
  

  

Abstract— A growing interest in the study of aging related 

phenomena in lithium-ion batteries is propelled by the 

increasing utilization of energy storage systems in electric 

vehicles and in buildings as stationery energy accumulators 

paired with renewable energy sources. This paper proposes a 

mixed-degradation model approach that combines the benefits 

of a semi-empirical approach with that of a physics-based 

model. This enables easy calibration for different battery 

chemistries, the ability to extrapolate when necessary, and is 

computationally efficient enough to be coupled with real-time 

running control systems.  To demonstrate the effectiveness of 

the proposed approach, the effect of two different control 

strategies in a smart home energy management system is 

demonstrated on the aging of a Lithium iron phosphate (LFP) 

battery. 

I. INTRODUCTION 

The adoption of photovoltaic (PV) systems in the 

residential sector has been steadily increasing due to falling 

PV prices, financing incentives, programs targeting low-to-

moderate income households, and a maturing PV market [1]. 

Even for the average-sized photovoltaic system, the 

mismatch between solar power production and simultaneous 

household loads could result in a significant power surplus, 

especially during peak daytime solar irradiance [2]. This 

mismatch can be addressed by integrating appropriately 

sized lithium-ion batteries (LIBs), so that this excess power 

generated can be stored and used in periods of insufficient 

solar power, instead of drawing power from the electricity 

grid. This has also become increasingly viable economically 

because of a continued trend of decreasing prices, with an 

89% drop in the cost per kWh between 2010 and 2020 [3]. 

Energy storage (ES) systems paired with residential PV 

systems are even reported to compete with grid prices when 

appropriately sized and with government incentives [4]. 

Another approach to the problem of mismatched 

residential solar power generation and consumption is to 

schedule flexible loads to periods of solar power surplus. 

This is further encouraged by demand-response programs 

adopted by utility companies to flatten the load-curve of the 

grid, when accounting for reduced grid energy demand 

during day-time and the increased ramp-up rates in the late 

evening as solar irradiance decreases [5]. A Home Energy 
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Management System (HEMS) can achieve load-levelling by 

scheduling deferrable loads such as laundry, dishwasher, and 

electric vehicle charging to periods of low grid load [6].  

In a household equipped with PV and ES systems, the 

HEMS would additionally be capable of determining the 

charge-discharge strategy for the utilization of the ES system 

with regard to time of use pricing set by utility companies 

and free power available from the PV panels. With respect to 

control strategies for such residential ES systems, using the 

generated electricity instantly whenever possible is preferred 

instead of charging the battery, since charging, storing, and 

discharging energy are each associated with losses [7].  

An important factor considered by potential ES adopters 

is the useable lifetime of the battery, which is associated 

with the return on investment. Battery aging with capacity 

fade is also crucial to an HEMS because it reduces the 

ability of the battery to meet the energy demands of the 

home appliances. Analysis of the aging phenomenon in LIBs 

reveals two nonlinear mechanisms, namely an increase in the 

internal resistance and a decrease of useful battery capacity 

[8].  

In residential applications, control strategies do exist that 

aim to maximize battery lifetime but are largely focused on 

reducing battery dwell times near high states of charge 

(SOCs), which can cause premature aging [7]. A HEMS that 

considers the aging phenomenon dynamically using an aging 

model will be able to maximize the useful life more 

effectively, and for real-time application must be 

computationally efficient.  

In this paper, a semi-empirical physics-based model is 

proposed that can easily be adapted to numerous battery 

chemistries and requires minimal computation effort, so that 

it can be run in real-time. Based on this approach, a 

comparison is conducted on the effect of energy 

management strategies on the ES battery life.   

II. LITERATURE REVIEW OF BATTERY AGING MODELS 

When integrating the ES system into an HEMS, the 

battery will be periodically charged from either renewable or 

grid power sources, and then discharged to supply energy to 

the appliances. This cycling behavior ages the battery in 

addition to the calendar aging mode [9, 10]. The battery 

aging causes capacity decay and resistance increase which 

reduces the energy and power performance of a battery 

respectively [11].   

