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Abstract—Federated Learning (FL) is an emerging machine
learning paradigm that enables the collaborative training of
a shared global model across distributed clients while keeping
the data decentralized. Recent works on designing systems for
efficient FL have shown that utilizing serverless computing tech-
nologies, particularly Function-as-a-Service (FaaS) for FL, can
enhance resource efficiency, reduce training costs, and alleviate
the complex infrastructure management burden on data holders.
However, current serverless FL systems still suffer from the pres-
ence of stragglers, i.e., slow clients that impede the collaborative
training process. While strategies aimed at mitigating stragglers
in these systems have been proposed, they overlook the diverse
hardware resource configurations among FL clients. To this end,
we present Apodotiko, a novel asynchronous training strategy
designed for serverless FL. Our strategy incorporates a scoring
mechanism that evaluates each client’s hardware capacity and
dataset size to intelligently prioritize and select clients for each
training round, thereby minimizing the effects of stragglers on
system performance. We comprehensively evaluate Apodotiko
across diverse datasets, considering a mix of CPU and GPU
clients, and compare its performance against five other FL train-
ing strategies. Results from our experiments demonstrate that
Apodotiko outperforms other FL training strategies, achieving
an average speedup of 2.75x and a maximum speedup of 7.03x.
Furthermore, our strategy significantly reduces cold starts by a
factor of four on average, demonstrating suitability in serverless
environments.

Index Terms—Federated learning, Deep learning, Serverless
computing, Function-as-a-service, Straggler mitigation

I. INTRODUCTION

Increasing concerns about data privacy and recent leg-
islations such as the Consumer Privacy Bill of Rights in
the U.S. [1] prevent the training of ML models using the
traditional centralized learning approach. With the goal of not
exposing raw data as in centralized learning [2], an emerg-
ing distributed training paradigm called Federated Learning
(FL) [3] has gained significant popularity in various applica-
tion domains, such as medical care [4] and mobile services [5].

FL enables the collaborative training of a shared global
ML model across remote devices or clients while keeping
the training data decentralized. The traditional FL training
process [3] is synchronous and occurs in multiple rounds. A
main component called the central server organizes the
training process and decides which clients contribute in a new
round. During each round, clients improve the shared global
model by optimizing it on their local datasets and sending
back only the updated model parameters to the central server.
Following this, the local model updates from all participating

clients are collected and aggregated to form the updated con-
sensus model. Recent works on designing systems for efficient
FL have shown that both components in an FL system, i.e.,
the clients and the central server, can immensely
benefit from an emerging cloud computing paradigm called
serverless computing [6], [7], [8], [9], [10], [11], [12].

Function-as-a-Service (FaaS) is the computational concept
of serverless computing and has gained significant popular-
ity and widespread adoption in various application domains
such as machine learning [13], [14], edge computing [15],
heterogeneous computing [16], [17], [18], [19], and scientific
computing [20], [21]. In FaaS, developers implement fine-
grained pieces of code called functions that are packaged in-
dependently in containers and uploaded onto a FaaS platform.
These functions are ephemeral, event-driven, and stateless.
Several open-source and commercial FaaS platforms, such as
OpenFaaS [22] and Google Cloud Functions (GCF) [23], are
currently available. Clients in serverless FL are independent
functions deployed onto a FaaS platform and capable of
performing their model updates.

The FaaS computing model offers several advantages, such
as no infrastructure management, automatic scaling to zero
when resources are unused, and an attractive fine-grained pay-
per-use billing policy [24]. Incorporating FaaS functions as
clients in FL systems can improve resource efficiency and
reduce training costs [7], [12]. In addition, utilizing FaaS
technologies for the aggregation process in the FL server
can enhance aggregation performance, scalability, and resource
efficiency [7], [9], [10], [11].

Large-scale practical FL systems encounter different funda-
mental client-level challenges that limit collaborative training.
These include computational heterogeneity and statistical data
heterogeneity. FL clients in the wild [5] can vary from small
edge devices to high-performant GPU-enabled systems with
varying memory, compute, and storage capacities. In addi-
tion, clients in practical FL systems have unbalanced non-
IID data distributions, i.e., the private data samples held by
individual clients exhibit variations in their statistical proper-
ties, such as feature distributions, class imbalances, or data
biases [25]. These two challenges often result in the presence
of stragglers, i.e., slower clients within the FL system.
Stragglers tend to increase the duration and costs of the FL
training process while diminishing the accuracy of the trained
global model [8], [26], [27].
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(b) Comparing FL round durations.
Fig. 1: Comparing FedAvg [3] and FedLesScan [8] across
various client-hardware resource configurations using Fed-
Less [7]. The results are obtained using the non-IID data
partitions of the Shakespeare dataset [32] with 100 clients
deployed on OpenFaaS [22].

To mitigate stragglers in FL, several strategies have been
proposed in the literature [3], [27], [28], [29], [30], [31].
However, most of these techniques fail to consider the unique
characteristics of serverless environments, such as function
cold starts, performance variations, and the transient stateless
nature of function instances. To this end, FedLesScan [8]
represents the current state-of-the-art for straggler mitigation
in serverless FL. It is a semi-asynchronous training strategy
that dynamically adapts to the behavior of clients to minimize
the impact of stragglers on the FL system. It consists of two
key components: a clustering-based client selection algorithm
and a staleness-aware aggregation scheme. The former is
responsible for selecting a subset of clients for training based
on their previous training round durations, while the latter
accounts for delayed client round updates.

