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Abstract

The objective of this paper is to provide a hybrid algorithm for non-negative matrix factorization 

based on a symmetric version of Kullback-Leibler divergence, known as intrinsic information. The 

convergence of the proposed algorithm is shown for several members of the exponential family 

such as the Gaussian, Poisson, gamma and inverse Gaussian models. The speed of this algorithm 

is examined and its usefulness is illustrated through some applied problems.
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I. Introduction

Let V be a p × n matrix of nonnegative elements. Consider the approximate factorization of 

form

(1)

where W is p × k and H is k × n are matrices of nonnegative elements.

In molecular pattern discovery, for example, V is the gene expression matrix where the rows 

contain n expression levels, typically less than a hundred, of p genes, typically in the tens of 

thousands. The goal is to find a small number of metagenes each defined as a nonnegative 

linear combination of the p genes. This is accomplished by (1), where columns of W define 
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k ≪ n metagenes and columns of H represent metagene expression patterns corresponding to 

the n samples. In (1), , where wiℓ is the coefficient of gene i = 1,⋯, p for 

the metagene ℓ = 1, ⋯, k and hℓj is the expression level of the metagene ℓ in sample j = 1,⋯,n.

The bij are found iteratively such that the error of approximation is controlled by the 

divergence measure . Lee and Seung [13] developed non-

negative matrix factorization (NMF) algorithms based on the Euclidean distance 

L2(V║WH) = ║V−WH║2 and the following divergence measure

(2)

where the equality holds if and only if wij = bij for all i, j. This is the well-known Kullback-

Leibler (KL) information divergence between two Poisson distributions where 

. Unlike L2(V║WH) which is symmetric, D(V║WH) ≠ D(WH║V), so 

Lee and Seung [13] referred to D(V║WH) as the divergence of V from WH. Asymmetric 

measures such as D(V║WH) are usually called “directed divergence” measures [12]. Other 

divergence measures used in the literature in this context include Rényi divergence and its 

special cases. This measure includes Lee & Seung’s KL information divergence (2) as a 

special case and assumes that elements wij and bij of V and B = WH are means of 

independent Poisson random variables [6,8].

It should be noted that the term KL information divergence is used in a broader context in 

this paper, one that is defined by (3) below for any probability distribution. This paper 

provides an algorithm for NMF based on a symmetric version of KL divergence, known as 

intrinsic information, and illustrates its usefulness in some applied problems.

The organization of this paper is as follows. Section II defines the intrinsic information 

measure and illustrates its application to Gaussian, Poisson, gamma and inverse Gaussian 

models. Section III develops a hybrid NMF algorithm for these models and provides proof 

of its convergence. Section IV evaluates its performance through some examples while 

section V gives some concluding remarks.

II. Symmetric Information Divergence

The KL information divergence between two distributions F and G with density (mass) 

functions f and g is

(3)
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K(f║g) ≥ 0, where the equality holds if and only if f(x) = g(x) almost everywhere [12]. KL 
information divergence, also referred to as relative entropy, cross-entropy, and directed 

divergence, is the fundamental information measure with many desirable properties for 

developing probability and statistical methodologies.

Two points pertaining K(f║g) may be less than desirable in some problems. First, (3) is 

defined only when F is absolutely continuous with respect to G, denoted as F ≼ G. The 

absolute continuity requirement limits utilization of K(f║g) in some problems such as 

comparison of two binomial distributions when n1 ≠ n2, evaluation of Poisson approximation 

to binomial, and continuous approximations of discrete distributions such as the normal 

approximations to binomial and Poisson distributions.

The second issue pertaining to K(f║g) is that, apart from some exceptional cases such as F 
= N(μ1, σ2) and G = N(μ2, σ2), K(f║g) is not symmetric in F and G; the latter is referred to 

as the reference distribution. This lack of symmetry may be of no concern or even desirable 

in many situations where a natural or ideal reference is at hand; e.g., when G is uniform, a 

natural, or an ideal distribution for a problem. Historically, the lack of symmetry has been 

dealt with by using Jeffreys divergence

(4)

Here, K(g║f) is referred to as dual KL divergence. Jeffreys divergence is defined only when 

both distributions are absolutely continuous with respect to each other; i.e., F ≃G, a more 

stringent requirement than needed for K(f║g).

Bernardo and Rueda [2] and Bernardo [1], in the context of Bayesian reference analysis, 

defined the intrinsic information between F and G as

(5)

Clearly, ϑ(f║g) is symmetric in F and G and bypasses the absolute continuity requirement. 

If, for example, when F⋠G, we have K(f║g) = ∞ and ϑ(f║g)= K(g║f).

