haBench. If we disable the special nodes, RoLAG can only

profitably reroll 19 loops, instead of 84.

There are two profitable alignment graphs with mismatching

nodes, namely, the kernels s452 and s4117 which contain

two nodes each with mismatching constants. Since both ker-

nels have alignment graphs with over 20 nodes, the benefit of

rolling them into loops outweigh the cost needed to handle the

mismatching nodes. Their sequences of mismatching constants

stem from certain transformations on the partially unrolled

for (int i = 0; i < LEN_1D; i++) {

 if (b[i] > 0.f)

   a[i] += b[i] * c[i];

}

(a) Kernel s271. A loop with multiple basic
blocks.

for (int i = 0; i < LEN_1D; i++) {

 if ((ABS(a[i])) > max)

   max = ABS(a[i]);

}

(b) Kernel s3113. A max-based reduction loop.

Fig. 20. Example of two loops that are currently unsupported by both LLVM
and RoLAG.

loop. For example, the compiler may apply strength reduction

prior to our loop rolling, causing some addition operations to

be transformed into bitwise-or operations. If unable to prove

their equivalence, RoLAG uses the special node for binary

operations, creating a special node for the addition and another

for the bitwise-or and filling in the difference with their neutral

elements. We plan to improve this as future work.

After examining the loops that both LLVM and RoLAG

were unable to reroll, we can identify the main missing

features. The most prominent of them are the 26 loops with

multiple basic blocks. Figure 20a shows one such example.

Because both techniques are limited to a single block, all

these opportunities were missed. The remaining cases can

be improved by extending several of the capabilities already

provided by RoLAG. For example, min/max reduction trees

are currently unsupported, as shown in Figure 20b, but because

this conditional construction is lowered to a select instruction,

the single block solution should suffice for this example.

D. Performance Overhead on TSVC

RoLAG results in an average slowdown of 0.8 across TSVC.

This performance impact is expected due to the nature of the

benchmark suite and the loop rolling transformation. Since

the TSVC suite was designed with a focus on instruction level

parallelism, it benefits heavily from loop unrolling. Ideally, the

compiler would have profiling information when optimizing

for performance, allowing it to disable RoLAG on hot basic

blocks. However, the focus of this paper is on code size, where

we have shown the effectiveness of RoLAG.

226



VI. RELATED WORK

Compiler optimizations for code-size reduction have ex-

isted since the very beginning of optimizing compilers [5].

These include redundancy elimination [6], [7], local code

motion [35], constant propagation [8], dead and unreachable

code elimination [9].

A. Lessons Learned from the SLP Vectorizer

Our technique was inspired by the Superword Level Paral-

lelism (SLP), which is a vectorizer for straight-line code [13],

[14]. The SLP also starts by collecting seed instructions that

are likely to lead to vectorization. Afterwards, an SLP graph is

built from the seeds by following their use-def chains. Finally,

vectorized code is generated from the SLP graph, if deemed

profitable. Several of the optimizations devised to uncover

more isomorphism for the SLP vectorizer has the potential

to be adapted to our loop rolling technique [25], [36], [37].

For example, the Look-Ahead SLP [36] proposes an improved

operand reordering heuristic based on knowledge collected by

scanning the code beyond the commutative operations being

currently considered for vectorization.

Even though SLP vectorization can potentially reduce code

size, it would be restricted to target processors with vector

units. Moreover, loop rolling has fewer restrictions than such

vectorizers, as the rolled loop is still executed sequentially and

the loop count is not limited by the size of the vector unit.

B. Loop Rerolling

Existing work on loop rerolling focus on code replication

resulting from loop unrolling, allowing it to be fully rerolled.

Early proposals of loop rerolling had an integrated approach

with loop unrolling, where the compiler would fully unroll a

loop, analyze or optimize the unrolled loop, and reroll the

optimized code back to a loop [38], [39]. In these integrated

approaches, the compiler has full information of the prior

unrolling while performing the loop rerolling. However, these

techniques are limited to loops with known trip count and are

target-dependent as they are performed at the binary-level.

Stitt and Vahid [40] propose a loop rerolling technique that

work at binary-level by identifying contiguous sequences of

repeating code that can be transformed into a loop. All the

replicas must have exactly the same instructions appearing in

the same order, with corresponding instructions operating over

the same registers. Because they work at the binary-level, these

solutions are target dependent.

These target-dependent loop rerolling techniques have fallen

in priority and are not found in production compilers. Instead,

they favor techniques adapted to work directly on their inter-

mediate representation, such as that discussed in Section II.

VII. CONCLUSION

In this paper, we have proposed a novel loop rolling

technique for straight-line code based on a bottom-up graph

alignment solution. We show how our alignment strategy can

identify and represent several patterns of code in the rolled

loop. It includes a powerful scheduling analysis that enables

our loop rolling to go beyond contiguous sequences of repeat-

ing code, allowing instructions to be rearranged. Finally, we

demonstrate the effectiveness of our novel technique on real-

world code, where it is triggered several orders of magnitude

more often than LLVM’s rerolling, resulting in meaningful

reductions on real-world functions.