There has been a lot of research working on understanding 

and mitigating battery aging recently, using both 

experimental and modeling techniques [12, 13]. In terms of 
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modeling the battery aging phenomenon, different 

approaches have been utilized ranging from physics-based 

PDE models to data driven approaches [10, 12, 20]. A 

comparison of different lumped parameter models has been 

presented in [26].  

Physics-based battery aging models are built starting from 

the basic electrochemical mechanisms in a battery that are 

related to aging process. Such mechanisms include the 

increase of a solid electrolyte interphase (SEI) layer [10], the 

loss of active materials (LAM) [17], lithium plating [14], 

and cracks in the SEI layer [15,16]. Fortunately, the physics 

can be captured by modeling for most of the aging 

mechanisms such as SEI layer growth due to the side 

reaction between lithium and the electrolyte salt using Tafel 

and Nernst equations [10]. The crack in either the active 

material or the SEI layer can be predicted using equations 

describing the relations between stress, strain, displacement, 

or volume change [15]. Although more details included in 

the model equations will improve the accuracy of modeling, 

the computational complexity is increased, which is more 

problematic when applying these models for control 

applications such as in an HEMS. This is because the time 

scales of the electrochemical events inside the battery are 

much faster compared to dynamics of the energy 

management systems.  

Fully data driven battery aging models differ significantly 

from physics-based models because they rely entirely on 

experimental or real-time feedback data.  Simple data-driven 

models implement generic data fitting equations such as an 

empirical aging law [18], or the Arrhenius law equation [19].  

These simple models follow rudimentary calibration 

techniques and result in easy implementation with a minimal 

number of calibration parameters.  In contrast, more data-

driven approaches have been developed where a deep 

learning algorithm is used to emulate the aging phenomenon 

[20], or where the remaining useful battery life is determined 

via a Monte Carlo simulation algorithm [21].  While data-

driven aging model approaches can reduce computation time 

significantly, they always lack confidence in results outside 

of their calibration range.    

In the third category, semi-empirical aging models are a 

mix of physics-based and data-driven approaches. These 

models simplify the physical process in those battery aging 

mechanisms with assumptions in either the limiting factors 

or the working conditions such as the C-rate, temperature, or 

SOC values [12, 16]. Most semi-empirical models further 

decouple battery aging from the original electrochemical 

reactions because of the distinct time scales for the two 

processes. With this, the aging models are simplified into 

feedforward models without affecting the battery model 

parameters over a short duration [12].  

Comparing the three categories of battery aging models, 

this paper selects the semi-empirical model as the option 

considering the complexities in both computation and 

calibration with limited amount of data. The only limitation 

is the similarity required between the operating conditions 

used for calibration and actual application in the HEMS. 

III. MIXED-DEGRADATION MODEL 

A.  Development of Mixed-Degradation Model 

A mixed approach was chosen to model battery aging that 

utilizes the respective benefits from the data-driven 

calibration approach [18] and a semi-empirical physics-

based model [12, 23]. The proposed Mixed-Degradation 

Model employs physics-based equations that model two 

primary battery aging mechanisms, SEI layer growth and 

LAM, that have also been utilized in numerous other semi-

empirical models [12, 23].  The equations that model these 

mechanisms are (1,2) along with (3) which depicts the total 

capacity loss in the battery: 

 

(1) 

 
(2) 

 (3) 

 Except ϴ, which captures the effects of the reaction 

overpotential, all other parameters of the equations are 

available as constant battery characteristics, calibration 

parameters, or inputs from an equivalent circuit model. In 

the studied literature which implements these equations, the 

parameter ϴ is deduced from complex electrochemical 

models in which partial differential equations must be 

solved, such as an extended single particle model [12, 23].  

Therefore, computational efficiency is low in the context of 

real-time control applications.  Additional context of the 

parameter ϴ can be obtained in the references provided [12, 

23].   