Definition 1

Let F (x|θ) denote a family of distributions indexed by a parameter θ ∈ ℜ, and let Fi = F (x|
θi), i = 1, 2. The family is said to be intrinsic information ordered by θ if ϑ(f1║f2) = 

K(f1║f2) whenever θ1 ≤ θ2.

The following mathematical relation will be used in the examples that follow.

Lemma 1—For any a > 0,  2 log a if and only a ≥ (≤) 1.
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Proof: For a ≠ 1 use the following well-known inequality. For any a > 0, a ≠ 1, 

. For a = 1 take the limit.

Example 1 (Gaussian model)—Let Fi, i = 1, 2 be the Gaussian distribution with mean μi 

and variance σ2. Then,

(6)

and, hence, ϑ (f1║f2) = K(f1║f2) = K(f2║f1).

Example 2 (Poisson model)—Let Fi, i = 1, 2 be the Poisson distribution with mean λi. 

Then,

(7)

where . Now, using Lemma 1, ϑ (f1║f2) = K(f1║f2) if and only if ϕ ≤ 1. Thus, 

Poisson distributions are intrinsic information ordered according to the mean.

Remark 1—Rènyi information divergence between probability densities f and g is defined 

by

(8)

for r ≠ 1, r > 0, where K1(f║g) = K(f║g) by continuity. For r = 1/2 Rènyi divergence is 

symmetric, K1/2(f║g) = K1/2(g║f). This is the well-known Bhattacharya distance [10] and 

has been used for NMF [8]. Let Fi, i = 1, 2 be the Poisson distribution with mean λi. Then, 

using (8),

(9)

Example 3 (Generalized gamma and related models)—Consider the generalized 

gamma family, GG(α, τ, λi), with density
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where x > 0 and α, τ, λi > 0. The GG family includes several well-known models as 

subfamilies (see [11]). For the GG(α, τ, λi) family,

(10)

where , and , i = 1, 2. This information divergence is of 

the form in (7), and thus ϑ (f1║f2) = K(f1║f2) if and only if ϕ ≤ 1. Hence, the GG family is 

intrinsic information ordered according to the mean. When τ is known, GG is a member of 

the exponential family. The subfamilies of GG are gamma (τ = 1), Weibull (α = 1), 

exponential (α = τ = 1), and generalized normal (τ = 2). The generalized normal is itself a 

flexible family and includes Half-normal (α = 1/2), Rayleigh (α = 1), Maxwell-Boltzmann 

(α = 3/2), and Chi (α = k/2; k = 1,2, ⋯). Thus, all these distributions are intrinsic 

information ordered according to the scale parameter and the mean.

Example 4 (Inverse gaussian model)—Consider the inverse gaussian distribution, 

IG(λ,μ), with density

where x > 0 and λ,μ > 0. For this distribution,

(11)

where  and E(Xi) = μi, i = 1, 2. It is evident from K(f1║f2) that ϑ (f1║f2) = K(f1║f2) 

if and only if ϕ ≥ 1. Thus, IG distributions are intrinsic information reverse ordered 

according to the mean.

III. Non-negative Matrix Factorization

Let vij and  be means of independent Poisson distributions Fij,m,m = 1, 2. Lee 

and Sueng [13] have shown that the KL divergence,

(12)

is non-increasing under the following multiplicative sequential updating
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(13)

(14)

The following theorem provides multiplicative sequential updates for dual KL divergence, 

K(WH║V), for the Poisson model given by

(15)

This divergence has been described in [5] and can be shown to be a special case of Rényi 

divergence [5,8].

Theorem 1

Let vij and  be means of independent Poisson distributions Fij,m, m = 1, 2. 

K(WH║V) in (15) is non-increasing under the following multiplicative sequential updating

(16)

(17)

Proof—A detailed proof is provided in [15].

Using equation (6), the Gaussian model can be seen to be the trivial case for which 

K(V║WH) = K(WH║V) = ϑ (V║WH) = L2(V║WH) = Σij (Vij − (WH)ij)2. Heuristic as 
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well as rigorous Majorization-Minimization (MM) algorithms for NMF for the exponential 

family have been proposed [4,5,9]. These algorithms are based on KL divergence, 

K(V║WH), and embed the Gaussian, Poisson, gamma and inverse Gaussian models as 

special cases. The MM algorithms outlined in §4.1 and §4.2 of [9] provide sequential 

updates for W and H for these models and establish conditions for monotonicity of 

K(V║WH). Lee & Seung’s Poisson NMF algorithm stated in equations (13) and (14) is a 

special case of this family of algorithms. Similarly, rigorous Expectation-Maximization 

(EM) algorithms for the gamma and inverse Gaussian models based on dual KL divergence, 

K(WH║V), have been recently proposed [7]. Theorems 1 and 3 of [7] provide sequential 

updates for W and H for these models and establish conditions for monotonicity of 

K(WH║V). These existing results can be used in conjunction with the result in Theorem 1 

above (equations (16) and (17)) to obtain the generalization stated in Theorem 2 below. 

