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Abstract—The liver is the most involved organ by distant
metastasis in colon-rectal cancer (CRC) patients and it comes
necessary to be aware of the mutational status of the lesions
to correctly design the best individual treatment. So far, efforts
have been made in order to develop non-invasive and real-time
methods that permit the analysis of the whole tumor, using
new artificial intelligence tools to analyze the tumor’s image
obtained by Computed Tomography (CT) scan. In order to
address the current medical workflow, that is biopsy analysis-
based, we propose the first DeepLearning-based exploration, to
our knowledge, of such classification approach from the patient
medical imaging. We propose i) a solid pipeline for managing
undersized datasets of available CT scans and ii) a baseline study
for genomics mutation diagnosis support for preemptive patient
follow-up. Our method is able to identify CRC RAS mutation
family from CT images with 0.73 F1 score.

Index Terms—Computed Tomography, Genomics Mutation,
Liver Carcinoma, Deep Learning, Self-Supervised Learning,
Classification, Colorectal Cancer

I. INTRODUCTION

Colon-rectal cancer is the third most diagnosed cancer
and the second most deadly cancer world-wide [26] and it
generally emerges from glandular and epithelial cells of the
large intestine, after the acquisition of genetic or epigenetic
mutations [17]. The replicative advantage acquired by these
cells leads to the creation of adenoma, which can evolve in
carcinoma and give distant metastasis [38]. The diagnostic
process usually starts from a positive result of the screen-
ing test or from the development of typical symptoms; the
diagnosis is usually confirmed by a total colonoscopy [2] and
followed by the magnetic resonance imaging (MRI) to evaluate
the tumor’s local extension and its relationship with the sur-
rounding structures [29]. Hence, according to the latest guide-
lines by European Society of Medical Oncology (ESMO),
as a preoperative assessment it is highly recommended the
execution of a thoracic, abdominal and pelvic CT scan with
intravenous contrast [2], [21]: it is estimated that 20% of the
new diagnosis of colon-rectal cancer already have synchronous
metastasis [2], and almost 60% will develop them, with the

liver being the main affected organ [8]. CT is chosen over
ultrasounds because of its better performance in detecting liver
lesions with 84% sensitivity and 96% specificity [21], and
MRI examination can be considered just for ambiguous liver
lesions, smaller than 1 cm in size [2], [21].

We refer to oligometastatic disease when the distant lesions
are localized in two or three sites (that includes liver, lungs,
nodes and ovary) with usually up to five lesions in total,
even if sometimes they can be even an higher number [14].
As already said, the liver is the most involved organ and
17% of the synchronous metastases are localized there [2].
In these cases, local treatments are still an option: liver
resection is usually the standard, with ablative treatments as
alternative solution [14]. Research efforts are now focused on
demonstrating the equal efficacy of these different techniques,
assuming the future introduction of ablative treatments in
resectable metastases management, not only as a second option
compared to surgery [24]. The assessment of patients with
oligometastatic disease must be carried out by a multidisci-
plinary team, in order to identify the best therapeutic strategy
and choose eventual addition of systemic therapy to the local
one [13], [14]. A recent study has demonstrated the increasing
progression-free survival and overall survival using a com-
bination of local treatment and systemic therapy in patients
with unresectable metastasis [28]. Before the beginning of
the systemic therapy, it is necessary to perform a histological
evaluation of the primary tumor or metastasis, in case they
have an atypical imaging aspect or if they appear three years
after the colon-rectal cancer diagnosis [13]. In the individual
treatment definition, the mutational status of the primary and
the secondary localizations has a crucial role as well, having
diagnostic, prognostic and predicting value [13], [23]. In
particular the mutations involving the epidermal growth factor
receptor (EGFR) signaling network are the most investigated
ones, due to their importance in the treatment response, and
among these the rat sarcoma viral onco-gene (RAS) mutation
has a special relevance. Indeed, RAS is present in almost 40%
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of the patients with colon-rectal cancer [20] and the tumors
that present this mutation will unlikely respond to the EGFR
antibodies therapy [10], [14], [23]. Moreover, mutant RAS
tumor seems to be more aggressive, with a higher number
of positive resection margins after hepatic surgery [7] and
an increased risk of progression after percutaneous treatment
with a shorter local tumor progression (LTP)-free survival [10],
[25]. BRAF mutation, as well, is present in almost 12% of the
metastatic colon-rectal cancer, and is associated with a worse
prognosis, together with an important reduction of the median
survival, due to its reduced response to the therapy [23],
[36]. Finally, also the PIK3CA mutation seems to predict a
resistance to EGFR antibodies therapy [23].