Figure 1 compares the performance of FedLesScan with
FedAvg across three different client hardware resource dis-
tribution scenarios. In the first scenario, all 100 clients have
the same hardware resource configuration of 2vCPUs. In
the second scenario, we configured 60 clients with 1vCPU
and 40 clients with 2vCPUs, while in the third scenario,
we had a mix of 50 clients with 1vCPU, 30 clients with
2vCPUs, and 20 clients running on GPUs. In each round, 50
clients are selected for training. With homogeneous clients,
we observe that FedLesScan requires 30% less time than
FedAvg to achieve an accuracy of 40% for the global
model as shown in Figure 1a. However, with heterogeneous
clients, FedlesScan struggles and lags behind FedAvg in
performance. For the second scenario, FedlesScan requires
40% more training time than FedAvg to reach an accu-
racy of 30%, while for the third scenario FedAvg is 43%
faster. To provide deeper insights, Figure 1b offers a detailed
breakdown of the training duration for individual rounds. In
the homogeneous scenario, FedlesScan effectively clusters
clients with adequate sizes, enabling efficient client selection
for each training round. This leads to sporadic peaks in round

durations, occurring when stragglers are included. However,
in the heterogeneous scenarios, more rounds reach their max-
imum duration, resembling the round times observed with
FedAvg. This is because the clustering method adopted by
FedlesScan fails to provide enough clients per cluster for
selection in each round, resulting in the inclusion of stragglers
as replacements. The presence of stragglers during training
rounds causes the FL server to time out, resulting in relatively
consistent round durations. Our experiments and observations
demonstrate that FedlesScan fails to accommodate the
increasing heterogeneity in FL client hardware under non-IID
data distributions, leading to decreased global model accuracy
and increased training times. To address these limitations
and advance the state-of-the-art in serverless FL, our key
contributions are:
• We present Apodotiko1, a novel asynchronous scoring-

based strategy that enables efficient serverless FL across
clients with varying hardware resource configurations and
data distributions.

• We implement Apodotiko by extending a popular
open-source serverless FL framework called FedLess [7],
[33]. This enables greater adoption and accessibility of
our strategy in the community.

• We demonstrate with extensive experiments the perfor-
mance of our strategy against five other popular FL
training approaches across multiple datasets using various
metrics, including accuracy, selection bias, and costs.

The rest of the paper is structured as follows. In §II,
we describe the previous approaches related to our work.
§III describes our strategy in detail. In §IV, we present our
experimental results. Finally, §V concludes the paper and
presents an outlook.

II. RELATED WORK

A. Serverless Federated Learning

Using serverless computing technologies, particularly FaaS,
for designing efficient systems for FL is a relatively new
research direction. Existing works in this domain can be
categorized into two groups: (i) systems that employ serverless
functions exclusively in the central server [9], [10],
[11] and (ii) systems that leverage serverless functions in both
entities of an FL system [6], [7], [12]. In [9], Jayaram et
al. propose λ -FL, a serverless aggregation strategy for FL
to improve fault tolerance and reduce resource wastage. The
authors use serverless functions as aggregators to optimize the
aggregation of model parameters in conventional FedAvg [3]
over several steps. They implement their prototype using
message queues, Kafka, and use Ray [34] as the serverless
platform. In [10] and [11], the authors extend their previous
strategy to enable adaptive and just-in-time aggregation of
client model updates using serverless functions. In the second
group, FedKeeper [6] was the first serverless FL system
that enabled the training of Deep Neural Network (DNN)
models using FL for clients distributed across a combination
of heterogeneous FaaS platforms. However, it lacked crucial
features required for practical FL systems, such as security and

1https://github.com/Serverless-Federated-Learning/FedLess

https://github.com/Serverless-Federated-Learning/FedLess


Strategy
Attribute

Type
FaaS

Support
Asynchronous
Aggregation

Performance-based
Selection

Client Efficiency
Scoring

Adaptive
Penalty

FedProx [37] Synchronous    

FedNova [38] Synchronous    

SCAFFOLD [29] Synchronous    

TiFL [26] Synchronous    

Aergia [39] Synchronous    

Oort [40] Synchronous    

SAFA [30] Semi-asynchronous    

FedAT [41] Semi-asynchronous    

FedAsync [42] Asynchronous    

FedBuff [31] Asynchronous    

Pisces [27] Asynchronous    

FedlesScan [8] Semi-asynchronous    

Apodotiko (This work) Asynchronous    

TABLE I: Comparing strategies for straggler mitigation in FL.
Supported. No support.

support for large DNN models. To address these drawbacks,
FedLess [7] was introduced as an evolution of FedKeeper
with multiple new enhancements. These include: (i) support
for multiple open-source and commercial FaaS platforms, (ii)
authentication/authorization of client functions using AWS
Cognito, (iii) training of arbitrary homogeneous DNN models
using the Tensorflow library, (iv) the privacy-preserving
FL training of models using Differential Privacy [35], and (v)
the aggregation of model updates using serverless functions.
A more recent work by Kotsehub et al. [12] introduces Flox, a
system built on the funcX [36] serverless platform. Flox aims
to separate FL model training/inference from infrastructure
management, providing users with a convenient way to deploy
FL models on heterogeneous distributed compute endpoints.
However, its tight integration with funcX restricts its compat-
ibility with other open-source or commercial FaaS platforms,
limiting its applicability and generality.

B. Stragglers in Federated Learning

Addressing the impact of slow clients during train-
ing in FL is an active research area. Towards this, sev-
eral synchronous [26], [29], [37], [38], [39], [40], semi-
asynchronous [8], [30], and asynchronous [27], [31], [41], [42]
strategies have been proposed in the literature.
FedProx [37], a popular strategy, builds on FedAvg with

two essential modifications. First, it introduces a specialized
loss function at the client level to regulate fluctuations in
local updates, enhancing the model’s stability across varied
data distributions. Second, it enables clients to adjust their
workload based on hardware and network constraints, ensuring
adaptability by varying the number of local updates performed.
Similar to FedProx, FedNova [38] tackles statistical het-
erogeneity in FL by merging the concepts of FedAvg with
momentum-based optimization. It introduces a momentum
term to stabilize convergence and alleviate the impact of
noisy local updates. To accommodate varying local updates for
clients, it introduces a new weighting scheme that normalizes
client local updates with the number of local steps. However,
FedNova is tailored only for SGD, limiting its broader
applicability. In [29], Karimireddy et al. propose SCAFFOLD,
an FL strategy designed to address the challenges of varied
local client data distributions and biased updates. The authors
employ control variates, a technique from convex optimiza-
tion, to reduce stochastic gradient variance. This minimizes
local update variability, stabilizing the aggregation process. In
addition, it enables identifying and eliminating client-specific
biases pre-aggregation, enhancing global model accuracy and
stability. Unlike FedProx, SCAFFOLD doesn’t accommodate