Theorem 2 provides conditions for monotonicity of ϑ(V║WH) = min{K(V║WH), 

K(WH║V)} using sequential updates for W and H based on K(V║WH) and K(WH║V) 

for the Gaussian, Poisson, gamma and inverse Gaussian models.

Theorem 2

Let Fij,m, m = 1, 2 be independent distributions with means vij and  from one 

of the following member models: Gaussian, Poisson, gamma and inverse Gaussian. Then 

 is non-increasing under any non-increasing sequential 

updates of K(V║WH) and K(WH║H) where these quantities represent, respectively, the 

KL and dual KL divergence for that member.

Proof—Sequential updates for W and H based, separately, on K(V║WH) and K(WH║V) 

are available for the Gaussian, Poisson, gamma and inverse Gaussian models as outlined 

above. In order to differentiate the factorizations obtained using each divergence measure, let 

W, H and ,  represent the factored matrices obtained by minimizing K(V║WH) and 

K(WH║V), respectively, for each specified model and given rank k. At iteration t, compute 

K(V║WtHt) and . Let

Suppose that ϑt = K(V║WtHt) (similar arguments can be used for the case 

. Using the update rules for K(V║WH) and K(WH║V) we obtain Wt+1, 

Ht+1 and

It is known that K(V║Wt+1Ht+1) < K(V║WtHt). Thus if ϑt+1 = K(V║Wt+1Ht+1), then 

ϑt+1 = K(V║WtHt) = ϑt. If , then
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This implies that ϑ t decreases with increasing iteration number t and completes the proof.

Using the result in Theorem 2, we propose the following hybrid algorithm for NMF.

A. A Hybrid NMF Algorithm based on Symmetric Information Divergence

• Let  and  denote the reconstruction errors based on K(V║WH) 

and K(WH║V), respectively, at iteration t. Update rules for W, H are available 

separately based on K(V║WH) and K(WH║V). Consider the Poisson model as 

an example. These updates are given, respectively, by (13,14) and (16,17).

• Iteration 0: Initialize W, H. Denote the initial values by W(0), H(0). Compute 

 and  using W(0), H(0). Let .

• Iteration 1: If , then update W(0), H(0) using  updates; 

else update W(0), H(0) using  updates. Denote these updates by W(1), H(1). 

Go to iteration 2. Let ,

• Iteration 2: Compute  and  using W(1), H(1). If , 

then update W(1), H(1) using  updates; else update W(1), H(1) using 

 updates. Denote these updates by W(2), H(2). Go to iteration 3. Let 

.

•
Iteration t: Let W(t), H(t) denote the updates and .

• Repeat the above steps. If |ϑ (t) − ϑ(t−1)| < ε where t ≤ maxiter, then stop. W(t) 

and H(t) are the final converged values of W, H. The final value of the 

reconstruction error is then ϑ(t) depending on whether  or  is 

smaller at the converged iteration t. maxiter is the maximum number of iterations 

per run.

For the Gaussian model, the hybrid algorithm is identical to that based on KL or dual KL 
divergence. Theorem 2 generalizes the applicability of the hybrid algorithm and extends its 

utility to several important members of the exponential family. This makes our proposed 

approach robust. Furthermore, the hybrid algorithm is generalizable to other NMF 

algorithms as long as separate update rules for W and H, based on KL and dual KL 
divergences, are available. The hybrid algorithm allows the simultaneous application of KL 
divergence and its dual by alternating between the two measures based on their smaller value 

attained at any given iteration using sequential updates for W and H. At the converged 

iterate, the algorithm attains the minimum achievable value for the objective function based 
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on these measures and in some cases this value is seen to be smaller than that attained by 

either algorithm separately (see examples).