The testing of biomarkers needs samples of tumor tissue,
by biopsy or surgery resection, and a difficultly standardiz-
able tissue processing by pathologists that can take several
weeks [13]. Moreover, the analysis of a tumor’s mutational
pattern can be affected by the intra-lesional heterogeneity and
it may change during the systemic therapy: the archived DNA
can be no more representative of the lesions sampled [32],
[42]. An alternative solution is the analysis of circulating
DNA, a non-invasive and real-time technique that permits the
monitoring of the changes of the mutational status [9], [32],
but it is applicable only on released DNA in circulating blood,
giving only partial information [42]. The development of a
non-invasive technique, that allows the real-time analysis of
the whole tumor, repeatable more times during systemic treat-
ment period, could hugely improve the tailored management
of oligometastatic disease.

In this work, we take into account a pioneering task, by
posing baselines for predicting CRC gene mutation from only
CT imaging on radial liver lesions. To our knowledge, no other
DeepLearning (DL) based studies have been proposed so far
beside a single attempt by CT radiomic features modeling [42].
However, Yang et al. [42] method just build binary classifier
by predicting if a lesion is mutated by comparing it with non-
mutated samples, by aggregating KRAS/NRAS/BRAF patients
and not considering PIK3CA. In Yang et al., classification
performances between different mutation samples is out of
scope: in practice, the contribute has to be interpreted as a
binary classifier for spotting non-mutated lesions. Therefore
the two attempts are not strictly comparable because we
explore classification between mutation classes. Our secondary
contribution is to advance a solid pipeline to explore lesion
morphology in 2D CT scan, by considering state-of-the-art
efficient network architecture, attention mechanisms and semi-
supervised techniques advantages. Furthermore, we hope to
put in the spotlight an undervalued and challenging problem
in computer-aided diagnosis.

II. RELATED WORKS

Starting from 2016, Garcı́a-Figueiras et al. [19] already
explores a variety of recent developments in imaging technolo-
gies and their key role in colorectal cancer (CRC). The intro-
duction of imaging techniques may improve the assessment
of diagnosis, planning therapy, and treatment response of the

patients. In particular, he reports how colorectal CT and MRI
can be considered the best radiological diagnostic tests for
screening CRC and polyps [5], besides lung or liver metastases
during radiological staging of CRC. Radiomic relevance and
scanning imaging techniques are also explored in depth by
Garcı́a-Figueiras et al. [18] with a special focus on the impact
of advanced liver imaging for therapy planning in CRC. More
recently, Renzulli et al. [27] focused his review on CRC liver
metastases, considering both MRI and CT, by comparing the
acquisition methods in different CRC phases.

Approaching medical image analysis, Deep Learning (DL)
algorithms have become the first main tool for a multitude of
tasks, from classification to semantic segmentation. Debelee et
al. [15] reports how well DL state-of-the-art techniques can
deal with tumor recognition (breast, cervical, brain, colon and
lung cancers) by using different imaging methods. Debelee et
al. shows a variety of approaches like network training from
scratch and transfer learning. An example of liver lesion and
computer-aided diagnosis with Convolutional Neural Network
(CNN) approaches is reported by Yamakawa et al. [40]. In
his work, a classification of multiple types of carcinoma
is predicted by automatically analyzing B-mode images and
associated Region of Interest (ROI). A more specific effort,
in lesion detection, through CT scans is done by Yan et
al. [41]. He proposes DeepLesion, a framework that is capable
of universally detecting lesions in multiple organs, like breast
and liver, and tissues. In DeepLesion, a 3D image input is
used, thanks to the huge number of patients available for the
study. Later on, Tang et al. [34] improves the efficacy of
DeepLesion by proposing ULDor, a Residual Convolutional
Neural Network (R-CNN) based pipeline for general lesion
detection with region proposal. Research in lesion detection
trough CT scans has become more accessible recently with
the publication of annotated large datasets, e.g. as proposed
by Chaudhry et al. [11]. In 2020, also Li et al. [22] proposes a
hybrid DL pipeline specific to CRC metastasis detection from
CT. In his study, he takes in consideration breast lesions only.