varying local progress and mandates uniform local update
counts across clients. Moreover, it relies on full client par-
ticipation for peak performance, diminishing its effectiveness
with reduced client sampling ratios per round, as shown
in [43]. TiFL [26] is a tier-based system designed to address
heterogeneity challenges in FL (§I). It organizes clients into
tiers, selecting same-tier clients per round to mitigate the
impact of stragglers. In addition, it incorporates an adaptive
tiering mechanism that dynamically adjusts tiers based on
observed training performance. However, the authors limit
their experiments to only CPU-based clients without exploring
extreme heterogeneous environments with a mix of both CPU
and GPU-based clients. In [40], Lai et al. propose Oort [40]
a strategy that aims to optimize FL training by prioritizing
clients that offer the most valuable contributions to model
accuracy. It assesses clients based on their utility in improving
model accuracy and their ability to train efficiently while pre-
serving privacy. To select high-utility clients, Oort employs
an online exploration-exploitation strategy that dynamically
adapts the selection process to account for outliers and achieve
a balance between statistical and system efficiency. Unlike
other synchronous FL strategies, Aergia [39] freezes the
computationally intensive part of a slow client’s model and
offloads it to a faster client that trains it using its own dataset. It
leverages the spare computational capacity from robust clients
and achieves high accuracy in relatively low training times
by effectively matching clients’ performance profiles and data
similarity.
SAFA [30] is a semi-asynchronous training strategy that tar-

gets improved round efficiency and convergence, especially in
scenarios with frequent client dropouts. It introduces innova-
tive client selection and global aggregation methods, including
a caching mechanism to prevent wasted client contributions.
FedAT [41] uses a tiering mechanism that partitions clients
into logical tiers based on their response latencies. Faster
tiers update the model synchronously, while slower tiers send
updates asynchronously. It employs a weighted aggregation
approach to avoid bias toward faster tiers and uses compres-
sion to reduce communication costs. In [42], Xie et al. propose
FedAsync [42], an asynchronous FL strategy that utilizes a
parameter server architecture to synchronize and coordinate
client invocations. It employs a scheduler thread to trigger
client training and an updater thread for aggregating client
updates into the global model. To address scalability concerns
in practical FL systems, FedBuff [31] introduces buffered
asynchronous aggregations. In this strategy, clients train and
communicate asynchronously with the server, storing their up-
dates in a buffer until a server update triggers aggregation once
a specific number of client updates are collected. In [27], Jiang
et al. propose Pisces [27], an asynchronous FL strategy
that utilizes guided participant selection and adaptive aggre-
gation pacing to mitigate slow clients. It merges techniques
from FedBuff and Oort to enhance performance, focusing
on prioritizing participants with high data quality as Oort.
This enables more efficient utilization of clients compared to
FedBuff.

Table I provides a comprehensive comparison between
Apodotiko and the different strategies for straggler miti-



gation in FL. We differentiate these strategies based on five
attributes: support for FaaS environments, asynchronous ag-
gregation, performance-based selection, client-efficiency scor-
ing, and adaptive penalty. FaaS support indicates compatibil-
ity with serverless environments. Asynchronous aggregation
reflects the flexibility to separate client updates from train-
ing. Performance-based selection involves choosing clients
based on their training duration. Client efficiency scoring
accounts for hardware diversity during selection, while adap-
tive penalty reflects adjustments in client selection based on
performance and availability over time. While FedProx,
FedNova, SCAFFOLD, and Aergia primarily focus on
optimizing the local training process and aggregation methods,
they do not incorporate intelligent client selection to optimize
round performance as done in Apodotiko. SAFA tracks the
status of clients’ local models to ensure their synchronization
with the global model but tends to overutilize clients and
lacks suitability for FaaS environments. TiFL, FedAT, and
FedlesScan group clients based on training duration into
clusters, but they overlook the hardware and data hetero-
geneity during the client selection process and lack support
for asynchronous aggregation. Although Oort considers data
size and training duration in client selection, it overlooks
the correlation between these factors and diverse hardware
configurations, enforcing a strict penalty on slower clients.
FedAsync and FedBuff focus on optimizing FL with
asynchronous aggregation but adopt random client selection.
In contrast, Pisces combines the methods from Oort and
FedBuff, refining the scoring approach, yet it still over-
looks clients’ efficiency during scoring (§III-C) and selection.
Apodotiko overcomes these limitations by incorporating
comprehensive scoring metrics that account for both hardware
and data heterogeneity, ensuring intelligent client selection and
efficient round performance.

III. APODOTIKO

In this section, we describe our strategy for asynchronous
serverless FL in detail. First, we provide an overview of
Apodotiko, followed by our methodology for asynchronous
aggregation of model updates. After this, we present our novel
client scoring strategy, followed by our probabilistic client
selection technique.

A. Overview

The FedLess [7] framework includes a central component
known as the controller, which oversees and orchestrates
the entire FL training process. It incorporates a Strategy
Manager subcomponent [8] that is responsible for controlling
the behavior of the selected strategy. This involves manag-
ing client selection and choosing the aggregation technique
used. To implement Apodotiko, we extend the Strategy
Manager subcomponent in FedLess. In addition, to enable
asynchronous aggregation (§III-B) and collect different client
attributes required for our scoring strategy (§III-C), we modify
the controller and client routines as shown in Algorithm 1. At
the start of each FL training round, the controller runs the
Train_Global_Model routine, while the selected clients
execute the Client_Update routine to locally train the
global model.