The proposed model differs because, rather than solving 

for ϴ, it is instead chosen as an additional calibration 

parameter.  Given that λ itself, is also a calibration 

parameter, λ and ϴ are lumped as a single parameter given 

by Χ := λ•ϴ.  The new equation for capacity loss due to SEI 

layer growth is shown below as (4):  

 

 

(4) 

The procedure to calibrate the five model parameters, kSEI, 

ESEI, Χ, kAM, and EAM, to a specific battery type follows a 

procedure similar to that of [18] during calendar aging 

calibration.  The proposed procedure is detailed below: 

First, the parameters from (4), kSEI, ESEI, and Χ are 

calibrated to experimental calendar aging data for the 

specific battery chemistry type by minimizing the deviation 

between model and experimental data.  For the following 

steps, kSEI and ESEI are held constant at any other battery 

operating conditions.   

Next, Χ must be calibrated against additional calendar 

aging data sets in which the battery SOC and temperature 

are varied.  This initial calendar aging procedure will yield a 

mapping of Χ at different battery temperatures and SOCs 

allowing for easy interpolation and extrapolation.  Typically, 

extrapolation is considered to be non-reliable, but because 



  

the mixed-degradation model is physics-based, there is 

additional confidence in extrapolating outside of the 

calibration zone.   

The final step is to calibrate parameters from (2), kAM and 

EAM to experimental cycling aging data using a similar 

approach as the first step.  Any obtained experimental 

cycling aging data is a combination of both calendar and 

cycling aging (QSEI & QAM). Thus, during this calibration 

step, error should be minimized between experimental data 

and Qtotal, given by (3).   

The calendar aging calibration approach requires an 

assumption to be made that Χ, which is a function of SOC 

and temperature, is not dependent on C-rate. It is clear from 

[23], however, that the C-rate does play a role in 

determining ϴ which is a function of reaction overpotential. 

Therefore, if the respective cycling current profile for 

cycling aging calibration differs from the validation current 

profile, then an error will be inherited.  

The following sections implement the calibration 

procedure on a 2.3 Ah LFP Battery (26650) from A123s 

systems.  This battery was also calibrated in [12, 17, 23]. 

B. Calibration of Capacity Loss Due to SEI Layer Growth  

In accordance with the first step in the procedure, the 2.3 

Ah battery was calibrated to experimental calendar aging 

data due to SEI layer growth from [12, 17].  The calibrated 

parameters are shown below in Table 1.   

TABLE 1. QSEI Model Coefficients for LFP Battery Type 

   Fitted Parameters Value Unit 

   kSEI 7,350 1/sec1/2 

   ESEI 39,333 J/mol 

Per the second step of the procedure, the SEI layer growth 

coefficients were then held constant and used during the 

calibration of Χ at four additional operating conditions 

against calendar aging data also from [12, 17]. To increase 

the accuracy of the model over a larger operating range, (4) 

was calibrated at additional operating conditions in which 

two more experimental data sets were obtained from [23]. 

The results of the Χ calibration at each operating condition 

is shown below in Table 2.  

TABLE 2. Tuned Χ at Various Operating Points for LFP Battery Type 

SOC (%) / T°C 25°C 30°C 45°C 60°C 

30% - 1.6227 1.0331 - 

50% 0.6970 - 0.2841 - 

100% 0.0482 - 0.0331 -0.1433 

By obtaining these values of Χ at each operating 

condition, Table 2 can be implemented in the model as a 

lookup table.  This allows for Χ to be interpolated & 

extrapolated at any operating condition during simulation. 

Fig. 1 demonstrates this mapping of Χ  in a 3D plot.  

 
Figure 1. Mapping of Calibrated Χ Parameters at Different  

Battery Storage Conditions During Calendar Aging 

To demonstrate the fitness of (4) after the calibration, Fig. 

2 below displays the experimental and model’s capacity loss 

due to SEI layer growth for five of the calibration sets.   