IV. Applications

A. Simulated Data

We investigated the performance of our hybrid NMF algorithm within the context of 

document clustering using toy data similar to that outlined in [8]. The algorithm based on 

the Poisson model was used for this purpose. Specifically, we constructed examples 

involving simulated frequencies of p = 1000 terms for each of n = 60 documents in order to 

illustrate the ability of the algorithm in reconstructing the data when the number of classes 

exceeds two, and there is a hierarchical or nested structure of the classes. Term-document 

frequencies were generated as follows: Let documents 1–20, 21–40 and 41–60 denote 

classes A, B and C respectively. For the first 50 terms, frequencies for documents in classes 

A, B and C were generated from a Poisson distribution with mean (λ) 20, 1 and 1 

respectively. For terms 51–100, frequencies for documents in class B were generated as Y ~ 

min(X1, X2) where X1 ~ Pois(λ = 70) and X2 ~ Pois(λ = 50); and frequencies for 

documents in class C were generated as Z ~ max(X3, X2) where X3 ~ Pois(λ = 30). For the 

remainder of the terms, all documents are generated from Pois(λ = 1). In this set up, there 

are two major classes where one class has two sub-classes.

B. Reuters Data

The Reuters data is a widely used benchmark data set in text mining consisting of the 

frequencies of nearly 2000 terms in multiple categories from a document corpus [8,14]. For 

the purpose of illustrating our method, we selected a subset consisting of 1163 terms from 

82 documents in five categories normalized using term frequencies.

C. Saccharomyces Genome Database (SGD)

Chagoyen et al. [3] utilized a corpus of 7080 articles relevant to a large set of genes and 

proteins from the SGD and created a data set consisting of 2365 terms across 575 yeast 

genes. NMF was applied to create literature profiles using common semantic features 

extracted from the corpus. Genes are then represented as additive linear combinations of the 

semantic features which can be further used for studying their functional associations.

D. Illustration of Examples

In all examples, factorizations of ranks k = 2−6 were considered. The hybrid algorithm was 

compared with the following algorithms - Lee & Seung [13] which is based on KL 
divergence (KL), dual KL divergence in Theorem 1 (dKL) and the symmetric special case of 

Renyi divergence (symRenyi) (see Remarks 1 and 2) [8]. Comparisons were made in terms 

of minimum reconstruction error (RE) at the converged iteration and the corresponding 

number of iterations required for convergence (N) across 20 runs of each algorithm. RE was 

calculated based on the particular algorithm employed. A maximum of 3000 iterations per 

run was used. These results are displayed in Figures 1–3.
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Unlike other algorithms, the hybrid algorithm requires alternating between updates based on 

the KL or dKL algorithm as outlined in §IIIA. Starting with random initial values for W and 

H, sequential updates are based on the smaller of the RE based on KL and dKL at each 

iterate. This hybrid approach efficiently utilizes both algorithms simultaneously in this 

fashion and does not require the separate use of each algorithm. It provides better 

reconstruction of the original data while utilizing fewer iterations to convergence relative to 

the use of both KL and dKL, a phenomenon observed across all ranks considered (see 

Figures 1–3). We noticed that the hybrid algorithm is able to settle on a solution relatively 

quickly after alternating between the two asymmetric information divergence algorithms. In 

the simulated example it settled on KL (Figure 1(a)) while for the Reuters and SGD data sets 

it settled on dKL (Figures 2(a) and 3(a), respectively). The feasibility of the hybrid 

algorithm is empirically illustrated in Figure 4 for ranks k = 2 – 5. In our investigations, it 

was observed that this algorithm exhibited an average 2.10-fold (ranging from 1.45 to 3.12) 

reduction in the number of iterations to convergence relative to KL and dKL. In addition, it 

is also seen to be superior to symRenyi in terms of RE across all ranks.

V. Conclusions and Future Work

In summary, a hybrid NMF algorithm that is applicable to several members of the 

exponential family of models has been presented. The algorithm relies on intrinsic 

information, a symmetric version of KL information divergence and its dual. A rigorous 

proof of monotonicity of updates for the algorithm is provided. Numerical experiments 

using simulated and real data demonstrate faster convergence of the algorithm relative to the 

asymmetric versions as well as better reconstruction of the original data. The proposed 

approach is particularly useful in applications where there is a priori knowledge or empirical 

evidence of signal-dependence in noise.

The basic principle underlying this fundamental algorithm is broadly extensible to 

frameworks involving penalty, kernel and discriminant functions. We are currently working 

on generalizing this algorithm to include all members of the exponential family, such as 

those that lie in the continuum between well-known models. A more detailed comparison of 

the performance of the hybrid approach in relation to existing methods for a given 

application, such as unsupervised clustering, will form the core of future work on this topic.
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Figure 1. 
Comparison of algorithms: simulated data (figure legends apply to respective panels of 

Figures 1–3)
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Figure 2. 
Comparison of algorithms: Reuters data
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Figure 3. 
Comparison of algorithms: SGD data
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Figure 4. 
Convergence of the hybrid algorithm
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