Algorithm 1: Modifed FedLess [7] controller and
client routines.

1 Fedless Controller:
2 Function Train_Global_Model(clients, round):
3 client selection = Select_Clients(clients,

clientsPerRound)
4 Invoke selected clients
5 for each client in client selection do
6 Save invocation record to database (client, round)
7 Set client invocation status to runnning // Busy

client
8 end
9 while #results≥ (clientsPerRound ∗ concurrencyRatio) do

10 Sleep(0.1)
11 end
12 Aggregate Model
13 return
14 Fedless Client:
15 Function Client_Update(hyperParameters, round):
16 Load model and dataset.
17 Start_Timer()
18 Train model
19 Stop_Timer()
20 Save updated model to database.
21 Add measured time to invocation record in database.
22 Update invocation status to complete. // Available

client
23 return

Initially, the controller selects the required number of clients
using our client selection strategy (§III-D) and invokes them
(Lines 3-4). Following this, we store the information regarding
the invoked clients, such as the current round number, in the
FedLess database (Line 6). Moreover, we mark the currently
running clients as busy (Line 7). This is required to prevent
selecting already running clients in the next FL training round.
After this, the controller periodically checks for the availability
of results from a fraction of clients in the database and then
triggers the global model aggregation function (§III-B, §II-A)
(Lines 9-12). On the client side, the selected clients retrieve
the most recent global model along with their local datasets
and perform local model updates for a specified number of
configured epochs (Lines 16-19). Following this, they store
the updated model and the measured training time in the
database (Lines 20-21). Finally, we mark the finished clients as
complete in the database, making them available for selection
in the next FL training rounds (Line 22).

wt+1←−
N

∑
i=1

ti
T
× ni

n
wi

ti (1)

wt+1←−
N

∑
i=1

1
(T − ti +1)0.5 ×

ni

n
wi

ti (2)

B. Asynchronous Aggregation

In synchronous FL, implementing per-round timeouts is a
common strategy to prevent exceedingly long round times [3],
[7], [29]. This timeout mechanism ensures that the central
server does not wait indefinitely for all clients to send their
updates before initiating the global model aggregation. How-
ever, slow clients might push their local model updates to
the parameter server after the completion of an FL training
round. These updates, often discarded, can potentially contain
valuable information that can improve the performance of the
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Fig. 2: Comparing weighting functions for aggregating stale
client model updates.

global model. To reduce training times and improve conver-
gence rates, we extend the FedLess [7] controller to aggregate
client model updates asynchronously without waiting for all
current client model updates to be available in the database.
Towards this, the modified controller in Apodotiko only
waits for a fraction of client updates, referred to as the con-
currencyRatio ((0,1]), before invoking the aggregator function.
For instance, with 100 clients per round and a ratio of 0.6, the
controller only waits for updates from 60 clients. These client
updates can be from the current or previous training rounds.
Aggregating model updates from previous rounds can lead to
reduced convergence rate and higher variance in the global
model [42]. Moreover, the older the update, the higher the
risk to the quality of the global model. To mitigate this, most
asynchronous strategies utilize a staleness weighting function
to dampen updates from previous rounds during aggregation.
This weighting function should assign a weight of 1 to the
current round’s results and show a monotonically decreasing
pattern with increasing round numbers. With Apodotiko,
we experimented with different staleness functions shown in
Equations 1 and 2. The former is used by FedLesScan [8],
while the latter is adopted from [42]. In these equations, wi

ti
represents the local model of the client i at round ti, while wt+1
is the global model after aggregation at round T . Furthermore,
ni represents the cardinality of the dataset at client i while n is
the total cardinality of the aggregated clients. With Equation 1,
we observe that the weight of one round of late updates
gradually increases as the round number increases, as shown
in Figure 2a. Moreover, in Figure 2a, the weight values derived
from Equation 1 exhibit inconsistency for results with identical
staleness levels, contrasting Figure 2b with Eq. 2, where the
weight values maintain consistency along the diagonal axis.
As a result, we use Eq. 2 with our strategy for aggregating
model updates. In our experiments, we only considered client
updates from a maximum of five previous rounds but observed
that most delayed updates arrived within two rounds. Although
conceptually similar, our asynchronous aggregation mecha-
nism in Apodotiko differs from the buffering technique
used in FedBuff [31]. In FedBuff, client model updates
are stored in-memory, whereas in Apodotiko, we utilize an
external database for this purpose. Furthermore, our approach
to aggregating stale model updates differs from the method
outlined in [31].

C. Scoring Clients

Prior FL training strategies [26], [41], including
FedLesScan [8] only consider the training duration
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Algorithm 2: Weighted Average Client Score. β :
client’s current booster value; T : list of training du-
ration for each round; Nc: local client data cardinality;
E: number of local epochs; B: client local batch size;
λ : global defined decay rate; k: FL training rounds.

1 Function Calculate_Score(β , T , Nc, E, B):
2 #updates← Nc×E

B
3 weighted sum← ∑

k−1
i=0 (λ

i× (Nc× #updates
Ti

))

4 weighted average score← β × weighted sum
∑

k−1
i=0 λ i // multiple

with β to promote clients
5 return weighted average score

of clients for selection. This approach is suitable in
homogeneous hardware environments, where training time
correlates directly with a client’s data size. However, this
assumption no longer holds true in a heterogeneous setting,
as shown in Figure 3. To this end, Apodotiko introduces
a scoring-based probabilistic client selection approach
considering the client’s training duration and data size.

To score clients, we collect five attributes during each
training round: training duration, local client data cardinality,
batch size, number of local epochs, and a booster value.
Training duration represents the time required for executing
model.fit (Algorithm 1: Line 17-19), excluding the time spent
on network communication and model initialization. Data
cardinality represents the total size of a client’s local dataset.
It is not considered confidential information in FL as it is
essential for model aggregation [3] (§III-B). The booster value
is a floating point number used in our strategy for promoting
fairness during client scoring and selection.