 
Figure 2: Calibration of SEI Layer Growth Equation during  

Calendar Aging Under Various Battery Storage Conditions Against 

Experimental Data Obtained from [12, 17] 

C. Calibration of Capacity Loss Due to LAM 

Following the final step of the procedure, parameters in 

(2) must be calibrated for capacity loss due to LAM. To do 

so, experimental cycling aging data was obtained from [17].  

This data represents total capacity loss (calendar & cycling) 

and therefore, Qtotal was fit against the experimental data for 

tuning of (2).   

The experimental data for this calibration step comes from 

a study in which the battery is subject to a synthesized 

current profile which mimics a Hybrid Electric Vehicle 

(HEV) duty cycle [17]. This synthesized current profile was 

recreated using obtained data and implemented into our 

model shown below in Fig. 3. The profile subjects the 

battery to a wide range of C-rates, thus increasing the 

accuracy of the model as mentioned in the procedure. The 

results of the loss of active material calibration coefficients 

are shown below in Table 3: 

 

 



  

TABLE 3. QAM Model Coefficients for LFP Battery Type 

   Fitted Parameters Value Unit 

   kAM 1.1798 1/Ah 

   EAM 39111 J/mol 

 
Figure 3: Synthesized current profile representing an HEV duty cycle 
obtained from [17]. Shown is one cycle which subject the battery to: 

 Ah throughput per cycle = 0.48 Ah 

To demonstrate the fitness of (4, 2) after the calibration, 

Fig. 4 below displays the experimental and model’s total 

capacity loss.  

 
Figure 4: Simulation results of total capacity loss as a result of the 

calibrated parameters imposed on the mixed-degradation model compared 
to experimental results from [17] 

D. Validation of Calibrated Model 

For the application of home energy management, current 

profiles of low C-Rate are typically imposed on the energy 

storage systems.  Therefore, a data set resultant of a low C-

Rate profile was used for model validation [25].  This 

imposed C-Rate cycling profile is shown in Fig. 5 which 

cycles the battery between 20% and 95%.     

The results of the mixed-degradation model validation are 

shown in Fig. 6. Overall, the model tends to underestimate 

capacity loss and this deviation is attributed to the different 

profile and C-rate used for calibration as compared with that 

used for validation.  Therefore, this error is expected, 

considering the major difference in calibration & validation 

duty cycles due to the scarcity of available data. It is 

important to note that for the utilization of this model, 

calibration of (2) should be done with an expected, 

application-specific current profile and respective 

experimental results. 

 
Figure 5: Synthesized current profile representing low C-Rate cycling 

obtained from [17]. Shown is one cycle which subject the battery to:  
Ah throughput per cycle = 3.6 Ah 

 
Figure 6: Simulation validation results of total capacity loss as a result of 

the calibrated parameters imposed on the mixed-degradation model 

compared to experimental results from [17] 

IV. CASE STUDY – HOME ENERGY MANAGEMENT SYSTEM 

A. Background 

The model used by [22] to simulate a Smart Home can 
vary a multitude of conditions to impose on the home such as 
location, home size (sq. ft.), number of household members 
and much more. The developed real-time energy 
management strategy can simulate the energy consumption of 
a smart house over a duration of time by taking into account 
the influence of the environment and activities of residents.  

A baseline control policy also exists for the integration of 
the ES system with the smart home in order to store available 
surplus power generated by the photovoltaic system, thereby 
acting as an accumulator of energy. When the appliances in 
the household demand more energy than can be supplied by 
the photovoltaic system, the ES immediately discharges, 
while maintaining a minimum SOC of 20%.   

The HEMS uses a more sophisticated optimization 
algorithm to schedule controllable and deferrable appliances 
in order to reduce electricity cost, while additionally 
determining the source of power to be used for these 
appliances, between the electricity grid and from the ES 
system. Considering this energy management strategy will 
utilize the SOC range of the ES more than the baseline 
policy, it is advantageous to integrate a battery aging model.   