From the point of view of DL techniques, and specifically
computer vision and image analysis, several works start to
propose techniques to increase the attention of CNN models
on specific features. As an example, Eppel et al. [16] explored
a supervised approach by encoding images with their ROI
annotation. Of course, unsupervised approaches to increase the
network attention on hidden features have acquired a greater
resonance in the field. The main reference for state-of-the-
art NN attention layers, widely used in NN transformers,
was proposed in 2017 by Vaswani et al. [37] originally for
natural language processing tasks. His contribution consists
in defining a specific attention layer that helps the neural
network to focus itself on relevant internal activation maps
features. Attention mechanisms find application in the medical
context due to the high dimension of the images generated by
the acquisition processes. Tao et al. [35] proposes a spatial
attention mechanism in the processing of 3D CT scans to
improve carcinoma lesion detection.

In recent years the DL landscape was dominated by a



large variety of different CNN. The exploration and research
in NN model architectures increases the capability of DL
approaches in every aspect of computer vision. As an example,
EfficentNet, a compound-scaling model proposed by Tan et
al. [33] , is one of the state-of-the-art architectures that can
be used as performing backbone for general purpose image
processing. Image analysis in healthcare took a big advantage
and enhancements by using more and more sophisticated NN
architectures in DL based solutions. A performance compar-
ison between multiple residual network architecture, dealing
with CT images and small datasets, is initially performed by
Bagchi et al. [4]. Then Yang et al. [43] extends the coverage
of the analysis on small datasets of lung CT for COVID-19
diagnosis. He clearly shows that EfficientNet can outperform
other pretrained architectures in terms of overall performances
and number of parameters. In this work, we assume that
EfficientNet is a valid backbone architecture for our purpose,
and it will be the reference for our entire work.

Abbas et al. [1] shows the effectiveness of transfer learning
approaches in the medical image domain by using a hybrid
pipeline of supervised and unsupervised techniques. With
transfer learning, they were able to use a pretrained NN in
a similar context, and use its set of parameters as a starting
point for image extracting features. Recently, the outstanding
work by Azizi et al. [3] proposes a combined pipeline of self-
supervised and supervised approaches, reporting performance
gain using an out-of-distribution (OOD) or unannotated dataset
in a similar medical domain context in order to pretrain a
neural network model. It measures the efficiency in using the
large quantity of unlabelled data available in medical institutes,
in order to train a neural network to be able to extract valuable
features from images that share the same acquisition type of
the main task we want to solve. An efficient feature extraction
algorithm, called SimCLR, proposed by Chen et al. [12],
is suitable for OOD datasets by using contrastive learning
based technique. Contrastive learning is a self-supervised
method in which a backbone is trained to recognize the same
image across multiple image transformations, by uniforming
the extracted features. In this work we take advantage of
OOD pretrain to deal with our dataset, taking advantages of
other liver lesions CT scan datasets like IRCADb [31] and
LiTS17 [6].

III. DATASET

The data we managed to use is collected, by retroactive
research, from the Picture Archiving and Communication
System (PACS) of Molinette Hospital, in Turin. We will
refer to our collection of colorectal carcinoma with the name
CRC4AI1. The dataset is collected retrospectively to five years,
by including patients with advanced CRC disease. The data
collection, that includes CT images, biopsies referrals and
annotations, lasted about 2 months by specialized radiologists.
A number of 50 patients, with a total of 92 liver lesions, is
selected from the system, by following strict criteria:

1Public release planned in 2023

• Colorectal carcinoma has to be expanded and its metas-
tases need to have involved the liver of the patient. The
carcinoma has to be visible in CT scans.

• CT scan has to be available and the metastases need to
be fully visible. The scan distance between slices needs
to be at maximum 2.5 millimeters.

• The tissue of hepatic lesions must be collected by resec-
tion or biopsy of the liver.

• The patient needs to be correlated with the response of the
tissue analysis by the pathological anatomy department.

• The analysis response must be obtained within 90 days
from the CT scan acquisition. It is important to take into
account this constraint because the tumor can grow and
change fast over the time. Therefore more mutations can
appear or the lesion itself can change the morphology
underlying its mutation.