As discussed in Section V-C, our technique currently works

only within a single basic block, however, future work could

extend it to find isomorphic code across different blocks

from the same function. We could also extend this further to

incorporate control flow in the graph alignment, allowing us to

roll loops containing multiple blocks. Optimizations developed

for the SLP vectorizer can also be adapted to our loop rolling

technique. We also plan to investigate the impact of loop

rolling on other optimizations such as loop vectorization and

register allocation, as well as its impact on the instruction

cache. Finally, we plan to explore the use profiling information

to reduce the impact of loop rolling on hot basic blocks.
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APPENDIX

A. Abstract

This artifact provides the LLVM source code that imple-

ments RoLAG, the contribution of this paper, as well as

the LLVM loop rerolling technique. Both optimizations are

implemented on top of LLVM-12.0.0. Also included are the

scripts that install the necessary dependencies, build LLVM,

run the experiments, and reproduce the main figures in this

paper. We include the TSVC benchmark suite and a subset

of the AnghaBench. The artifact will build the benchmark

suite under three strategies: no loop (re)rolling, LLVM’s loop

rerolling, and RoLAG. It will then generate plots comparing

their code size reduction. The scripts can be easily extended

to handle more benchmarks. The artifact has a minimal set of

requirements that should be already met in most development

systems running a modern version of Linux. We provide

installation scripts to handle any missing dependencies auto-

matically.

B. Artifact Check-list (Meta-information)

• Algorithm: Loop rolling optimization
• Program: TSVC and AnghaBench benchmark suites.
• Compilation: GCC-5.1 or above, Clang 3.5 or above.
• Run-time environment: Any relatively recent Linux system.

Minimal dependencies should be already met. Otherwise sudo
might be required. If not present, Python3 and cmake will be
installed locally.

• Hardware: Any x86-64 machine.
• Metrics: Object file size.
• Output: A set of plots (.pdf). Processed data in CSVs.
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• Experiments: One bash script to setup the environment, another
one to run the experiments and produce all plots.

• How much disk space required (approximately)?: 15 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: ˜30-60 minutes.
• How much time is needed to complete experiments (approx-

imately)?: Less than 30 minutes.
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License 2.0
• Archived (provide DOI)?: 10.6084/m9.figshare.17263274

C. Description

1) How Delivered: The artifact is publicly available.
It can be downloaded as a tar.xz archive from
https://figshare.com/ndownloader/files/31903286.
We provide bash scripts that automate the installation and use of
this artifact.

2) Dependencies: A modern Linux installation is assumed.
Most of the hard prerequisites below will be already installed
on most development systems. If not, you will have to install
them using the package manager, either manually or through
install-requirements.sh.

• GCC-5.1+ or Clang-3.5+
• 32-bit libgcc (gcc-multilib)
• GNU Make 3.79+
• CMake 3.13.4+
• wget and git
• Python3 3.6+ and pip3
• numpy, scipy, and matplotlib

3) Data Sets:

• TSVC benchmark suite

We include the source code for the TSVC benchmark suite. We
provide two versions of its source code: the first with all its main
loops fully rolled; the second with all its main loops partially
unrolled. The fully rolled version acts as the oracle for our evaluation.

D. Installation

Download our artifact from the archive and untar it:

$ wget https://figshare.com/ndownloader/

files/31903286 -O cgo22-rolag-artifact.tar.xz

$ tar -xf cgo22-rolag-artifact.tar.xz

$ cd cgo22-rolag-artifact

If any of the the dependencies above is missing, run the following
command line:

$ bash install-requirements.sh # This requires
sudo access

In order to download and build our LLVM version, which includes
the proposed loop rolling technique, run the following command line:

$ bash setup.sh # This will take about half an hour

This command will git clone our online repository and run
the build script.

E. Experiment Workflow

The artifact reproduces the results in Sections V.A and V.C,
namely, figures 15, 17, and 18. The general workflow of each
experiment is the following:

To execute the TSVC experiment run:

$ bash run-tsvc.sh # This will take less than a minute

To execute the AnghaBench experiment run:

$ bash run-angha.sh # This will take less than half an
hour

This command will automatically run the experiments and produce
the raw CSV numbers and the final plots in PDF.

F. Evaluation and Expected Result

After running the experiment, the final plots will be in folder
results. The scripts will generate the following figures in the
paper:

• Fig. 15: results/angha-curve-code-reduction.pdf
• Fig. 17: results/tsvc-bars-code-reduction.pdf
• Fig. 18: results/tsvc-curve-code-reduction.pdf

These figures should be similar to the ones in the paper but not
necessarily identical. Object file sizes may slightly vary depending
on the machine settings and other aspects that may affect the decision
making of the optimizations and code generation.
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