  

The home model previously discussed utilizes a first-order 

equivalent circuit model (ECM) to obtain the voltage and 

SOC of the ES battery for a certain current input and initial 

SOC. The SOC obtained by the ECM, the imposed current, 

and ambient battery temperature are used as inputs to the 

mixed-degradation model. This model was used to simulate 

long term use of the HEMS and extrapolate the capacity fade 

to predict battery end of life; ultimately, yielding the ability 

to size the battery for real world applications of such energy 

management systems. A summary of the integration is 

shown in Fig. 7.  

The battery model does not currently include a thermal 
model to determine heat generated by the battery.  This 
exclusion is based on the reasonable assumption that only 
low C-rates would be imposed on the battery based on the 
appliances in the household of the case study, yielding 
negligible heat generation.  Therefore, the battery 
temperature is assumed to be the same as the home 
temperature if stored inside, or the ambient temperature if 
stored outside.  However, future work or implementation 
within a different application could include a thermal model. 

  For this case study, the home was chosen to be located in 

Columbus, OH with a house size of 1606 sq. ft., a PEV 

battery size of 60 kW-hr, and energy storage battery size of 

14 kW-hr. 

 
Figure 7: Home Energy Management System  

Integrated with Battery Aging Model Summary 

B. Case Study Results 

This paper analyzes how an HEMS affects the 

degradation of an integrated ES system over time when 

compared to a baseline policy for ES utilization (henceforth 

called “Baseline”). To gather meaningful results, a one-year 

simulation is conducted for the HEMS case and the 

Baseline.  The metric applied is the end of life of the battery, 

defined as when the capacity depletes to 80% of nominal.  

To find when this occurs, the capacity fade profile obtained 

from the one-year simulation is extrapolated using a fitted 

function for the difference in capacity fade per year.  Fig. 8 

below shows the results for the first month capacity fade 

profile and Fig 9. shows the end-of-life estimation for the 

Baseline vs the HEMS.  

 
Figure 8: One month battery aging simulation results 

 
Figure 9: Battery End of Life Estimation 

The HEMS end of life was estimated to be approximately 

31 years while the Baseline was estimated to be 

approximately 69 years.  In order to analyze the causes of 

these results in more detail, Fig. 10 and Fig. 11 show a 

histogram of the battery charge / discharge C-Rate and SOC 

probability respectively over the entire year.  These figures 

yield insight into the demands being imposed on the battery 

in the HEMS case versus the Baseline case.   

 
Figure 10: Histogram of Imposed Battery C-Rates 

 
Figure 11: Histogram of Imposed Battery SOCs 

Given that the aforementioned energy management 

strategy works to minimize grid cost, it will inherently 

impose more work on the battery; i.e., holding the battery at 

higher states of charge and demanding quicker discharge 

during high power requests.  This effect is seen in Fig. 10 as 

the HEMS imposes much more frequent discharges and 

charges at higher C-Rates than in the Baseline case.  This 

will inherently cause larger capacity loss due to loss of 



  

active material.  Additionally, as seen in Fig. 11, the HEMS 

tends to sustain a higher SOC on the battery than the 

Baseline which will cause more capacity loss due to SEI 

layer growth and loss of active material.  

V. CONCLUSION 

In this paper, a Mixed-Battery Degradation model was 

developed which combines the respective benefits of an 

entirely physics-based model and an empirical model.  The 

model presented in this paper allows for easy calibration for 

different battery chemistry types and is computationally 

efficient enough such that it can be implemented in real-time 

control applications. In this paper, the degradation model is 

used in post-processing to evaluate and compare the effect of 

different home energy management strategy on capacity 

fade. As expected, as smart home algorithm will use the 

battery more aggressively and hence results in accelerated 

aging, compared to a rule-base strategy.  

While the comparison between strategies provides helpful 

insight on battery usage, the predicted end of life is affected 

by the limitations of the model. Namely the calibration 

performed on data collected at higher C-rate; and the longer 

simulation times compared to automotive applications. The 

first results in model extrapolation, the latter in accumulation 

of error. Future work will focus on obtaining aging data that 

are specific for stationary applications.  
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