A. Targets and Annotations

The pathological anatomy response contains a list of mu-
tations involving the tissue. Depending on the genes and
nucleotide positions analyzed, some results could be generated
by the presence of one of several possible mutations, giving
rise to multiple interpretations. In our scenario, responses
include the following carcinoma mutations tests results:

• K-RAS: This determination is crucial, because KRAS
protein status can influence response to treatments aimed
at inactivating the epidermal growth factor receptor
(EGFR).

• N-RAS: Different RAS family mutation, with similar
consequences to K-RAS in treatments responses.

• PIK3CA: Mutation of a gene that acts as major regulator
of several cellular functions, such as cell proliferation,
apoptosis and growth.

• BRAF: Protein that regulates the signals involved in cell
growth. A BRAF mutation predisposes lesions to unstable
proliferation.

• OTHER: the tissue is negative for all the above specific
tests for each considered mutation.

TABLE I: Percentage of patients and lesions with a certain
mutation. The number of images is calculated after the pre-
processing step (Sec. IV-A).

N-RAS K-RAS BRAF PIK3CA OTHER
% of patients 4 37 5 16 38
% of lesions 5 38 3 19 35
% of images 6 34 3 14 43

Some lesions may present more than one mutation at the
same time. The metastasis distribution along each mutation
type is summarised in Tab. I, while Fig. 1 shows the correlation
between the lesions.

In order to address this task, our team, composed by 3 expert
radiologists, annotated the entire dataset. Due to the fact that
we need to look at lesion surroundings, we need to highlight
the cancer lesions in each CT scan. Therefore, for each patient,
the radiologists provided us all the liver lesions segmentation.



Fig. 1: Correlation matrix between lesion mutations. A sig-
nificant correlation can be find between PiK3CA and BRAF
samples.

Defining the CT depth d as the number of slides in the exam,
the annotation is a 3D binary mask (for a total of 512×512×d
voxels). Each voxel of the annotation mask has a positive value
if it overlaps with a lesion, 0 otherwise.

Due to the limited size in the number of patients and in
the amount of lesions in CRC4AI, a 3D approach to the
problem is infeasible. Considering 3D lesion information as a
single input, intra-patient biases can alter the results and show
performances that do not correspond to an effective capacity
for generalization. Therefore, our approach is based on 2D
images prediction, that is feasible with our fist version of
CRC4AI. Some examples are reported in Fig. 2.

IV. METHOD

A. CT Preprocessing

CT raw data come in different formats from Molinette
Hospital PACS, due to the variety of machinery used in the
clinical everyday workflow. From the archive system, we had
to retrieve 3D data, sometimes stored in 2D slices as DICOM
images, sometimes stored as Neuroimaging Informatics Tech-
nology Initiative (NIFTI) file format.

The amount of total lesions in the first version of CRC4AI is
not enough to ensure significant samples variety by using their
3D information as input for a DL-based model. Therefore, we
focus on 2D slices of the lesions, instead of their 3D volume,
as efficient data augmentation strategy.

Working with the entire CT scan is not useful for the task we
want to solve: indeed the image contains a lot of information
regarding all tissues, bones and organs of the patient, but we
want to focus our analysis on the lesion only.

Our mutation predictor has to be a per-lesion classifier, so
we need to take in consideration only the metastases and its
surrounding tissue. Defining b as the lesion border thickness,
our radiologists suggest to consider b = 1cm for surroundings
inclusion [39]. CT scans metadata contain distance information

Algorithm 1 CT Preprocessing algorithm with 3D annotations

Require: P pool of patients 3D CT exams, A pool of patients
3D annotation, ϵ as exclusion slide threshold, b as lesion
border thickness, r as the 2D resolution of the output images
for each p ∈ P do
Al ← ConnectedComponents(A(p))
▷ Al is the pool of different lesions annotations for p

for each al ∈ Al do
µl ← mean(al)
for each as ∈ al do

▷ as is the 2D slide annotation from 3D al
as ← ErosionAndDilation(as)
if sliceInclusion(as, µl, ϵ) then

as ← AddBorderThickness(as, b)
▷ writing the CT crop at as coordinates

write(p, as, r)
end if

end for
end for

end for

(in mm) between pixels, so a precise conversion is possible.
Each lesion image is retrieved by converting the raw CT scans
from Hounsfield units to grayscale range [0, 255] by using a
window width of 400 HU (Hounsfield Units) and center of 40
HU.