Algorithm 2 describes our strategy for scoring clients. It
generates a weighted average score by considering a client’s
participation in the different FL training rounds. Following
this, the calculated scores are then used to select clients that
participate in each training round as described in §III-D.
Evaluating a client’s machine learning performance solely
based on hardware specifications such as micro-architecture,
frequency, and core count can be challenging. Traditional
methods often require benchmarking to obtain a score, which
can be expensive and inefficient. Towards this, we utilize
the client’s training performance as a hardware benchmark
score, referred to as the Client Efficiency Score (CEF). Our
scoring algorithm calculates the CEF by determining the
number of updates a client makes on the local model. This
is done by multiplying the data size (Nc) with the epoch
size (E) and dividing the result by the batch size (B) (Line



Algorithm 3: Client selection routine.
1 Function Select_Clients(clients, clientsPerRound):
2 Characterize clients as uninvoked clients and invoked clients
3 Exclude busy clients from invoked clients
4 if #uninvoked clients ≥ clientsPerRound then
5 return Randomly sample clientsPerRound from

uninvoked clients.
6 end
7 client scores = []
8 for each client in invoked clients do
9 Calculate Weighted Score for client.

10 Append Client Score to client scores.
11 end
12 Calculate probability for all invoked clients score

∑ client scores
13 client selection ← Sample invoked clients based on probability
14 Reset booster value for all clients in client selection
15 Increase booster value for all clients NOT in client selection
16 return client selection

1). Following this, we calculate the number of updates per
second by dividing the total number of updates by the training
time (Line 2). A higher CEF score indicates a more powerful
hardware resource configuration. Moreover, to account for data
heterogeneity, we multiply the CEF score with Nc. To obtain
a score that considers the performance of the client along
with the duration of the FL training process, we utilize an
exponentially decreasing weighting technique. This technique
assigns the highest weight to a client’s most recent result
(i= 0) while gradually decreasing the weights for older results
(Line 2). The weights are calculated using a globally defined
decay rate denoted by λ . To promote fairness and participation
from slow clients in training rounds, we introduce a booster
value (β ) that is multiplied by the final score before selection
(Line 4). Initially, the booster value is set to 1 for all clients. If
a client is available (not busy) (§III-A) but not selected for the
training round, its booster value is increased by multiplying
it with a promotion value greater than one. This ensures that
slow clients have a higher probability of being selected in
future rounds (§III-D). However, if a client is selected, its
booster value is reset to one. The decay rate λ and promotion
rate β are determined by an adjustment rate ρ in the range
0 < ρ ≤ 1. The adjustment rate controls the extent to which
the score weight is increased or decreased. Specifically, the
decay rate is calculated as λ = 1− ρ , while the promotion
rate is calculated as β = 1+ρ . By default, the value of ρ is
set to 0.2, which is also used in all of our experiments.

D. Selecting Clients

Algorithm 3 describes our strategy for client selection. The
goal is to sample a given number of clients (clientsPerRound)
from a list of available clients (clients). Initially, we dif-
ferentiate between clients who have participated in at least
one training round and those who have not yet been invoked
(Line 2). Following this, we remove the currently running
clients (§III-A) from the list of clients that have been invoked
once (Line 3). Initially, our algorithm prioritizes uninvoked
clients to gather data and enable scoring (§III-C). If sufficient
uninvoked clients are available, the required number of clients
is randomly selected from this pool (Lines 4-6). When the
number of required clients exceeds the available uninvoked
clients, we sample the remaining clients using our scoring
strategy (§III-C). We calculate the score for each available

client and append it to the score list. After calculating all
scores, we normalize them into values between zero and one.
Following this, we transform these normalized scores into
probabilities by summing up all scores and dividing each
client’s normalized score by the total score (Line 12). The
higher the client score, the higher the probability, and the
more likely the client will be selected for the next round. If
a GPU-based client has scored higher than a CPU client, its
normalized probability will also be higher, giving it a greater
chance of being selected. After obtaining the probability of
each client, we randomly sample the required number of
clients from the list based on the probability (Line 13). We
reset the booster value to 1 for the selected clients so that we
do not keep promoting them (Line 14). Finally, we increase
the booster value (β ) for the available (§III-A) but not selected
clients by multiplying it with the promotion rate (Line 15).

IV. EXPERIMENTAL RESULTS

In this section, we present the performance results for our
strategy Apodotiko against other FL training approaches
across multiple datasets. For all our experiments, we follow
best practices while reporting results.

A. Experiment Setup

1) Datasets: For our experiments, we utilize four datasets
from various application domains, including image classifica-
tion, speech recognition, and language modeling, to provide
a conclusive evaluation of our strategy’s effectiveness. The
first dataset we use is the popular handwritten image database
called MNIST. It contains 60,000 training images and 10,000
images for central evaluation. To simulate a non-IID setting
with MNIST, we sort the images by label, split them into 300
shards of 200 images each, and distribute the shards across
clients. From the LEAF FL benchmarking framework [32],
we utilize the FEMNIST and the Shakespeare datasets. The
FEMNIST dataset is an extended version of the MNIST dataset
and contains over 800,000 images. On the other hand, the
Shakespeare dataset consists of sentences from The Complete
Works of William Shakespeare, each of length 80 characters.
We employ existing non-IID data partitions available within
LEAF for these datasets. From the FedScale [44] FL
benchmark, we utilize the real-world Google Speech dataset.
This dataset is designed to create simple and useful voice
interfaces for applications that use common words like ”Yes,”
”No,” and directions. It consists of 105,000 1-second audio
files distributed across 2,618 clients.

