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Abstract— We consider an “n-graph of trees” whose nodes
are the set of trees of fixed order n, and in which two nodes are

adjacent if one tree can be derived from the other through a
single application of a local edge transformation rule. We derive
an exact formula for the length of the shortest path from any
node to any “canonical” node in the n-graph of trees. We use
this result to derive upper and lower bounds on the diameter
of the n-graph of trees. We then propose a coordinate system
that is convenient for studying the structure of the n-graph of
trees, and in which trees having the same degree sequence are
projected onto a single point.

I. INTRODUCTION

Networks abound in both natural and man-made systems,

with gene networks and social networks being examples

of the former and the internet being an example of the

latter. Graph theoretic models of networks are often used

for studying the topological properties of the network. In

this context, the networks of interest are typically complex,

both due to their large size and their evolving structure.

Network evolution has been an object of focus in many

fields, including the study of evolving random graphs in

statistical physics and mathematics [3], [1], [4], [2], graph

grammars in computer science and engineering [8], [6], and

graph transformations in mathematics and engineering [10],

[12], [5]. In particular, graphs that evolve according to certain

edge, node, and edge/node transformation rules have been

considered [10]. In this context, it has been recognized that

certain degree preserving (sometimes called ”switching”)

transformations can be used to define a metric on the space

of graphs reachable by these rules [11].

In this paper, we consider a problem in which we start

with a labeled tree with n nodes. We allow the tree to evolve

according to a local edge transformation rule referred to as a

“general flip” [7]. We then construct an ”n-graph of trees”,

whose nodes are the set of all trees of size n, and in which

two nodes are adjacent if one tree can be derived from the

other through a general flip. We derive an exact formula

for the length of the shortest path from any node to any of

the “canonical” nodes (which will be defined precisely in

the next section) in this n-graph of trees. We use this result
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to derive upper and lower bounds on the diameter of the

n-graph of trees. We then propose a coordinate system in

which to study a projection of the n-graph of trees, and in

which nodes corresponding to same degree sequence trees

are projected onto a single point.

II. PRELIMINARIES

A. Notation

The notation used in this paper is standard: N refers to

the set of natural numbers. Given a set A, 2A refers to the

set of all subsets of A. A \B is the set of all elements of A

that are not elements of B.

B. Brief Review of Graph Theoretic Concepts

For the sake of completeness, we begin by reviewing some

relevant elementary graph theoretic concepts. An undirected

graph is an ordered pair G = (V, E) where V is a set of

nodes and E is a set of unordered pairs of nodes, referred to

as edges. The order and size of the graph are the cardinality

of V and E, respectively. A graph is said to be labelled if

each of its nodes is assigned a unique integer between 1 and

n, where n is the cardinality of V , referred to as the order

of the graph. Two nodes i and j are said to be adjacent if

they form an edge, that is {i, j} ∈ E. A self loop is an edge

that begins and ends at the same node.

A path between nodes i and j is a sequence of edges

of the form {i, l},{l, k},...,{o, m},{m, j}. The length of the

path is the number of edges in the sequence. A graph is

said to be connected if there exists a path between any two

nodes, and complete if there exists an edge between any two

distinct nodes. A cycle is a path that begins and ends at the

same node. A graph is simple if it has no self loops and

no repeated edges. The degree of a given node in a simple

graph is the number of nodes adjacent to it.

The shortest path between two nodes i and j is the (non-

unique) path of (unique) minimum length, which we denote

by lij . The diameter D of a connected graph is the length

of the longest shortest path between two nodes of the graph,

that is, D = max
i,j

lij .

A simple, undirected, connected (labeled) graph with no

cycles is called a (labeled) tree.

C. Definitions

Given a labeled tree G with node set V = {1, 2, , . . . , n},

the degree sequence of G is the sequence of node degrees

(d1, d2, . . . , dn). In particular, we will refer to trees of

order n whose degree sequences are permutations of (n −
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1, 1, 1, . . . , 1) as canonical trees, and we will refer to the

degree n − 1 node in a canonical tree as the star node.

We use the notation T(n) to refer to the set of all labeled

trees with n nodes. The cardinality of T(n) is known to be

nn−2 according to Cayley’s formula [9].

Definition 1: Consider the map

f : T(n) → 2T(n)

such that G′ ∈ f(G) if there exists {i, j}, {i, k} in E such

that

E′ =
(

E \ {{i, j}}
)

∪ {{j, k}}

If G′ ∈ f(G), we say that G′ can be derived from G by a

general flip.

This map essentially defines a class of graph transfor-

mations that replace one of a pair of adjacent edges with

common node i by another edge as shown in Figure 1. Note

that it follows directly from the definition that

G ∈ f(G′) ⇔ G′ ∈ f(G)

i i

j jk k

Fig. 1. An example of a tree derived from another by a general flip

This class of graph transformations was shown to be sound

and general in [7]: In other words, a general flip transforms

a labeled connected graph into a another labeled connected

graph of same order and size. Moreover, it is possible to

transform any labeled graph of order n and size m to any

other labeled graph of the same order and size by a sequence

of general flips. It can be similarly shown that this class

of transformations is sound and general when the graphs in

questions are trees with n nodes. We are now ready to define

the graph of all trees of size n, referred to as the n-graph of

trees.