In order to obtain per-lesion information from the 3D
annotation map, a 3D connected components algorithm is
used with 26-connected neighborhood. It is not rare that the
annotations, which are generated with commercial 3D viewer
tools, can show artifacts or gaps in their 3D volume. Therefore,
in order to mitigate the problem, morphological operations
such as erosion and dilation are applied on each 2D slice of
the annotation.

Our radiologists, and radiomic best practices, suggest as to
drop the extremes of the lesion for our analysis: the smallest
regions of the lesion are often very poorly informative about
the metastasis nature and do not have enough surface to infer
some morphological features [39]. Therefore, all the 2D lesion
slices with area below a threshold are discarded. If we denote
l as the considered lesion, asl the annotation area in a certain
slice s, µl as the mean per-slice area of the lesion, the inclusion
criteria is shown below:

sliceInclusion(s) = asl > ϵ ∗ µl (1)

We empirically find the threshold ϵ = 0.4 , that ensures a
good tradeoff between the image quality and the number of
2D images for each lesion.

Alg. 1 summarises the full scan preprocessing pipeline.

B. Self-Supervised Pretraining

Transfer learning is a widely used technique in machine
learning, especially in computer vision, which allows to use
a pretrained network on a different task. This method is
extremely advantageous if the available dataset for training



is limited and allows to reduce the time needed for training,
since only finetuning of the weights is necessary.

Fig. 2: Samples from data distribution: multiple examples of
CRC4AI lesions, the last two images in the bottom row are
taken form IRCADb and LiTS17 respectively.

TABLE II: Liver lesions datasets composition

Name Patients Lesions Total Images

CRC4AI 50 92 1063
IRCADb 15 118 817
LiTS17 130 885 10466

In our case, we used SimCLR [12], which is a framework
for self-supervised contrastive learning, in order to pretrain
a network using images from similar datasets. We chose
two publicly available datasets of liver cancer CT images:
IRCADb [31] and LiTS17 [6], [30], originally designed for
segmentation tasks. We refer to overall external data as Out-
Of-Distribution (OOD) dataset. Our aim is to improve the
performance of the classifier by using a network that was
pretrained on CT liver images, therefore similar to the ones
in our CRC4AI dataset, on top of a more traditional one pre-
trained with natural images [3]. For this purpose, SimCLR is
very fitting, since self-supervised pretraining does not require
labeled images and no additional work on the public datasets
was needed. SimCLR works as follows:

• Firstly, we preprocess IRCADb and LiTS17 with the
same algorithm used for CRC4AI. IRCADb contains 15
useful patients with 118 annotated lesions while LiTS17
is a larger dataset that includes 130 patients and 885
annotated samples. A distribution recap is shown in
Tab. II. Samples from both datasets are joined together
(OOD dataset) to compose our training SimCLR image
pool.

• Secondly, stochastic augmentation of the images is per-
formed by applying random cropping with resizing,
random flipping, random color distortion and random
Gaussian blur.

• Thirdly, a neural network base encoder extracts represen-
tation vectors from the augmented data. In our case, we
used EfficientNet-B0 [33] for this purpose. The model
will be used as pretrained backbone for CRC mutation
classification.

• Lastly, a multilayer perceptron (MPL) with one hidden
layer is used as a projection head to map the representa-
tion vectors to the space where a contrastive loss function
can be applied to maximize the agreement between the
differently augmented views of the same image [12].

After this pretraining, the base encoder is used as the backbone
of the final network to be used for our task. Since longer train-
ings are observed to be beneficial to the backbone capability
to extract relevant features [12], we opted to use a training
cycle with 1000 epochs.

C. Genomics mutation classification

We perform a multi-label classification starting from the 2D
scans, by using the backbone pretrained in the self-supervised
step. Due to the nature of the diagnostic response, that we used
as our ground-truth labels, multiple mutations can be present
in a single lesion.

A binary cross-entropy loss is used to minimize the error
on the model output probabilities. Each data mini-batch
passes trough data multiple augmentation transformations,
like random rotation, image flipping, image cropping and
then tensor normalization.