2) Model Architectures and Parameters: For our exper-
iments with the four datasets, we utilize different model
architectures that have been used by several previous works
in this domain [6], [7], [8], [32], [44]. For the MNIST dataset,
we employ a two-layer Convolutional Neural Network (CNN)
with a 5x5 convolutional kernel. Each convolutional layer
is followed by a 2x2 max pooling layer. The model ends
with a fully connected layer with 512 neurons and a ten-
neuron output layer. The model comprises 582,026 trainable
parameters in total. Similar to MNIST, we use a 2-layer CNN
for FEMNIST. However, in this case, the network concludes
with a fully connected layer comprising 2048 neurons and



an output layer containing 62 neurons, resulting in 6,603,710
trainable model parameters. For the Shakespeare dataset, we
use a Long Short Term Memory (LSTM) recurrent neural
network. The model contains an embedding layer of size eight,
followed by two LSTM layers with 256 units and an output
layer with a size of 82. This model has 818,402 trainable
parameters. The model architecture for the Google Speech
dataset consists of two identical blocks, followed by an average
pooling layer and an output layer with 35 neurons. Each block
consists of two convolutional layers with a 3x3 convolutional
kernel and a max-pooling layer. To prevent overfitting, a
dropout layer follows the max-pooling layer, with a rate of
0.25. In this case, the model has 67,267 trainable parameters.
Across all layers, we use RelU as the activation function,
except in the output layer, where the softmax function is
utilized. The clients for the MNIST, FEMNIST, and the Google
Speech datasets train for five local epochs with a batch size
of ten, ten, and five respectively. On the other hand, for the
Shakespeare dataset, the clients train for one local epoch with
a batch size of 32 [7], [8]. For the MNIST, FEMNIST, and the
Google Speech datasets, we use Adam as the optimizer with
a learning rate of 1e−3. On the other hand, for Shakespeare,
we use SGD with a learning rate of 0.8.

3) Experiment Configuration: To effectively scale our ex-
periments and eliminate potential bottlenecks, we set up
FedLess on a dedicated virtual machine (VM) hosted on
our institute’s compute cloud. The VM is configured with
40vCPUs and 177GiB of RAM. This machine also hosts the
file server, providing 200GiB of storage to accommodate the
four datasets utilized in our study. We deployed the aggregator
function (§II-A) on a self-hosted, single-node VM Kubernetes
(K8s) cluster with OpenFaaS [22] as the FaaS platform. We
configure the VM with 45GiB of RAM and 10vCPUs to ensure
sufficient resources for efficient operation.

In all our experiments, we deploy the FaaS-based FL clients
using the OpenFaaS platform based on K8s. We used Open-
FaaS rather than commercial FaaS offerings since it provides
us with maximum flexibility for configuring the different
clients. In addition, none of the current commercial FaaS
offerings support the execution of FaaS functions with GPUs.
To enable GPU-based FL clients with OpenFaaS and K8s, we
use the 4paradigm’s K8s vGPU scheduler [45]. Standard
K8s does not support fine-grained allocation or the sharing of
GPUs, often leading to underutilization. In contrast, the vGPU
scheduler balances GPU usage across nodes and allows
users to allocate resources based on device memory and core
usage, thereby increasing GPU utilization.

Across all datasets (§IV-A1), we use 200 clients and sample
100 clients per round unless otherwise specified. We configure
130 clients with 1vCPU and a memory limit of 2048MiB,
50 clients with 2vCPUs and a memory limit of 4096MiB,
and an additional 20 clients spread across five Nvidia P100
GPUs, each configured with 0.4 vGPU [45]. This diverse client
setup, ranging from CPU to GPU configurations, allows for
a comprehensive exploration of our strategy’s behavior and
performance in heterogeneous environments, offering insights
into its practical efficacy in serverless FL systems.

4) Baseline Strategies: To effectively evaluate
Apodotiko, we compare it against five other strategies:
FedAvg [3], FedProx [37], SCAFFOLD [29],
FedLesScan [8], and FedBuff [31]. FedProx and
SCAFFOLD are significantly popular conventional FL
strategies in heterogeneous environments, while FedBuff
is utilized in production at Meta [5]. For Apodotiko, we
fix the concurrencyRatio to 0.3 in all our experiments unless
otherwise specified.

5) Evaluation Metrics: For comparing the different strate-
gies (§IV-A4), we use metrics that cover four aspects: model
performance, client selection bias, cold start ratio, and strat-
egy efficiency. To evaluate model performance, we calculate
model accuracy and track the accuracy progress throughout
the FL training process. To ensure a fair evaluation of the
newest global model, we use a distributed evaluation approach.
Towards this, we randomly select clients after each FL training
round to evaluate the global model on their test datasets.
Following this, we calculate a weighted average of the ob-
tained accuracy values from the different clients to obtain
the final model accuracy. Client selection bias represents the
variations in client invocations during the FL training process,
offering insights into the effectiveness of the selection strategy.
We quantify bias by calculating the difference between the
least-called and most-called clients [8], [30]. Low bias is
desirable for scenarios with minimal stragglers, while prior-
itizing reliable clients may be necessary for straggler-heavy
environments, leading to increased bias. A key characteristic
of the FaaS computing model is scale-to-zero, i.e., idle
function instances are automatically terminated if there are
no function invocation requests within a given time frame.
In serverless FL, this can cause cold starts for client func-
tion instances, leading to increased training durations and
expenses [7], [8], [9]. To compute the cold start ratio, we
calculate the total number of client cold start invocations and
divide it by the total number of invocations across all clients.
We differentiate between cold and warm start invocations by
monitoring the client function instances in our K8s cluster.
In our experiments, we configured the function instances to
scale down after remaining inactive for ten minutes. To assess
the efficiency of our strategy, we calculate the total training
time and costs. The total time represents the duration required
to achieve the target global model accuracy. For estimating
costs for our experiments, we use the cost model provided
by GCP [46], [47]. or CPU-based clients, we calculate costs
based on the allocated memory, CPU, and function duration. In
contrast, for GPU clients, we calculated costs by considering
the hourly rate of the GPU model and the proportion of GPU
resources utilized during the training process.