Definition 2: The n-graph of trees, denoted G(n), is a

connected, undirected graph G(n) = (V, E) with nodes:

V = T(n)

and edges:

{G, G′} ∈ E ⇔ G ∈ f(G′) ⇔ G′ ∈ f(G)
The n-graph of trees is thus a connected undirected graph

whose nodes correspond to the labeled trees of order n and

in which two nodes are adjacent if and only if each of them

can be derived from the other by a general flip.

III. STRUCTURE OF THE n-GRAPH OF TREES

We begin by deriving an exact expression for the length of

the shortest path between an arbitrary node (corresponding

to a tree G) and a ”canonical” node (corresponding to a

canonical tree G′) in the n-graph of trees.

Lemma 1: Consider G ∈ T(n), and let G′ ∈ T(n) be a

canonical tree with star node j. The length of the shortest

path between G and G′ in G(n) equals the total number of

nodes in G not adjacent to node j, not counting node j.

Proof: Let m be the total number of nodes of G that are

distinct from node j and that do not share an edge with it.

In order to transform G into G′, at least one edge needs to

be ”flipped” for each of the m nodes. Thus m is a lower

bound on the length of any path between G and G′ in G(n).
Now root G at node j, and let L(i) denote the depth of

node i, that is the length of the path from node i to the

root. Consider a sequence of (general flip) transformations

in which for every node i with L(i) = 2 connected to node

k with L(k) = 1, edge {i, k} is transformed into edge

{i, j}. This sequence of transformations ends when there

are no remaining nodes at depth 2, or equivalently, when G

has been transformed to G′. Moreover, each transformation

in the sequence decreases the depth of node i and all its

descendants by 1; equivalently, each such transformations

decreases the number of nodes not adjacent to the root node

j by 1. Thus, a total of m such transformations are needed for

a tree with m nodes not adjacent to j, and this corresponds

to the shortest path. �
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Fig. 2. An example of a graph transformed intto a canonical graph

via a minimal sequence of general flips

Corollary 1: The length of the shortest path between any

two canonical nodes in G(n) is n − 2.

Lemma 1 suggests that the n-graph of trees can be

projected onto an n dimensional coordinate system in which

the ith coordinate of the projection of each node is the length

of the shortest path in G(n) from that tree to the canonical

tree with star node i.

Lemma 2: Let (x1, x2, ..., xn) be the coordinates of a

node in G(n) representing tree G with degree sequence

(d1, d2, ..., dn). We have:

xi = (n − 1) − di, 1 ≤ i ≤ n

Proof: Consider the tree with degree sequence

(d1, d2, ..., dn). The tree has a total of n − 1 edges,
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of which di correspond to nodes that are adjacent to node

i, leaving (n − 1) − di nodes not adjacent to node i, not

counting node i itself. It follows from the construction of

the coordinate system and Lemma 1 that xi = (n− 1)− di.

�

The projection of G(n) onto the proposed coordinate

system is thus the set of integer points on the hyperplane

defined by:
n

∑

i=1

xi = (n − 2)(n − 1)

and satisfying 0 ≤ xi ≤ n − 1, for all i (see Figure 3).

Nodes representing trees with identical degree sequences are

projected onto the same point in this coordinate system.

x1

x2

x3

(0, n − 2, n − 2)

(n − 2, 0, n − 2)

(n − 2, n − 2, 0)

Fig. 3. Projection of G(n) (red dots represent the projected nodes)

In the following Theorem, we disregard the trivial case

(n = 2) and we assume that n ≥ 3.

Theorem 1: The diameter of G(n) is bounded above by

2n − 5 and below by n − 2.

Proof: The lower bound follows directly from Corollary

1 since the diameter cannot be less than the length of the

shortest path between any two nodes of G(n). The upper

bound follows directly from Lemmas 1 and 2. There exists

a path between any two nodes of G(n) going through any

of the n canonical nodes. The shortest such path includes

the canonical node with star node i, where i is such that

di ≥ 2 in the tree corresponding to either of the nodes. The

distance from that node to the ith canonical node is then

bounded by n − 3, while the distance from the other node

to the same canonical node is bounded by n− 2. The length

of the shortest path is then bounded above by 2n − 5. �

The upper bound given in Theorem 1, which constitutes

an improvement on the upper bound established in [7] for

this special class of graph of graphs, is quite remarkable

considering that the order of G(n) is nn−2 and that G(n)
is far from being complete. Moreover, it can be shown by

direct inspection of the n-graph of trees that this bound is

tight for n ≤ 5. It is not known at this point whether the

bound remains tight for larger values of n, which is one

question that will be further explored in future work.

IV. FUTURE WORK

Our ultimate goal remains to understand the topology

of the n-graph of trees. Of immediate interest is further

refinement of the bound on the diameter: In particular, we

know the bound to be tight for n ≤ 5. Larger values

of n will be explored. Of longer term interest is further

study of the structure of the projected graph in the proposed

coordinate system with the hope of gaining more insight into

its topology.

Another direction of future work will be to explore the

”n-graph of graphs” in which the nodes are identified with

labeled graphs of order n and size m. Since the results

presented here hinge on the fact that a tree can be rooted, it

remains unclear whether they can be generalized to arbitrary

graphs.
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