There are two important considerations in order to have
a fair performance measurement:

• We want to avoid intra-patient biases between validation
and training set, in order to prevent the model to learn
specific patient features for measuring predictions quality.
Therefore, samples from a target patient can only be
present in the same set: the intersection of the patients
between test and train set is strictly empty.

• We want to avoid inter-patient variability to be a bias
in our measurements. Some patients have many more
different lesions than others: straightforward by dealing
with a small dataset, a single patient can have a significant
impact on the model training or on the result measure-
ments.

In order to avoid these possible issues, we opted for a multi-
seeded K-Fold validation method: each random seed perform
a samples split (90% training and 10% test) by maintaining
the patient data separation. Furthermore, we also ensure the
labels distribution consistency in the process. The results are
then measured by averaging the performances obtained from
each initialization.

Due to the natural imbalance in data distribution typical for
medical datasets, not mitigated from the K-Fold split strategy,



we adopt a simple data-balancing strategy. At the beginning
of the training phase, train-set images are re-sampled or
sub-sampled in relation to their mutation. We use the label
distribution median in order to equalize the number of
samples for each mutation.

V. RESULTS

In order to highlight the complexity of the task, we will
report multiple strategies as comparison:

• a baseline, by using EfficientNet as encoder, pratrained on
ImageNet without self-supervised pretrain. The last fully
connected classification layer is substituted by a new one
that fits the desired output dimensions.

• a second model (OODp), by using the SimCLR-pretrained
model on OOD samples. The MLP head is removed and
replaced. The final architecture is the same as the first
baseline.

• a last model with a slight architecture change, by in-
cluding a self attention (SA) mechanism in order to
evaluate its impact on lesion images. We repeat both
experiments ahead, by including a multihead attention
layer, followed by ReLU activation function, before the
classification fully connected layer. In the contrastive
pretraining scenario, the attention layer is inserted before
the model MLP head proper of SimCL approach.

All the experiments are executed by using 2 GPUs
NVIDIA GeForce RTX 2080 SUPER, and share the same
hyper parameters and the same PyTorch implementation. The
network training hyper parameters are empirically retrieved
by grid search. We found the optimal settings, equal for each
test, using 0.001 as learning rate, weight decay 5 × 10−4,
a mini-batch size of 16 samples and SGD as optimizer,
with 0.9 momentum. All the experiments are repeated and
averaged with 5 different seeds for data splits, as reported in
section IV-C.

In Fig. 3a and Fig. 3b we can see the F1 scores retrieved
for the 5 classes task. All the results are reported with
a confidence level of 95% (p value < 0.05), metrics are
derived by considering 5 different initialization seeds. It is
straightforward to see the difficulty of the task to discriminate
all the mutations at once using such a small dataset. Therefore,
we opted for composing new categories by grouping the
mutations in 3 classes: NRAS+KRAS, PIK3CA+BRAF and
OTHER. N-RAS and K-RAS mutations share the same RAS
mutation root, while PIK3CA and BRAF show the highest
correlation between lesions. In this way, we also partially
compensated the CRC4AI imbalance, as can be seen in Tab. I,
of the different classes and we obtained an improvement of
AUC score, especially for the baseline and the OODp models
(comparison between Fig. 3c and Fig. 3d scores). The AUC
score is derived by using ”One-vs-rest” policy. We compute
the AUC of each class against the rest, by including weighted
averaging for class imbalance.

(a) F1 Score, 5 classes

(b) F1 Score, 3 classes

(c) AUC, 5 classes

(d) AUC, 3 classes

Fig. 3: Comparison of F1 score and AUC between the classi-
fications with 5 and 3 classes. We can notice how OODp+SA
is more prone to overfit without any early-stopping policy.



We then evaluated the effect of image resolution on the
classification capability of the different models. In order to
do so, we sampled the images of the cropped lesions at three
different resolutions: 32×32, 64×64 and 128×128 pixels. As
can be seen in Fig. 4 and Fig. 5, the difference between
the 32×32 and 64×64 resolutions is not significant, but the
highest one (128×128) seems to slightly improve the results,
especially concerning AUC, F1 score and Hamming loss.
Tab. III, reports the values in detail for each model. Since
there is a certain variability in the size of the metastases, our
hypothesis is that the information content of an image of a
small lesion may not be affected by the oversampling at a high
resolution, whereas a larger lesion may lose information if it
is subsampled. Our assumption is that coarse morphological
features have slightly more relevance for CRC genomics
classification rather than finer image details. Anyway, a higher
resolution may be recommended for such a task, even though
the difference in the performance of the classificator does not
change drastically.