B. Comparing Accuracy

In this subsection, we focus on demonstrating the improved
convergence rate of Apodotiko as compared to other FL
strategies rather than pursuing state-of-the-art model accura-
cies on these tasks. Towards this, we limit target model accu-
racies to 0.98 for MNIST, 0.70 for FEMNIST, 0.40 for Shake-
speare, and 0.75 for the Google Speech dataset. Figure 4a
illustrates the model accuracies throughout the FL training
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(a) Comparing model accuracy.
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Fig. 4: Comparing different evaluation metrics across the different FL strategies.
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Fig. 5: Comparing Apodotiko with FedBuff.

process across various strategies. For the MNIST dataset, we
observe that all strategies have similar performance, while
FedlesScan sightly outperforms other training strategies.
This can be attributed to two reasons. First, MNIST is a
relatively small dataset with low training iteration durations.
Second, MNIST’s balanced non-IID data distribution allows
FedLesScan to benefit from its client clustering strategy
based solely on training times. On the other hand, for the
FEMNIST dataset, we observe that FedAvg performs better
than FedlesScan due to unbalanced non-IID data distribu-
tions and increased training times. Apodotiko outperforms
all other strategies and achieves the target model accuracy with
a speedup of 1.73x compared to FedAvg. For the Shakespeare
dataset, we observe a significant performance difference across
the different training strategies. Apodotiko outperforms all
other strategies with a speedup of 7x as compared to FedAvg,
6.63x against FedLesScan, 7.2x against SCAFFOLD, and
7.82x against FedProx. The non-IID data partitions provided
by LEAF for the Shakespeare dataset introduce significant
variations in training durations across different hardware re-
source configurations, as shown in Figure 3. This variance can
lead to situations where clients with limited resources might
fail to complete their training before a FL round ends, resulting
in wasted contributions. However, our client selection strategy
(§III-C), driven by scoring based on data size and hardware
resources, prioritizes clients with larger data sizes and more
powerful hardware, ensuring greater contributions to the global
model. Moreover, our asynchronous aggregation technique

with a stateless weighting function (§III-B) accommodates
late contributions, leading to better global model accuracy.
These two factors combined contribute to the superior per-
formance of Apodotiko. Similarly, for the Google Speech
dataset, Apodotiko achieves a speedup of 6.19x compared
to FedAvg and 3.3x compared to FedLesScan. In our
experiments, SCAFFOLD did not converge for the FEMNIST
and the Speech datasets. As a result, we omit it in Figure 4.

While Figure 4a compares Apodotiko with synchronous
and semi-asynchronous strategies, Figure 5 presents a compar-
ative analysis with the asynchronous strategy FedBuff [31]
for the Shakespeare and Google Speech datasets. For
FedBuff, we vary the buffer ratio from 0.3 to 0.8, while for
our strategy, we present results for the concurrencyRatios (CR)
of 0.3 and 0.6. For the Shakespeare dataset, our strategy using
CRs of 0.3 and 0.6 outperforms FedBuff with a buffer ratio
of 0.3, achieving a speedup of 1.43x and 1.06x respectively.
Similarly, for the Google Speech dataset, our strategy achieves
a speedup of 1.74x and 1.01x with CRs of 0.3 and 0.6
respectively, compared to FedBuff with a buffer ratio of
0.3. The better performance of our strategy can be attributed
to our intelligent client selection methodology that prioritizes
clients that contribute more to the global model, in contrast to
FedBuff, which selects clients randomly.

.
C. Comparing Client Selection Bias and Cold Start Ratios

Figure 4b presents insights into the client selection biases
among various FL training strategies across multiple datasets.
Using violin plots, we visualize a distribution based on the
number of invocations for each client (y-axis). The height
difference between the highest and lowest points in the
distribution represents the degree of bias. A greater height
indicates a stronger bias towards a specific subset of clients,
while a lower height suggests a more balanced distribution
of invocations. Moreover, a wider width in the distribution
indicates that certain clients were invoked more frequently.
Across all datasets, we observe that FedAvg, FedProx,



Strategy
Dataset

MNIST (min) FEMNIST (min) Shakespeare (min) Speech (min)

FedAvg [3] 10.98 (1.00x) 22.44 (1.00x) 245.98 (1.00x) 49.78 (1.00x)
FedProx [37] 15.03 (0.73x) 39.46 (0.57x) 273.58 (0.90x) 53.20 (0.94x)

FedLesScan [8] 9.69 (1.13x) 25.88 (0.87x) 232.18 (1.06x) 26.59 (1.87x)
SCAFFOLD [29] 14.31 (0.77x) - 252.07 (0.98x) -

Apodotiko

CR = 0.3 11.83 (0.93x) 12.95 (1.73x) 34.98 (7.03x) 8.04 (6.19x)
CR = 0.6 11.65 (0.94x) 18.28 (1.23x) 69.04 (3.56x) 12.18 (4.09x)
CR = 0.7 12.21 (0.90x) 20.21 (1.11x) 51.28 (4.80x) 12.74 (3.91x)
CR = 0.8 10.92 (1.01x) 22.72 (0.99x) 72.66 (3.39x) 16.42 (3.03x)

TABLE II: Comparing total training duration (min) across
various FL strategies and datasets. The highlighted values
represent the best-performing strategy for a particular dataset.
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Fig. 6: Impact of different concurrencyRatios (CRs).