From the results, we can say that the pretraining with OOD
datasets can improve the classification capability, compared
with the baseline model. Especially with the highest resolu-
tion, the OODp and OODp+SA models perform better than,
respectively, the baseline and baseline+SA model. Moreover,
as can be seen in Table IV, the pretrained models have more
balanced values of specificity and sensitivity.

The most significant result of this study, however, is the F1
score of the RAS class obtained with the OODp+SA model,
as can be seen in Fig. 3b and Table III: with a resolution of
128×128 pixels we achieved F1 = 0.73 ± 0.05. This means
that, even with a very limited dataset, the model can recognize
at least this mutation from the others.

VI. CONCLUSION

In this work, we present our attempt of solving CRC
mutation classification from CT images of liver metastasises.
We explore multiple state-of-the art solutions for approaching
this extremely challenging problem. We know how important
it is to establish the colon tumour mutation as soon as
possible for patients follow-up and therapeutic strategies. As
highlighted above, it is essential to remember that this type of
classification, and diagnosis by expert doctors, is not possible
without biopsy on patients. Consequently this work stands
as a basis for novel non-invasive solutions in the context of
genomics identification of CRC metastases.

With our approach, we try to answer the question by taking
into account medical imaging data. It is straightforward that,
because of our really small dataset, this is a preliminary work
and further investigations on all the CRC mutations have to
be considered. We are convinced that collecting more data
is the way to enable this study to take into consideration
3D convolution models and improve overall performances.
Furthermore, an enlarged dataset can be the key to classify
other rare genomics mutations beside the more common RAS
mutation.

Fig. 4: Comparison of AUC and Hamming loss(lower is better)
of the OODp+SA model with the different resolutions. The
small variance between different input resolutions indicates
a model preference for coarse morphological features, rather
than finer image details.

Despite the low number of patients, obtaining an image-
based RAS classifier with 0.73 F1 score is more than we
expected from our research in raw CT inspections. Considering
the promising results, our radiologists are currently starting
to evaluate the possibility to include a classifier like the one
we developed in their daily workflow, though being aware
that better results will be needed before a systematic clinical
application. An AI-based classifier could allow to start to apply
therapeutic strategies while waiting the necessary days for the
response from the liver tissue biopsy analysis.



TABLE III: Comparison of AUC and F1 score of the RAS isolation obtained with the different models at different resolutions

32×32 64×64 128×128
AUC F1 RAS AUC F1 RAS AUC F1 RAS

baseline 0.49±0.04 0.30±0.01 0.52±0.05 0.38±0.07 0.53±0.05 0.35±0.09
baseline+SA 0.53±0.09 0.06±0.11 0.52±0.05 0.06±0.08 0.51±0.01 0.02±0.04
OODp 0.49±0.04 0.29±0.09 0.50±0.06 0.32±0.13 0.57±0.07 0.42±0.18
OODp+SA 0.50±0.03 0.67±0.01 0.52±0.08 0.71±0.02 0.52±0.06 0.73±0.05

TABLE IV: In depth classification performances for RAS mutation family (N-K RAS). The combination on Out Of Distibution
pretrain plus Self Attention layer can reach the best RAS Specificity/Sensitivity compromise at higher input resolutions.

32×32 64×64 128×128
Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

baseline 0.74±0.21 0.21±0.04 0.78±0.20 0.27±0.07 0.88±0.12 0.23±0.07
baseline+SA 0.97±0.04 0.04±0.06 0.96±0.07 0.03±0.05 1.00±0.00 0.01±0.02
OODp 0.81±0.1 0.20±0.06 0.76±0.10 0.23±0.11 0.89±0.03 0.30±0.14
OODp+SA 0.08±0.01 0.88±0.04 0.21±0.20 0.90±0.09 0.34±0.08 0.83±0.16

(a) F1 score, resolution 32×32

(b) F1 score, resolution 64×64

(c) F1 score, resolution 128×128

Fig. 5: Comparison among the F1 scores of the different
models with different image resolutions. In each scenario,
a promising RAS classification capability is evident for
OODp+SA model.
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