and SCAFFOLD show normal distributions due to the random
selection of clients. For the MNIST dataset, we observe that
FedLesScan appears more centralized, indicating a balanced
allocation of training among clients, with only a few outliers.
In contrast, our strategy shows a relatively normal distribution
of client invocations, with most clients being invoked between
five and 15 times. However, the line stretches out more
than other strategies, with some clients receiving over 25
invocations and few with as little as five. As the MNIST dataset
involves balanced non-IID data distributions among clients, the
scoring strategy in Apodotiko primarily differentiates based
on the training time, which is mainly influenced by clients’
hardware resources. As a result, GPU-based clients receive
more frequent invocations than other clients. For the FEMNIST
dataset, we observe that FedLesScan is more concentrated
in the middle as it prioritizes clients with lower training
durations. Moreover, it overlooks clients with larger data sizes
and limited computational resources, often characterizing them
as stragglers and selecting them less frequently in training. In
contrast, our strategy maintains a relatively balanced distribu-
tion due to the probabilistic client selection approach described
in §III-D. This method ensures that every client retains a
chance of being selected, even those with longer training
times. For the Shakespeare dataset, FedLesScan shows a
distribution similar to that for the FEMNIST dataset. On the
other hand, Apodotiko exhibits a slightly fatter end on the
bottom compared to the FEMNIST dataset. This distribution
arises from the significant differences in training durations
observed across various hardware resource configurations, as
shown in Figure 3 (§IV-B). For the Google Speech dataset,
FedLesScan shows a normal distribution, similar to the
results for the MNIST dataset, but with lower variance com-
pared to both FedAvg and FedProx. In contrast, our strategy
portrays a distribution distinct from the one seen in the MNIST
dataset. This divergence stems from the unbalanced non-IID
data distribution in the Google Speech dataset, causing client
data size to hold a more significant role in the scoring process.

Figure 4c compares the cold start ratios among different
FL strategies across multiple datasets. We observe that cold
starts are significantly limited for the MNIST and Google

Strategy
Dataset

MNIST (USD) FEMNIST (USD) Shakespeare (USD) Speech (USD)

FedAvg [3] 1.13 2.74 8.86 2.14
FedProx [37] 1.90 3.83 10.63 2.37

FedLesScan [8] 1.11 3.68 10.28 1.85
SCAFFOLD [29] 1.52 - 8.41 -

Apodotiko

CR = 0.3 11.97 5.99 6.68 2.72
CR = 0.6 7.65 9.05 8.91 4.05
CR = 0.7 7.35 4.92 9.47 3.91
CR = 0.8 5.94 9.71 11.11 3.14

TABLE III: Comparing total training cost (USD) across
various FL strategies and datasets. The highlighted values
represent the minimum costs for a particular dataset.

Speech datasets due to the relatively brief round durations and
the short intervals between each round and client invocation.
These factors contribute to a higher probability of a client
being invoked again within a short timeframe, consequently
minimizing the occurrence of cold starts. However, for the
FEMNIST and the Shakespeare datasets, cold starts are more
prominent due to larger average training round durations. In
our experiments, we observe that Apodotiko consistently
achieves a low cold start ratio across all datasets. This can
be attributed to two reasons. First, the asynchronous aggre-
gation strategy used in Apodotiko triggers the invocation
of the next round of clients as soon as a portion of the
results becomes available. Second, our strategy incorporates a
well-designed promotion mechanism (§III-C) that effectively
prevents clients from missing multiple rounds over an extended
period.

D. Comparing Time and Cost

Table II compares the total training time for the different
FL strategies across multiple datasets. In our experiments,
we observe that Apodotiko consistently outperforms other
training strategies, particularly with a CR value of 0.3. Ta-
ble III compares the total training cost in USD for the different
FL strategies and datasets. Although Apodotiko isn’t the
most cost-effective strategy, it remains competitive with other
methods. For instance, our strategy with a CR of 0.3 incurs
a total training cost of 6.68 USD for the Shakespeare dataset
and 2.72 USD for the Google Speech dataset. The increased
costs can be attributed to the invocation of more clients, a
consequence of the asynchronous nature of our strategy.

E. Sensitivity Analysis

We examine Apodotikos’ effectiveness across various
environments and configurations.

Impact of different concurrencyRatios. Figures 6a and 6b
show the effect of different CRs (§III-B) on Apodotiko
for the Shakespeare and the Google Speech datasets respec-
tively. Our experiments on both datasets demonstrate that
Apodotiko with a CR of 0.3 exhibits the fastest conver-
gence rate compared to other concurrency ratios. For the
Shakespeare dataset, we observe a speedup of 1.34x with
a CR of 0.3 compared to the ratio of 0.6. For the Speech
dataset, this speedup factor further increases to 1.7x. This
accelerated convergence is attributed to the controller’s ability
to trigger model aggregation with only 30 clients, significantly
reducing the time between model updates. Additionally, our
client selection algorithm (§III-D) and stale weight aggregation
function (§III-B) effectively identify and select high-quality
clients, ensuring that the aggregated model does not diverge.
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Fig. 7: Impact of different client sample sizes per round.

Table II and III also highlight the performance/cost of our
strategy with different CR values against other FL approaches.

Impact of different client sample sizes per round.. Fig-
ures 7a, 7b, and 7c show the performance of the different FL
strategies with 50, 100, and 200 clients selected for training in
each round for the Shakespeare dataset. Our experiments show
that FedAvg and FedProx perform similarly regardless of
the client sample size. Moreover, we observe FedLesScan
performs best with 100 clients per round. This could be
attributed to smaller cluster sizes, enhancing the probability
of choosing sufficient clients from the same cluster for each
training round. In contrast, we observe that SCAFFOLD per-
forms better with increasing client sample size as the global
variant [29] becomes more accurate with more clients’ results.
Our observations about SCAFFOLD also align with the results
presented in [43]. Apodotiko shows no significant impact on
convergence rate with different sample sizes, as it only waits
for a specific ratio of clients to complete the training before
aggregating results and invoking new clients from the pool.
We omit results for other datasets dues to space constraints
but observe similar results.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented Apodotiko, a novel asyn-
chronous scoring-based strategy that enables efficient server-
less FL across clients with varying hardware resource config-
urations. We comprehensively evaluated our strategy against
five other popular FL training approaches on multiple datasets.
Our experiments highlight that Apodotiko converges faster
and consistently minimizes cold starts in client function in-
vocations. In the future, we plan to investigate the usage of
an adaptive concurrencyRatio based on the historical behavior
of selected clients. This adaptive approach would potentially
enable the inclusion of more results in the aggregation round
by slightly delaying the model aggregation, thus preventing
results from becoming stale.
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